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Rapamycin does not inhibit human cytomegalovirus
reactivation from dendritic cells in vitro
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Human cytomegalovirus (HCMV) infection and reactivation are a major cause of morbidity in

immune-suppressed patients. Interestingly, epidemiological studies have shown that patients

administered the mammalian target of rapamycin (mTOR) inhibitor, sirolimus (rapamycin), exhibit

more favourable outcomes, suggestive of activity against HCMV in vivo. Given its relative lack of

activity against lytic infection, it is postulated that rapamycin inhibits HCMV reactivation. Here, we

showed that rapamycin administered acutely or chronically has little impact on induction of

immediate early (IE) gene expression in experimentally latent dendritic cells or cells from naturally

latent individuals. Furthermore, we extended these observations to include other inhibitors of

mTORC1 and mTORC 2, which similarly have minimal effects on induction of IE gene expression

from latency. Taken together, these data suggest that favourable outcomes associated with

sirolimus are attributable to indirect effects that influence HCMV reactivation, rather than a direct

mechanistic action against HCMV itself.

Human cytomegalovirus (HCMV) reactivation is a major
cause of disease in transplant recipients and critically ill
patients (Legendre & Pascual, 2008; Limaye et al., 2008).
Similarly, primary infection poses a major health threat to
immunocompromised populations and represents the
predominant viral cause of congenital disease, particularly
in the developed world (Revello & Gerna, 2004). Thus,
understanding the mechanisms underlying HCMV infec-
tion and pathogenesis is of significant clinical importance.

HCMV reactivation generally occurs sporadically but at
subclinical levels due to the controlling presence of a robust
immune response (Jackson et al., 2011; Jost & Altfeld, 2013;
Rölle & Olweus, 2009), rendering immune suppression a
major factor in clinical reactivation (Smith & Khanna,
2013; Watkins et al., 2012). Although studies systematically
correlating HCMV disease incidence with different immune
suppression methods have been performed (Chakrabarti
et al., 2002, 2004; Lin et al., 2002), the majority of findings
require further investigation for unequivocal interpretation.
Interestingly, accumulating data have provided evidence of
better outcomes upon immune suppression with sirolimus
(rapamycin) following both stem cell (Marty et al., 2007)
and solid organ transplantation (Demopoulos et al., 2008;
Ghassemieh et al., 2013), suggesting that this immuno-
suppression regimen has a direct impact on HCMV.

Targets of rapamycin (Tor1 and Tor2) were originally
identified as yeast proteins sensitive to a naturally occurring
antifungal agent expressed by Streptomyces hygroscopicus

(Heitman et al., 1991; Vézina et al., 1975), and subsequent
studies revealed a mammalian target (mTOR) particularly
active against the mTOR complex 1 (mTORC1) arm (Heitman
et al., 1991; Sabatini et al., 1994). mTOR is a serine/threonine
kinase controlling a range of cellular functions, including
cell growth, proliferation and survival and affecting tran-
scription and protein synthesis (Lamming et al., 2013). Two
functional complexes exist: mTORC1, classically described
as rapamycin-sensitive and important for stimulation of
protein synthesis via activation of p70S6 kinase 1 and 4E-
BP1, and a second less well-characterized mTORC2 complex
that is generally considered rapamycin-insensitive (Loewith
et al., 2002) and implicated in cytoskeletal organization as
well as mediation of AKT signalling (Kim et al., 2002;
Sarbassov et al., 2005).

Viral targeting of the mTOR pathways during lytic infection
positively influences viral replication (Clippinger et al., 2011;
Kudchodkar et al., 2004, 2006; Moorman & Shenk, 2010).
Interestingly, while HCMV utilizes the mTORC1 pathway,
rapamycin has a minimal impact on viral replication in
fibroblasts, since HCMV activates a rapamycin-insensitive
pathway (Kudchodkar et al., 2004; Moorman & Shenk,
2010). Within 12 h, phosphorylation of 4E-BP1 becomes
insensitive to rapamycin, as shown by Kudchodkar et al.
(2004). Reconciling these data with improved prognosis
regarding HCMV infection for patients immunosuppressed
with sirolimus led to the proposal that sirolimus abrogates
HCMV reactivation and disease in vivo by preventing
reactivation of HCMV IE gene expression (Marty et al., 2007).
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Clearly, for mTOR to be important in HCMV reactivation,
it is required to be active in DC (dendritic cell) dif-
ferentiation. Western blot analysis of mTOR autopho-
sphorylation (anti-phospho-mTOR antibody (Ser2448),
1 : 750, cell signalling) in DCs derived from monocytes
(isolated from healthy volunteers under ethical approval
from the Cambridge Local Research Ethics committee)
suggested that mTOR is active in these cells (Fig. 1a), and
enhanced threefold by the addition of LPS (Fig. 1a;
densitometry using Image J Software, NIH). Having estab-
lished mTOR activity in DCs, we examined the effects of
rapamycin on reactivation. Latently infected monocytes
differentiated into immature DCs (Reeves & Compton,
2011) were treated with log dilutions of rapamycin for 1 h
(10 mM–100 nM in DMSO), prior to reactivation. At 24 h
post-reactivation, no overt inhibitory effect on immediate
early (IE) gene expression was observed using real time qPCR
(RT-qPCR) at the lower doses of rapamycin (Fig. 1b), which
are higher than those achieved clinically (20–50 nM).
However, we noted a trend suggesting that rapamycin has a
minor inhibitory effect on IE gene expression following an
analysis in cells from multiple donors, although the differences
in expression when all four donors were taken together were
non-significant (Fig. 1d; P50.16). Elevated IE gene expression
at higher doses of the drug (Fig. 1b) may be linked to the
observation that rapamycin at high concentrations mimics or
enhances aspects of the inflammatory response, even in the
absence of inflammatory cytokines (Barilli et al., 2008;
Turnquist et al., 2010) or that activation of death pathways
(Fig. 1c) indirectly stimulates HCMV gene expression.

Pre-treatment of fibroblasts with another mTORC1 inhi-
bitor, AICAR (aminoimidazole carboxamide ribonucleo-
tide), has been shown to block MIEP (major IE promoter)
activity, but only if added prior to HCMV infection
(Kudchodkar et al., 2007). Furthermore, AICAR is dele-
terious to viral replication during lytic infection, suggesting
that modulation of the cellular AMP : ATP level affects
HCMV infection (Kudchodkar et al., 2007). AICAR acts as
an agonist of AMP-activated protein kinase (AMPK)
through modulation of cellular AMP : ATP levels (Corton
et al., 1995). AICAR couples elevated AMP levels (and thus
cellular energy deprivation) with increased AMPK phos-
phorylation and activation (Luo et al., 2005), resulting in
inactivation of mTOR pathways. Accordingly, we exam-
ined whether pre-treatment of immature DCs with AICAR
affects their response to reactivation stimuli (Fig. 2).
Immature DCs pre-treated with rapamycin (1 mM) or
AICAR (0.5 mM) at non-toxic concentrations (Figs 1c and
2b) that suppress mTOR activation (Fig. 2a) were stimu-
lated with LPS or IL-6, and reactivation of IE gene
expression measured using RT-qPCR. Again, no appre-
ciable effect of rapamycin on HCMV reactivation was
observed following IL-6 or LPS stimulation whereas a
minor effect was evident with AICAR (Fig. 2c). To assess
infectious virus production after reactivation, DCs were
cultured on a monolayer of human foreskin fibroblasts
(HFFs) at 5 days post-reactivation for a further 5 days.

Co-culture supernatants were tested for the presence of
infectious virus by inoculation with fresh indicator
fibroblasts and subsequent scoring of IE positivity.
Consistent with IE RNA expression data, no significant
impact on virus production was observed in DCs cultured
with rapamycin (Fig. 2d; P.0.05). However, a statistically
significant (twofold to threefold) decrease in virus
production was detected in AICAR-treated reactivated
DCs (Fig. 2d; P,0.05). Interestingly, earlier studies on
HFFs have identified a post-IE effect of AICAR on virus
production during lytic infection (Kudchodkar et al.,
2007). Finally, these inhibitors appeared to have no signi-
ficant impact on induction of IE gene expression from
latent HCMV in cells of seropositive donors (Fig. 2e),
suggesting that our observations with experimental latency
can be replicated in natural latency using previously
defined protocols (Reeves & Compton, 2011).

Whilst mTORC1 does not appear to play a major role in
reactivation, a role for mTORC2 cannot be discounted.
Indeed, studies on an NTera2/D1 quiescent infection
model suggest that CREB (cAMP response element binding
protein) and mTORC2 interactions promote HCMV MIEP
gene expression in response to cAMP activators (Yuan
et al., 2009). Furthermore, these studies in cell culture
reflect acute exposure to rapamycin due to the nature of
the drug administration whereas in vivo the exposure is
more chronic due to long term use. Importantly, chronic
exposure of cells to rapamycin is deleterious to the
mTORC2 pathway (Lamming et al., 2012; Sarbassov et al.,
2006; Vollenbröker et al., 2009) via blockade of the
formation of de novo complexes following their natural
turnover in the cell (Sarbassov et al., 2006). Accordingly, we
addressed whether mTORC2 plays a role in reactivation.

OSI-027 (Selleckchem; 10 mM in DMSO) is a well-
characterized inhibitor of mTOR under trial for treatment
of leukaemia due to effects on both mTORC1 and 2 in vivo
(Bhagwat et al., 2011). Immature DCs derived from latently
infected monocytes were treated with OSI-027 for 2 h,
prior to the induction of reactivation (Fig. 3), at a con-
centration known to block downstream AKT activation
(Fig. 3a) but not trigger cell death (Fig. 3b). However, no
significant effects on RNA and protein expression levels
were observed (Fig. 3c,d; P.0.05, respectively). Similarly,
chronic exposure to rapamycin was ineffective at inhibiting
HCMV reactivation (Fig. 3e; P.0.05), with chronic
administration modelled by treating with rapamycin for
the final 3 days of the 6-day differentiation period to
immature DCs. The data collectively suggest that rapamycin
and mTOR signalling have minor involvement in the
induction of IE gene expression from DCs in vitro.

HCMV becomes insensitive to rapamycin within 12 h
post-infection (Kudchodkar et al., 2004, 2006; Moorman &
Shenk, 2010) and uses a rapamycin-insensitive pathway to
maintain viral progression through its life cycle (Clippinger
et al., 2011; Moorman & Shenk, 2010). However, many of
these earlier studies were performed in fibroblasts (Alwine,
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2008), a cell type more resistant to metabolic stress in vitro
(Baines et al., 2005; Li et al., 2005). This was exemplified by
studies on the role of the non-coding RNA beta 2.7 and its
effects on cell viability and energy production (Reeves et al.,
2007), where a growth defect was observed in neuronal but
not fibroblast cells (McSharry et al., 2003; Reeves et al.,
2007). Consistent with differential sensitivity, polarized M2
macrophages infected with HCMV were shown to be
sensitive to rapamycin, with impaired virus production
(Poglitsch et al., 2012). However, the studies presented
here suggest that HCMV in DCs are similarly resistant to
rapamycin during reactivation.

These observations collectively suggest that better out-
comes regarding post-transplant HCMV disease associated
with sirolimus-based immune suppression therapies are
largely attributed to indirect effects. HCMV reactivation
and disease in a clinical setting are possibly dependent on a

number of factors. Firstly, there is the rapidity of recon-
stitution of the immune response (Smith & Khanna, 2013;

Watkins et al., 2012), illustrated by the benefits associated

with transplanting seropositive donor CD34+ cells to
seropositive recipients in HLA-mismatched bone marrow

transplants due to the transfer of pre-existing immunity
(Ljungman et al., 2003). Secondly, this could affect the

resolution of secondary infections potentially exacerbated

by HCMV replication (Nichols et al., 2002). Inherent in
these observations is the view that the nature of the

reconstituted immune response dictates the ability of the
host to control viral reactivation (Roux et al., 2000).

Clearly, if certain immune suppressive regimens induce

accelerated recovery of specific T-cell responses important
for controlling HCMV, a clinical advantage exists. Thirdly,

several lines of evidence, both in vitro and in vivo, suggest that
inflammation exacerbates HCMV reactivation (Blankenberg
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Fig. 1. Rapamycin does not inhibit reactivation of HCMV gene expression. (a) Western blot analysis of phosphorylated and total
mTOR in immature DCs (1) and mature DCs (2). (b) RNA isolated from immature DCs stimulated with LPS was analysed for IE
and GAPDH RNA expression using qRT-PCR. Prior to reactivation, cells were incubated for 2 h with DMSO (1, 3, 5) or
rapamycin (2, 4, 6). (c) Immature DCs (1) incubated with DMSO (2, 4, 6) or rapamycin (3, 5, 7) were analysed for viability using
trypan blue at 24 h post-treatment. (d) RNA isolated from MoDCs derived from four independent monocyte donors was
analysed for reactivation of experimental latency via qRT-PCR post-LPS stimulation in the presence of 1 mM rapamycin (2, 4, 6,
8) or DMSO control (1, 3, 5, 7). IE gene expression was determined, relative to untreated (no solvent) LPS control. Statistical
analysis was performed on the four donors combined (n54; t-test, P50.16).
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et al., 2001; Hargett & Shenk, 2010; Humar et al., 1999;
Prösch et al., 2002; Reeves & Compton, 2011; Söderberg-
Nauclér et al., 1997). A major source of inflammation is from
allogeneically stimulated T cells, an event shown to promote
HCMV reactivation ex vivo (Söderberg-Nauclér et al., 1997).
Indeed, reduced incidence of graft versus host disease
(GvHD) observed with sirolimus (Antin et al., 2003;
Armand et al., 2008) is linked with a high proportion of T

regulatory cells produced in these patients (San Segundo
et al., 2010). Thus, suppression of CD4+ allogeneic
responses protects against GvHD (Hester et al., 2012).
Clearly, in the context of HCMV, the provision of a less
inflammatory environment may also affect reactivation.
Consistently, in our in vitro model, the trend towards a
minor decrease in IE gene expression upon stimulation with
LPS may be linked with reduced inflammation in the
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Fig. 2. Inhibition of mTORC1 using AICAR promotes a minor defect in virus reactivation. (a) Western blot analysis of mTOR
phosphorylation in DCs (1) or DCs incubated with 1 mM rapamycin (2), DMSO (3) or 0.5 mM AICAR (4) for 3 h. (b) Immature
DCs incubated with DMSO (1) or AICAR (2) were analysed for viability using trypan blue at 24 h post-treatment. (c) qRT-PCR
analysis of RNA isolated from immature DCs pre-treated with DMSO (1, 3, 5, 7; DM), AICAR (2, 6; AIC) or rapamycin (4, 8;
Rap) for 2 h, prior to LPS (1–4) or IL-6 (5–8) stimulation. (d) Supernatants from DC : HFF co-cultures at 10 days post-
reactivation were used to inoculate fresh fibroblasts and scored for IE positivity as a measure of infectious virus reactivation.
Quantification is shown for immature DC (iDC), immature DC+LPS (CON), immature DC+LPS+rapamycin (Rap) and
immature DC+LPS+AICAR (AIC). (e) Monocytes isolated from two seropositive donors were differentiated into iDCs (1, 5),
and prior to IL-6- induced reactivation (2–4; 6–8), pretreated with DMSO (2, 6), 1 mM rapamycin (3, 7) or AICAR (4, 8). RNA
was analysed with nested PCR for IE72 gene expression as described previously (Reeves & Compton, 2011). NS, Non-
significant by t-test (n53).
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presence of rapamycin (Fig. 3f), as measured using IL-6 and

TNF-a cytokine ELISA (R&D systems, Abingdon, UK).

Finally, a number of immunosuppressive regimens promote

increased inflammatory responses. For example, antithymo-

cyte G has been shown to induce inflammatory gene

expression from monocytes (Rameshwar & Gascón, 1992).

Among the cytokines produced in such a response, IL-6 is

linked with HCMV reactivation in vitro (Hargett & Shenk,
2010; Huang et al., 2012; Reeves & Compton, 2011) and IL-
1b has been shown to trigger MCMV (mouse cytomegalo-
virus) reactivation (Cook et al., 2006).

In summary, while these data are essentially negative, they
address an important theory regarding the improved out-
comes associated with sirolimus-based immune suppression.
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OSI-027 (2) were analysed for viability using trypan blue at 24 h post-treatment. (c, d) qRT-PCR (c) and immunofluorescence
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The findings imply that improved outcomes during
transplant (Demopoulos et al., 2008; Ghassemieh et al.,
2013; Marty et al., 2007) are associated with indirect effects
on the immune system, rather than direct molecular
blockade of HCMV reactivation in vivo.
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