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Abstract: Background: Radiomics extracts quantitative image features to identify biomarkers for
characterizing disease. Our aim was to characterize the ability of radiomic features extracted from
magnetic resonance (MR) imaging of the liver and spleen to detect cirrhosis by comparing features
from patients with cirrhosis to those without cirrhosis. Methods: This retrospective study compared
MR-derived radiomic features between patients with cirrhosis undergoing hepatocellular carcinoma
screening and patients without cirrhosis undergoing intraductal papillary mucinous neoplasm surveil-
lance between 2015 and 2018 using the same imaging protocol. Secondary analyses stratified the
cirrhosis cohort by liver disease severity using clinical compensation/decompensation and Model for
End-Stage Liver Disease (MELD). Results: Of 167 patients, 90 had cirrhosis with 68.9% compensated
and median MELD 8. Combined liver and spleen radiomic features generated an AUC 0.94 for
detecting cirrhosis, with shape and texture components contributing more than size. Discrimination
of cirrhosis remained high after stratification by liver disease severity. Conclusions: MR-based liver
and spleen radiomic features had high accuracy in identifying cirrhosis, after stratification by clinical
compensation/decompensation and MELD. Shape and texture features performed better than size
features. These findings will inform radiomic-based applications for cirrhosis diagnosis and severity.

Keywords: cirrhosis; spleen; diagnosis; severity; radiomics; MRI

1. Introduction

Radiographic imaging provides a direct yet static view of the progressive physiological
changes inherent in cirrhosis. Radiomics is a method for extracting quantitative features
from radiographic images to identify potential novel biomarkers for characterizing and
prognosticating disease. Our aim in this paper is to explore whether novel image-based
techniques using radiomics may provide an objective method for detecting cirrhosis using
common abdominal imaging studies and how these methods are affected by liver disease
severity.

Although general radiographic modalities are widely available and used to assess
abdominal pathology, their ability to accurately detect cirrhosis is limited. Ultrasonography
has a sensitivity of 52–69% and specificity of 74–89% for assessing cirrhosis. while com-
puted tomography (CT) and magnetic resonance imaging (MR) have a sensitivity of 77–84%
and specificity of 53–68% [1,2]. These imaging studies are often reported using subjective
qualitative descriptions with few quantitative measurements Furthermore, the reliability
of these studies can be influenced by liver disease severity which is clinically classified
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as compensated or decompensated (ascites, variceal bleeding, or hepatic encephalopa-
thy) and by Model for End-Stage Liver Disease (MELD) score, (an established estimate of
mortality based on a composite of serum laboratory values widely used for transplant pri-
oritization) [3]. Imaging may not recognize earlier stages of cirrhosis (called compensated
cirrhosis). The MELD score can be affected by fluctuations in laboratory values and may
significantly under- or over-estimate liver disease severity for some patients [4]. While
there have been efforts to improve the yield of MELD using clinical and serologic infor-
mation [5], MELD and its sub-components are inherently indirect biochemical measures
of the physiological processes in cirrhosis that cannot be quantified radiographically and
do not incorporate quantitative radiographic markers. Recently, elastography has become
an emerging tool with high sensitivity and specificity for assessing hepatic fibrosis and
provides quantitative values that can prognosticate liver disease severity [6,7]; yet its access
and use is often limited to clinic settings in which patients have been referred for outpatient
liver disease evaluation. Therefore, incorporation of quantitative imaging biomarkers into
commonly obtained imaging studies could potentially improve recognition of cirrhosis and
liver disease in general. Besides elastography, a variety of imaging approaches have been
used to assess liver function, including in MR imaging [8].

Radiomics offers a way to bridge the direct radiographic assessment of the liver with
the need for quantitative metrics of liver disease and its progression. Radiomic features are
calculated by performing image processing operations on regions of radiological images
to capture a variety of measures of organ size, shape, and texture. These metrics are then
statistically correlated with existing measures of liver disease, such as MELD score and
decompensation status, to identify a subset of salient features. This training process yields
a computational model that can then be used to assess additional subjects. Unlike human
observations of liver disease such as nodularity of the liver or splenomegaly, radiomic
analysis has no a priori model of how liver disease is manifested. Rather, that model is
created through the training process. Such a model could be used to provide objective
assessment of liver disease severity without additional subjective human interpretation of
individual patient imaging.

Radiomics has been used to provide diagnostic and prognostic information for a
variety of medical diseases and has recently been used in hepatology. Radiomic analyses
in liver diseases [9,10] have primarily focused on detecting hepatocellular carcinoma,
including its diagnosis in cases of indeterminate hepatic nodules [11] and for assessing risk
of recurrence [12]. A smaller number of studies have explored using radiomics to detect
specific manifestations of liver disease such as clinically significant portal hypertension [13]
and in staging hepatic fibrosis [14–16].

Our goal is to expand radiomic application in detecting cirrhosis by using radiomic-
quantified imaging of the liver and spleen. These two organs were chosen as they manifest
findings of cirrhosis and portal hypertension that can be easily segmented radiographically.
We recently used this approach to test the ability of MR radiomic features against different
measures of cirrhosis severity [17]. We now first aim to demonstrate the ability of these
MR radiomic features of the liver and spleen to detect the presence of cirrhosis when
comparing MR imaging in patients with cirrhosis to those without cirrhosis. Second, we
aim to determine how radiomics performs when cirrhosis is further stratified by liver
disease severity as characterized by clinical compensation/decompensation or MELD score.
Third, we aim to show the relative importance of various radiomics feature classes in the
liver and the spleen for assessing different stages of cirrhosis.

2. Materials and Methods
2.1. Patient Selection

This is a single-center retrospective study of MR images acquired from 1 June 2015 to
1 June 2018 from patients with cirrhosis undergoing hepatocellular carcinoma screening
and from patients without cirrhosis undergoing intraductal papillary mucinous neoplasm
(IPMN) surveillance. Patient imaging studies were queried using the Mass General Brigham
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Research Patient Data Registry (RPDR), a research tool for extracting clinical data within
the Mass General Brigham healthcare system [18].

The cirrhosis cohort was initially identified using ICD-10 code of cirrhosis (K74) and
abdominal MR. Patients were included in this cohort if the diagnosis of cirrhosis was
confirmed based on chart review of clinical history along with any one of the following:
liver biopsy, elastography, or any liver related decompensation (defined as presence of
any variceal hemorrhage, ascites, or hepatic encephalopathy), and the patient had a MR
scan performed on a 3 Tesla Siemens Verio scanner using a multiparametric, fat suppressed
T1-weighted protocol with gadolinium-based contrast agent and a 5 min post contrast scan.
The non-cirrhosis IPMN cohort was initially generated using ICD-10 code of pancreatic
cysts (K86.2) with no ICD-10 code of cirrhosis (K74) and abdominal MR. Patients were
included if there were no clinical, laboratory, radiographic, or elastography evidence of
cirrhosis on chart review, and the patient had a MR scan conducted on the same scanner
type, protocol, and contrast agent as the cirrhosis cohort. In both cohorts, if patients had
multiple eligible imaging scans, the most recent one was used for analysis. Exclusion
criteria were the inability to confirm the presence or absence of cirrhosis on chart review,
missing MELD labs, presence or history of hepatocellular carcinoma, hepatic cysts larger
than 10 mm, hepatic resection, hepatic ablation, or splenectomy. Institutional Review Board
approval was obtained.

2.2. Study Outcomes

The primary outcome of this study was the discrimination ability and characterization
of radiomic features of the liver and spleen in detecting cirrhosis when MR images of
patients with cirrhosis were compared to those without cirrhosis. Secondary analyses on
radiomic discrimination of cirrhosis with varying liver disease severity were performed
by stratifying the cirrhosis cohort by either clinical compensation/decompensation or by
MELD score (stratified at the median MELD).

2.3. Patient Characteristics

Demographic data on age, sex, and ethnicity were obtained for all patients. Among
those with cirrhosis, information was abstracted on liver disease etiology and the presence
of liver related decompensation at the time of MR imaging. MELD scores were generated
using international normalized ratio, serum sodium, serum bilirubin, and serum creatinine
laboratory values that were obtained closest to the MR imaging scan.

2.4. Extraction of Radiomic Features and Validation Process

Feature analysis was performed on the contrast-enhanced imaging acquisition [17].
Due to the homogenous imaging conditions described above, we did not apply any kind
of pre-processing such as re-sampling or other normalization. Liver and spleen images
were segmented using a U-net-based network architecture successively trained on expert
segmentations [17,19]. The PyRadiomics library (version 2.0.1) [20] was used to extract
1288 features each from the liver and spleen, resulting in a total of 2577 imaging features
(including a size ratio). These features were classified as size (two-dimensional, three-
dimensional, liver to spleen volume ratio), shape (elongation, flatness, sphericity, surface-
to-volume ratio), and texture (first order statistics, features derived from various texture
descriptor matrices, as well as numerous multi-scale features based on wavelets and
Laplacian-of-Gaussian analysis). Note that our feature categories (which are illustrated in
Figure 1 with more detailed numbers) explicitly separate size-based features from shape
features, although these are often grouped into one category [20]. This is motivated by the
fact that liver and spleen sizes are already considered and (at least roughly) reported by
radiologists, and shape (such as “nodularity”) is considered a distinct feature by physicians.
Hence, we are interested in which of these individual aspects can be covered by our
automatic analysis as well.
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Figure 1. Radiomic features from liver and spleen were divided into high level classes (size, shape,
and texture) to better explain their relative importance in each experiment. Note that in other
literature, radiomics features of size and shape are typically combined into a single class. Distinct
size and shape classes better correspond to human observations such as gross organ size and texture
features such as surface nodularity, respectively.

2.5. Statistical Analyses

In describing the clinical characteristics, categorical data (sex, liver etiology, compen-
sation status) were presented as frequency with percentage, while continuous data (age,
MELD) were presented as mean with range. In analyzing the radiomic features, we set
up experiments for each cohort comparison as follows. For each analysis, 15 repetitions
of 5-fold cross-validation were performed, resulting in a total of 75 stratified splits of the
imaging data into training and validation sets. For each of these, a Random Forest classifier
was trained on the radiomic features of 80% of the imaging data and evaluated on the
remaining 20% of patients, obtaining the area under the curves (AUC) as a measure of
success. Statistical significance was defined as p-value < 0.05 using a random permutation
test. In the box plots conveying the results, the boxes indicate the lower and upper quartiles,
the solid line indicates the sample median, the dotted line represents the mean, the whisker
lines show the upper and lower fences, and dots depict outliers.

3. Results

The RPDR queries identified 417 patients for the cirrhosis cohort and 650 patients for
the non-cirrhosis IPMN cohort. After fulfillment of study inclusion and exclusion criteria,
90 patients in the cirrhosis cohort and 77 patients in the non-cirrhosis cohort were used for
analyses.

Within the cirrhosis cohort, the mean age was 61.5 years (range 24–83) and 51.1% were
male. The etiology of liver disease was 41.1% hepatitis c virus (n = 37), 25.6% non-alcoholic
steatohepatitis (n = 23), 16.7% alcohol (n = 15), and 16.7% other (n = 15). Median MELD
score was 8. At time of scan, 68.9% (n = 62) were compensated. Distribution of MELD score
and compensation status are shown in Figure 2. Within the non-cirrhosis IPMN cohort, the
mean age was 63.5 years (range 36–86) with 16.9% male.

3.1. Radiomic Discrimination of Cirrhosis

The first part of our analyses was to determine whether training of the liver and
spleen radiomic features using MR images of patients with and without cirrhosis could
enable accurate radiomic recognition of cirrhosis. Training and testing of these liver and
spleen radiomic features revealed a combined AUC of 0.94 in identifying cirrhosis. In
order to understand the relative importance of liver or spleen derived radiomic features
in driving this observation, we re-analyzed the data separately using only liver or only
spleen radiomic features. We found that the liver radiomic features were more effective
than features in the spleen for discriminating between those with cirrhosis and without
cirrhosis (Figure 3).



J. Imaging 2022, 8, 277 5 of 10
J. Imaging 2022, 8, x FOR PEER REVIEW 5 of 10 
 

 

 
Figure 2. This histogram shows the distribution of the Model for End-Stage Liver Disease (MELD) 
score and decompensation status of the cirrhosis cohort. This cohort population is biased towards 
relatively milder liver disease. The imperfect correlation between MELD score and decompensation 
status is also evident from this chart. 

3.1. Radiomic Discrimination of Cirrhosis 
The first part of our analyses was to determine whether training of the liver and 

spleen radiomic features using MR images of patients with and without cirrhosis could 
enable accurate radiomic recognition of cirrhosis. Training and testing of these liver and 
spleen radiomic features revealed a combined AUC of 0.94 in identifying cirrhosis. In or-
der to understand the relative importance of liver or spleen derived radiomic features in 
driving this observation, we re-analyzed the data separately using only liver or only 
spleen radiomic features. We found that the liver radiomic features were more effective 
than features in the spleen for discriminating between those with cirrhosis and without 
cirrhosis (Figure 3). 

 
Figure 3. This figure compares the overall radiomic discrimination of cirrhosis between cirrhosis 
and non-cirrhosis cohorts. Liver features were somewhat more effective in discriminating between 
the two classes, with texture and shape features being more salient than size features. 

We then attempted to characterize which of the predefined classes of radiomic fea-
tures had the best yield for detecting cirrhosis. We separated features into classes meas-
uring shape, texture, and size features. Texture and shape features alone were able to 

Figure 2. This histogram shows the distribution of the Model for End-Stage Liver Disease (MELD)
score and decompensation status of the cirrhosis cohort. This cohort population is biased towards
relatively milder liver disease. The imperfect correlation between MELD score and decompensation
status is also evident from this chart.

J. Imaging 2022, 8, x FOR PEER REVIEW 5 of 10 
 

 

 
Figure 2. This histogram shows the distribution of the Model for End-Stage Liver Disease (MELD) 
score and decompensation status of the cirrhosis cohort. This cohort population is biased towards 
relatively milder liver disease. The imperfect correlation between MELD score and decompensation 
status is also evident from this chart. 

3.1. Radiomic Discrimination of Cirrhosis 
The first part of our analyses was to determine whether training of the liver and 

spleen radiomic features using MR images of patients with and without cirrhosis could 
enable accurate radiomic recognition of cirrhosis. Training and testing of these liver and 
spleen radiomic features revealed a combined AUC of 0.94 in identifying cirrhosis. In or-
der to understand the relative importance of liver or spleen derived radiomic features in 
driving this observation, we re-analyzed the data separately using only liver or only 
spleen radiomic features. We found that the liver radiomic features were more effective 
than features in the spleen for discriminating between those with cirrhosis and without 
cirrhosis (Figure 3). 

 
Figure 3. This figure compares the overall radiomic discrimination of cirrhosis between cirrhosis 
and non-cirrhosis cohorts. Liver features were somewhat more effective in discriminating between 
the two classes, with texture and shape features being more salient than size features. 

We then attempted to characterize which of the predefined classes of radiomic fea-
tures had the best yield for detecting cirrhosis. We separated features into classes meas-
uring shape, texture, and size features. Texture and shape features alone were able to 

Figure 3. This figure compares the overall radiomic discrimination of cirrhosis between cirrhosis and
non-cirrhosis cohorts. Liver features were somewhat more effective in discriminating between the
two classes, with texture and shape features being more salient than size features.

We then attempted to characterize which of the predefined classes of radiomic features
had the best yield for detecting cirrhosis. We separated features into classes measuring
shape, texture, and size features. Texture and shape features alone were able to identify
cirrhosis with high accuracy. Taken on their own, size features were the least effective in
detecting cirrhosis.

3.2. Comparison by Compensation/Decompensation

We then divided our cirrhosis cohort into compensated and decompensated sub-
cohorts and tested whether a combination of liver and spleen radiomic features could
lead to correct radiomic detection of cirrhosis when each sub-cohort was compared to the
non-cirrhosis cohort. The liver and spleen derived features could distinguish compensated
cirrhosis with a combined AUC of 0.92. When analyzed individually, liver derived radiomic
features were better at detecting compensated cirrhosis than spleen derived radiomic
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features (Figure 4a). Similarly, these findings were primarily driven by shape- and texture-
based liver radiomic features, with size features being less important.
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cohort and either compensated (A) or decompensated (B) cirrhosis sub-cohorts. Discrimination is
more effective for decompensated sub-cohort. Liver features are more effective than spleen features
from discriminating compensated subjects, while spleen features become more effective than liver
features for decompensated subjects. Texture and shape are again more effective than size features.

This process was repeated for patients with decompensated cirrhosis and compared
to those without cirrhosis, yielding an overall AUC of 0.99 for identifying decompensated
cirrhosis using combined liver and spleen trained radiomic features. In this case, both liver
and spleen features were important when examined separately, with spleen features being
as or more important than liver features. When analyzed by type of radiomic feature, all
features had similar importance, except for liver derived size features which had an AUC
of 0.81 (Figure 4b).

3.3. Comparison by MELD Score

We then repeated the process of dividing the cirrhosis cohort into low or high MELD
sub-cohorts (stratified at the population median score of 8) and tested the ability of ra-
diomics to detect cirrhosis when each group was compared to the non-cirrhosis cohort.
The overall AUC for detecting cirrhosis with a low MELD score was 0.91 and with a high
MELD score was 0.98. The effect of liver and spleen derived features alone and the impact
on our predefined radiomic features are shown in Figure 5. When low MELD results are
compared to the previously obtained compensated results (Figure 4), it was not as strong
in detecting cirrhosis. Similar observations were made for high MELD and decompensated
results.
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Figure 5. This figure charts radiomic discrimination of cirrhosis between non-cirrhosis cohort and
either low MELD (A) or high MELD (B) cirrhosis sub-cohorts. Results are similar to, but somewhat
less effective than, the compensation/decompensation sub-cohort experiments. This difference may
be because the MELD score does not in itself predict cirrhosis with absolute accuracy.

4. Discussion

We observed that liver and spleen radiomic features had a high AUC of 0.94 in
identifying patients with cirrhosis when MR imaging scans were compared to those without
cirrhosis. This is an improvement from current approaches in reading MR imaging [1,2]
and this result is consistent with another study that used only liver radiomic features in
a younger population [15]. We found that this discrimination was primarily driven by
texture and shape based radiomic features with size-based features being less important.
The reliance on texture and shape based radiomic features is probably reflective of structural
changes that may occur with cirrhosis and portal hypertension such as surface nodularity,
caudate lobe enlargement, posterior notch, and splenomegaly [2,21–24].

To better understand how liver disease severity may affect the yield of detecting cir-
rhosis using radiomics when compared to those without cirrhosis, we stratified the patients
with cirrhosis by clinical compensation/decompensation and MELD score, since these
metrics are commonly used markers of cirrhosis severity. When using clinical compen-
sation/decompensation as a proxy for cirrhosis severity, detection of cirrhosis remained
high with AUC 0.92 for those with compensated cirrhosis and was mainly driven by liver
derived features rather than spleen derived features with radiomic shape and texture
features performing better than size-based features. These findings are consistent with
compensated liver disease being reflective of structural liver changes. Interestingly, the
spleen features had a non-trivial AUC of 0.85 suggesting that there may be structural
changes in the spleen from portal hypertension which can occur in compensated cirrhosis.
As we could not assess portal pressures in this retrospective study, it is difficult to say
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whether these findings in our compensated cirrhosis cohort are reflective of those with mild
or clinically significant portal hypertension. Among those with decompensated cirrhosis,
liver and spleen derived radiomic features had an AUC of 0.99 for capturing cirrhosis.
Notably, spleen features were as effective or more effective than the liver features in their
predictive power. Decompensation is associated with worsening portal hypertension and
resultant hypersplenism. However, in all cases, radiomic based shape and texture features
were more important than size-based features. Change in spleen size does not sufficiently
account for the importance of the spleen features in predicting severe cirrhosis. While
spleen elastography has been utilized to assess portal hypertension [25], we are unaware
of other studies that have associated quantitative changes in spleen texture and shape
with severe cirrhosis. Given that radiological assessment of cirrhosis typically reports only
spleen size as a single gross quantitative metric, further research into physiological changes
in the spleen due to the progression of cirrhosis seems warranted.

The experiments that used radiomics to distinguish between the non-cirrhosis subject
cohort and low- and high-MELD sub-cohorts had comparable results to the experiments
that used clinical compensation/decompensation, although the radiomics technique did
not perform as well in the MELD-based experiments. This reduced performance may in
fact be a strength and not a shortcoming. Previous research suggests that MELD has an
AUC of approximately 0.8 for liver related mortality; MELD’s ability to accurately predict
cirrhosis is good but not without limitations [26]. Our experimental results suggest that
radiomics derived liver and spleen features might capture complementary or even more
accurate information about liver disease severity than is possible with MELD. A future
combination of image-derived quantitative biomarkers and established measures such as
MELD score has the greatest potential to provide a more accurate clinical estimate of liver
disease severity.

Strengths of this study are that radiomic analyses were performed on standardized MR
images in patients with and without cirrhosis by using the same type of MR scanner, proto-
col, contrast regimen and by analyzing the same post-contrast image. We also excluded
scans that may affect interpretation of liver features such as hepatocellular carcinoma and
prior hepatic resection or ablation. An advantage of our study was that it not only tested
the ability of trained liver and spleen radiomic features to discriminate cirrhosis but also
how that was affected by decompensation status and MELD score, which are commonly
used (albeit far from perfect) proxies for liver disease severity. Importantly, radiomics
worked well in identifying cirrhosis in our study population of early-stage cirrhosis as
most patients were compensated with median MELD 8. We also classified liver and spleen
radiomic features by size, shape, and texture in order to better understand the predominant
features in radiomic detection of cirrhosis.

Limitations of this study are that it is a single-center retrospective study with a small
sample size, raising the possibility of selection bias in training and testing of radiomic
features. While we attempted to organize and describe liver and spleen radiomic features
in simplified terms of size, shape, and texture for ease of understanding radiomics, this
combination and characterization of radiomic features may be an oversimplification. By
masking out all parts of the image data except liver and spleen, our analysis does not include
other radiographic findings seen in the rest of the abdomen. Although we were able to
divide patients into compensated and decompensated cohorts, we could not retrospectively
divide the compensated cirrhosis cohort into substages of mild portal hypertension or
clinically significant portal hypertension which should be characterized further in future
radiomic studies. Additionally, it is possible that some patients within the non-cirrhosis
cohort may have had undiagnosed liver disease despite our effort to screen out these
patients. Furthermore, as our findings have not been tested in MR images acquired from
different MR scanners and contrast protocols, the generalizability of our method to a more
heterogeneous collection of scan data is unknown. For example, it is possible that radiomic
texture analysis may be sensitive to scanner and protocol differences. On the other hand,
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shape features performed well in all cases and are likely relatively stable to scanner and
protocol changes. Further study in this area is warranted.

In summary, our study demonstrates the strong ability of trained MR liver and spleen
radiomic features for detecting cirrhosis even after stratification by MELD or clinical
compensation/decompensation. The prospect of using radiomics to enhance existing MR
images has the potential to improve recognition of cirrhosis on commonly used imaging
studies. Our finding that radiomic discrimination of cirrhosis primarily relied on shape and
texture of the liver and spleen suggests that radiomics may detect subtle physiologic activity
of cirrhosis and portal hypertension which could be used to provide objective radiographic
measures of cirrhosis severity. The objective nature of our method makes it potentially
suitable as a tool to compare liver severity across patients for purposes including organ
allocation and transplant prioritization. While this study demonstrates the predictive ability
of radiomics to detect cirrhosis, our method provides the basis for future developments in
areas including continuous metrics of liver severity and methods to cluster similar patients.
More research is warranted for using radiomics as a quantitative biomarker in diagnosing
cirrhosis and complementing existing markers of cirrhosis severity.
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