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Abstract

Despite improvements in pharmacotherapy, morbidity and mortality rates in community-based populations with chronic

heart failure still remain high. The increase in medical complexity among patients with heart failure may be reflected by

an increase in concomitant non-cardiovascular comorbidities, which are recognized as independent prognostic factors in

this population. Heart failure and chronic kidney disease share many risk factors, and often coexist. The presence of

kidney failure is associated with incremented risk of cardiovascular and non-cardiovascular mortality in heart failure

patients. Chronic kidney disease is also linked with underutilization of evidence-based heart failure therapy that may

reduce morbidity and mortality. More targeted therapies would be important to improve the prognosis of patients with

these diseases. In recent years, serum uric acid as a determinant of cardiovascular risk has gained interest.

Epidemiological, experimental and clinical data show that patients with hyperuricaemia are at increased risk of cardiac,

renal and vascular damage and cardiovascular events. Moreover, elevated serum uric acid predicts worse outcome in

both acute and chronic heart failure. While studies have raised the possibility of preventing heart failure through the use

of uric acid lowering agents, the literature is still inconclusive on whether the reduction in uric acid will result in a

measurable clinical benefit. Available evidences suggest that chronic kidney disease and elevated uric acid could worsen

heart failure patients’ prognosis. The aim of this review is to analyse a possible utilization of these comorbidities in risk

stratification and as a therapeutic target to get a prognostic improvement in heart failure patients.
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Heart failure: a syndrome of

comorbidities

Over 80% of heart failure patients are �65 years of age

and most of them suffer from one or more comorbid-

ities, which crucially contribute to disease progression

and may affect heart failure treatments.1

Non-cardiovascular comorbidities influence heart

failure prognosis through shared risk factors or direct

pathophysiological links.2 The number of non-cardiac

comorbidities predicts all-cause hospitalizations and

even short-term mortality.3

The aim of this review is to analyse the physio-

pathological connections between elevated serum uric
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acid, chronic kidney disease (CKD) and heart failure,

focusing on their prognostic impact.

CKD

CKD is a progressive condition defined by decreased

kidney function, shown by reduced estimated glomer-

ular filtration rate (eGFR) or markers of kidney

damage, or both, for at least three months.4

Individuals with CKD have mortality rates that are

more than double the rate in the general population

and greater than 50% of deaths in patients with

CKD are from cardiovascular disease (CVD):5 in the

presence of moderate or severe renal failure an individ-

ual is classified as being at high or very high risk of

mortality, according the SCORE risk. In fact, CKD is

a powerful independent risk factor for the development

and progression of CVD and respective cardiovascular

outcomes.6–8 Development of heart failure is often

observed in patients with CKD, and its prevalence

increases significantly in cohorts with declining

GFR.9 Many of the same factors contribute to the

development of both chronic diseases, including age,

diabetes mellitus and hypertension.10

This brief review summarizes the data supporting

the prognostic impact of CKD on heart failure

patients; we will also describe the physio-pathological

relationship between CKD and heart failure, and latest

evidences on treatment strategies in patients affected by

both conditions.

Prognostic significance of CKD in heart

failure patients

CKD is present in 4.5% of the general population,

while it has higher prevalence in heart failure, affecting

up to 50% of patients with either a preserved or

reduced ejection fraction.11 Although patients with

heart failure suffer poor outcomes, including a death

rate of �50% within five years of diagnosis,12 the co-

occurrence of CKD and heart failure is associated with

a doubling in the risk of all-cause mortality.11

Pathological consequences of CKD have been

observed in a wide spectrum of heart failure patients.

While Ahmed et al. reported that accompanying CKD

was more strongly associated with mortality in patients

with preserved ejection fraction (HFpEF) than in those

with reduced ejection fraction (HFrEF),13 a subsequent

study demonstrated a similarly worse prognosis across

the wide range of reduced eGFR levels in patients with

either HFpEF or HFrEF.14 Importantly, a reduced

GFR is a stronger predictor of adverse outcome than

a reduction in left ventricular ejection fraction in heart

failure.15

Also, dynamic changes in renal function have been

recognized to portend a poor prognosis.16 However,

every change should be interpreted considering the clin-

ical context of the change in renal function. Increases in

creatinine during an acute heart failure hospitalization

are not always clinically relevant, especially when they

are accompanied by appropriate decongestion, diuresis

and haemoconcentration.17 A similar line of reason

can be applied to the worsening of renal function

(WRF) occurring during initiation of neurohormonal

antagonist therapy; in this setting, WRF could be

a reflection of neurohormonal blockade and not

necessarily a signal of direct renal injury.18,19 Yet,

mis-interpretation of these changes still results in inap-

propriate discontinuation of decongestive or neurohor-

monal blocker therapy in clinical practice.20,21

CKD and heart failure: bidirectional close link

In recent years, our understanding of the close inter-

connection between cardiac function and renal func-

tion has deeply evolved. Three key pathophysiological

categories are currently thought to contribute to the

development and progression of cardio–renal and

reno–cardiac interactions:22

1. Haemodynamic alterations due to low cardiac output

and/or altered venous return;
2. Dysregulation of the neuro-hormonal axis via sympa-

thetic nerve activation and/or triggering of the

renin–angiotensin–aldosterone system (RAAS);
3. Other factors that contribute to the accelerated pro-

gression of heart failure and CKD, including local

and systemic inflammation, metabolic changes,

anaemia, and bone and mineral disorder.

This important organ cross-talk has previously been

extensively described.23–25

CKD and heart failure: a common therapeutic goal

Once diagnosed, appropriate heart failure treatment in

CKD patients can be challenging. Most CKD–heart

failure patients have HFpEF, where there are no cur-

rent evidence-based recommendations for therapies

that improve outcomes, although evidence-based

HFrEF therapies, such as b-blockers and RAAS inhib-

itors, have been proved to be effective.26,27

Real-world observational data in ambulatory symp-

tomatic HFrEF patients have shown a beneficial effect

of angiotensin-converting enzyme (ACE)-inhibition

also in patients with baseline CKD and in those who

experienced a drop in eGFR after initiation of ACE

inhibitor (ACE-I).28 Fewer data are available for

angiotensin receptor blockers (ARBs); however, a
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propensity adjusted analysis illustrates a similar benefit
on outcome despite presence of CKD.29 It is still
important to underline that there are no specific data
from heart failure trials that treatment with ACE-I/
ARB also reduces the slope of GFR decline.
However ACE-I and ARB have shown to be reno-
protective in patients with CKD and diabetes, who
still constitute a large subgroup in the heart failure
population.

Further suppression of the RAAS axis using a min-
eralocorticoid receptor antagonist (MRA) is known to
positively influence outcome in HFrEF patients;30 the
clear benefit on cardiovascular outcome was observed
in a post hoc analysis of the EMPHASIS-HF trial also
in patients with baseline eGFR <60 mL/min per 1.73
m2.31 Importantly, MRA trials have generally excluded
patients with more advanced CKD (<30 mL/min per
1.73 m2).

The combination of neprilisyin inhibition on top of
on ARB (sacubitril/valsartan) compared with enalapril
slowed the rate of decrease in the eGFR and had
favourable effects on cardiovascular and renal out-
comes, in both HFrEF and HFpEF patients, with
and without CKD.32,33 The mechanisms of relative
preservation of eGFR with sacubitril/valsartan are
therefore not clear, but might just reflect an improve-
ment in cardiac function.

Contrary to RAAS inhibitors, b-blockers do not
cause an acute reduction in eGFR or alter the slope
of eGFR decline over time.34 Post-hoc analysis from
trials investigating efficacy showed that patients with
the lower GFR actually had the higher beneficial
effect of b-blockers.35–37

Novel therapeutic regimens with sodium-glucose
transporter-2 (SGLT-2) inhibitor may also play a key
role in improving outcomes in heart failure patients
with CKD. SGLT-2 inhibitors, through the block of
sodium/glucose uptake in the proximal tubule, can
induce plasma volume contraction and decreasing glo-
merular hyperfiltration, which leads to better long-term
kidney preservation and improves diuretic and natri-
uretic responses to other diuretic agents. Moreover,
SGLT-2 inhibitors might improve the efficiency of
myocardial energetics. It has been postulated that the
kidney protection and natriuretic effects induced by
SGLT-2 inhibitors may account for the reduction in
heart failure hospitalization in recent trials,38 which
was greater in patients with worse baseline renal func-
tion. Also dapaglifozin was shown to reduced the risk
of hospital admission for worsening heart failure,
increased survival and improved symptoms in HFrEF
patients with and without type-2 diabetes either in
patients with CKD and by a similar magnitude in
those without CKD.39 Ongoing trials (DAPA-CKD,
EMPA-KIDNEY) will help us to better understand

how a nephro-protective effect of these drugs may con-
tribute to preventing progression and adverse outcome
in heart failure patients with CKD.

Last, it remains fundamental to consider appropri-
ate treatments for comorbidities often present in
cardio–renal syndrome, such as anaemia and acid-
base disorder, following established guidelines.40,41

Exercise tolerance in patients with heart failure
and CKD

The impact of renal dysfunction on exercise capacity
has been poorly defined. Cardiopulmonary exercise test
(CPET) has been proposed as a valuable tool in
CKD.42 The relation of kidney function to exercise
capacity and the impact of impaired renal filtration
rate on the prognostic accuracy of maximum rate of
oxygen consumption (VO2 peak) was evaluated in the
large Metabolic Exercise Cardiac Kidney Index
(MECKI) score database.43 The major findings of the
study were two-fold:

1. Renal function, as assessed by eGFR, correlated
with peak VO2, independent of other established
factors influencing exercise capacity, such as age,
gender, obesity, New York Heart Association
(NYHA) class, atrial fibrillation, haemoglobin, and
treatments, including cardiac resynchronization
therapy. Peak VO2 as well as other key CPET-
derived variables, including the minute ventilation
- carbon dioxide production relationship, signifi-
cantly worsened with declining renal function
(Figure 1).

2. The combinations of cut-off values of eGFR and
peak VO2 allowed to best predict prognosis but

Figure 1. Multivariate adjusted geometric mean peak VO2 with
95% confidence interval according to strata of estimated glo-
merular filtration rate (eGFR). (Adapted from Scrutinio et al.43)
VO2: maximum rate of oxygen consumption.

Tedeschi et al. 37



testing for interaction was not significant (Figure 2).

However, the lack of significant interaction between
eGFR and peak VO2 in relation to mortality predic-
tion suggested that in patients with more severe

renal dysfunction, the prognostic weight of other
risk markers outranks that of decreased exercise
capacity.

The results of this study are consistent with previous
observation on the negative impact of renal dysfunction
on peak VO2 in HfrEF.44,45 Van Laethem et al. studied

79 heart transplantation patients.45 In this population
estimated GFR was a strong independent predictor of
decreased exercise capacity. An eGFR value of 53 mL/

min per 1.73 m2 was the optimal cutoff for discriminat-
ing patients with a peak VO2<or >18 mL/kg per min.

A significant correlation did not prove a cause–effect
relationship and, moreover, the association of decreas-
ing peak VO2 with declining renal function might
merely reflect a more advanced stage of heart failure.

Nonetheless, it is tempting to speculate about some
potential mechanisms which may be the pathophysio-
logical link between exercise performance and renal

function. In heart failure, chronic sympathetic activa-
tion causes a decrease in the responsiveness of the fail-
ing heart to catecholamines, thus limiting its ability to

augment cardiac output during dynamic exercise, an
increase in peripheral vascular resistance, and an
impairment of skeletal muscle vasodilation capacity

during exercise leading to muscle hypoperfusion.46–49

In addition, as reviewed by Middlekauff,50 chronic
sympathetic activation may contribute to skeletal
myopathy by inducing abnormalities of excitation–con-

traction coupling, alterations of metabolism resulting

in premature production of lactic acid and reductions

of fatigue-resistant oxidative fibres and by indirectly

triggering skeletal muscle inflammation leading to acti-

vation of catabolic and apoptotic pathways.50,51

Renal dysfunction may act as an amplifier of sym-

pathetic activation in heart failure,46,52–54 potentiating

the sympathetically mediated, central and peripheral

mechanisms underlying reduced exercise capacity.

Notably, the VE versus VCO2 relationship slope, a

strong marker of chemoreflex activation, was higher

in the lowest eGFR strata. Grassi et al.54 demonstrated

that sympathetic activation is already detectable in the

initial stages of CKD and that the magnitude of the

adrenergic drive is proportional to the degree of renal

dysfunction.54 In heart failure, the kidneys behave as

both target and source of central sympathetic

drive.52,54 Efferent sympathetic activity to the kidneys

enhances renin release, leading to increased angiotensin

II production, increases sodium reabsorption and

decreases renal blood flow and GFR.55 Angiotensin

II, in turn, exhibits a sympathoexcitatory action.56 In

addition, afferent signals from the dysfunctional kid-

neys contribute to reflexly increase central sympathetic

drive,57 thus fuelling the vicious circle of sympathetic

overactivity. Systemic inflammation with elevated

levels of circulating proinflammatory cytokines is a

prominent feature both in heart failure and in CKD

and may induce proteolysis in skeletal muscle, through

activation of ubiquitin–proteasome and myostatin

pathways.57–59 Chronic metabolic acidosis is a

common condition in moderate to severe CKD and

may worsen catabolic/anabolic imbalance in the skele-

tal muscle.57–59 In addition, elevated levels of angioten-

sin II may contribute to skeletal myopathy by

enhancing protein degradation and myocyte apopto-

sis.60 Hormonal disorders such as growth hormone

and insulin-resistance, oxidative stress and uremic

toxins also may contribute.58,59

Uric acid

The relationship between serum uric acid and CVD has

gained a lot of attention over the years. It was first

described in respect to coronary artery disease

(CAD), but it soon became obvious that the relation-

ship holds true for different cardiac conditions. Several

epidemiological studies have actually found an associ-

ation between increased serum uric acid levels and

elevated vascular event rate and mortality in patients

with hypertension, diabetes and prior CVD.61,62

Hyperuricaemia also predicts mortality and adverse

cardiovascular outcome in patients undergoing myo-

cardial revascularization and/or cardiac valve sur-

gery.63 An elevated uric acid has been proposed as a

Figure 2. Kaplan–Meier survival curves in the three subgroups
of estimated glomerular filtration rate (eGFR), stratified by peak
VO2. (Adapted from Scrutinio et al.43)
VO2: maximum rate of oxygen consumption.
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potential modifier in Systemic Coronary Risk
Estimation (SCORE).

In recent years, there has been growing interest
regarding elevated uric acid in heart failure. Current
evidence suggests that increased uric acid levels are
common in chronic heart failure; high levels of uric
acid may be either a marker of poor prognosis, which
could be used in conjunction with other risk factors, or
an active player in the pathogenesis of heart failure.64 If
it is only a marker, it could be used for monitoring of
the course of the disease and guidance of treatment, but
if it is an active participant, it may represent a novel
and attractive therapeutic target.

Prognostic significance of elevated uric acid in
heart failure patients

According to a recent study, about half of patients with
heart failure have a serum uric acid (SUA) concentra-
tion above the reference upper limit: 43% of heart fail-
ure patients with HFrEF and 57% with HFpEF.65

Elevated SUA predicts morbidity and mortality in
mild to moderate as well as advanced cases.66

Moreover, increasing evidence suggests that moderate-
ly elevated SUA levels are independently associated
with an increased risk of adverse outcomes both in
patients with acute heart failure67,68 and in patients
with chronic heart failure.68–70 For every 1 mg/dL
increase in uric acid the risk of all-cause mortality
and the composite endpoint in heart failure increased
by 4% and 28%, respectively.71 Association between
moderately elevated uric acid and adverse cardiovascu-
lar outcomes was demonstrated also in the GISSI-HF
trial.72 It is interesting to note that this association
remained statistically significant even after adjustment
for several cardiovascular risk factors, medications and
comorbidities, including CKD. Other trials showed
that association between uric acid levels and cardiovas-
cular events and heart failure hospitalizations was sig-
nificant only in patients without kidney failure.68,69

More recently, the prognostic value of elevated uric
acid in the current clinical practice of heart failure was
assessed by a post-hoc analysis of the MECKI
(Metabolic Exercise Cardiac Kidney Index) score data-
base, which includes a large optimally treated HFrEF
patient population.73 The main messages from this
study were:

1. Uric acid was associated with both cardiovascular
and total deaths also in contemporary optimally
treated HFrEF population.

2. In particular, uric acid was associated with cardio-
vascular death and total mortality in patients less
severe heart failure, that is, in NYHA class I–II,
but not in those with NYHA class III–IV.

Similarly, SUA is more strongly associated with
death in patients with more preserved exercise
performance.

3. After adjustment for several prognostic variables
such as peak VO2, VE/VCO2 and the MECKI
score, uric acid still maintained prognostic power,
but in comparison with the MECKI score, the
receiver operating characteristic curve analyses
showed that SUA did not have added prognostic
power both in the general heart failure population
and in subgroups of patients with different heart
failure severity, according to NYHA class and
peak VO2 (Figure 3).

In more advanced stages of heart failure, the above
mentioned confounding factors may play a major con-
tributing role in adverse prognosis thus reducing the
role of SUA and consequently with lower correlation
between SUA and mortality. Regardless, SUA when
added to the MECKI score, has no added prognostic
power either in the general population and in heart
failure populations of different heart failure severity.

The severity of hyperuricaemia is related to NYHA
functional class, to higher maximal oxygen consump-
tion and to the degree of diastolic dysfunction impair-
ment. The highest uric acid concentrations may be
observed in patients with advanced chronic heart fail-
ure or cardiac cachexia.74 Elevated uric acid could also
be a predictor of development of heart failure in
healthy people. In the Cardiovascular Health Study,
the incidence of heart failure was 21% in participants
with chronic hyperuricaemia and 18% in those with-
out; the results showed that an increase of 1 mg/dL in
uric acid conferred a 12% increase in risk of new heart
failure.75 Kim et al. also reported that uric acid levels
were independently a better predictor of poor outcome
than N-terminal pro B-type natriuretic peptide (NT
pro-BNP) in heart failure patients.76

Although there is strong evidence of association
between elevated uric acid and prognosis in heart fail-
ure, biological mechanisms linking hyperuricaemia to
poor long-term survival outcomes in patients with
heart failure are not fully understood.

Metabolism of uric acid

Uric acid is the final oxidation product of purine catab-
olism in humans. The reaction involves consecutive
conversions of hypoxanthine to xanthine and xanthine
to uric acid, which are catalysed by two enzymes, xan-
thine oxidase (XO) and xanthine dehydrogenase.

Uric acid is produced in the liver. Approximately
two-thirds of uric acid is excreted in the urine with
the remaining portion undergoing intestinal elimina-
tion as faeces.77 Uric acid is filtered by the glomerulus
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and is secreted in the proximal tubule, where a majority
of the filtered and excreted load undergoes reabsorp-
tion. Under physiological circumstances, only 5–10%
of the filtered uric acid is excreted. Several factors
including diet, medications, physiological and patho-
logical conditions participate in regulation of serum
uric acid.78

In the setting of heart failure, at least two different
processes can be responsible for increased uric acid:
increased production resulting from oxidative stress
and decreased excretion due to renal insufficiency,
which can be a consequence of cardio–renal syndrome
and renal congestion.

Uric acid and inflammation

One current theory relating hyperuricaemia and heart
failure suggests chronic inflammation may play a role.
The pathophysiologic link may be increased XO enzy-
matic pathway and oxidative stress during states of
reduced tissue perfusion and altered metabolic
state.79,80 XO is a potent generator of free radical spe-
cies; through its activity, which is known to be
increased 10-fold in heart failure, XO can induce oxi-
dative stress, which might lead to myocardial remodel-
ling, impaired contractility and fibrosis and decreased
cardiac function.81 XO is also shown to impair the reg-
ulation of vascular tone and reduced vasodilator

capacity and this could lead to exercise intolerance.82

In addition, XO can induce the up-regulation of
inflammatory cytokines.83

Even if high elevated uric acid predicts morbidity
and mortality in CVD in general and in heart failure
in particular, experimental studies showed that uric
acid with its antioxidant properties could be protective
against aging, oxidative stress and oxidative cell
injury.77 Therefore, there may be a different explana-
tion for the elevation of uric acid in heart failure.

Uric acid and congestion

A second theory suggests that elevated uric acid levels
in heart failure may reflect decreased excretion second-
ary to impaired renal function, which often accompa-
nies cardiac failure.84 Furthermore, high levels of lactic
acid in heart failure patients, due to cellular hypoxia
and consequent change to anaerobic metabolism, are
known to decrease uric acid excretion.85 Uric acid
excretion may be further compromised in chronic
heart failure (CHF) patients by chronic diuretic use,
which produces considerable salt and water loss that
stimulates proximal tubule solute reabsorption and
subsequent hyperuricaemia.86,87 Also, increased levels
of angiotensin II and norepinephrine seen in heart fail-
ure may contribute to increased SUA by stimulating its
tubular absorption.88 Finally, increased uric acid levels

Figure 3. Receiver operating characteristic (ROC) curve for cardiovascular mortality (left diagram) and total mortality (right dia-
gram) for MECKI score and for MECKI scoreþ serum uric acid. Red curve: ROC curve for the MECKI score; green curve: ROC curve
for the MECKI score combined with serum uric acid level. (Adapted from Piepoli et al.73)
MECKI: Metabolic Exercise Cardiac Kidney Index; AUC: area under the curve.
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in turn may worsen renal function, creating a vicious
cycle. Despite these evidences, the association between
hyperuricaemia and poor clinical outcomes of heart
failure seems to be more evident in patients with pre-
served renal function, suggesting a primary role for XO
activity and uric acid production in the clinical progres-
sion of heart failure.67–69,72,89

Uric acid metabolism as a therapeutic target

Although pioneer studies have raised the possibility of
preventing heart failure through the use of uric acid
lowering agents, namely XO inhibitors and uricosurics,
the literature is still conflicting on whether the reduc-
tion in uric acid will result in a measurable clinical ben-
efit in heart failure patients.90

Most of the accumulated knowledge is related to
allopurinol, a XO inhibitor, which is known to rapidly
and significantly reduce uric acid level by 1–3 mg/dL,
and was demonstrated to improve endothelial function
in hyperuricaemic patients with heart failure, presum-
ably via an antioxidant mechanism.86 The available
data are still inconclusive and conflicting. Gotsman
et al. reported that allopurinol treatment was associat-
ed with improved survival in a large observational
cohort of patients with chronic heart failure.91

Conversely, in the EXACT-HF trial, a 24-week treat-
ment with allopurinol failed to significantly improve
survival outcomes in heart failure patients with
hyperuricaemia.92

Febuxostat was expected to exert a stronger effect
on XO inhibition than allopurinol;93,94 however, data
concerning its use in heart failure patients are still con-
tradictory. Cicero et al. demonstrated, in a population
of elderly outpatients with heart failure with either
reduced or preserved ejection fraction, that cumulative
survival was higher in patients treated with febuxostat
in comparison with allopurinol treatment.95 This result
largely differs from those of the CARES study, in
which the same drugs were compared in a population
of obese patients with gout and which reported
an increase in the risk of cardiovascular mortality in
patients treated with febuxostat.96 Uric acid lowering
agents that act independently of XO have also been
studied, with mostly unfavourable results.86,97

Recent trials on SGLT-2 inhibitors demonstrated a
potential role of these drugs in lowering SUA. This
effect seems to be secondary to their inhibition on
GLUT9 isoform 2, which is known to exchange glucose
for uric acid in the renal proximal tubules and mediate
uric acid reabsorption at the collecting ducts of the
renal tubules.

In a meta-analysis of 62 clinical trials, treatment
with an SGLT-2 inhibitor consistently reduced circu-
lating uric acid concentrations.98 Reductions in uric

acid are generally greater if the HbA1c value is

higher, consistent with greater uricosuria accompany-

ing greater glucosuria, but there was no clear difference

in the extent of uric acid lowering across the range of

‘low-to-high’ normal uric acid values. Mean reductions

in SUA with empagliflozin were typically marginally,

not significantly, greater than those with canagliflozin

and dapagliflozin.98 Thus, the similar lowering of uric

acid observed with each of the SGLT-2 inhibitors indi-

cates a class effect, with no substantive differences

between agents or doses used routinely in the treatment

of type 2 diabetes. However, the specific role of these

drugs in uric acid homeostasis and the consequent clin-

ical impact remain unknown.
Given the conflicting data, future large randomized

controlled trials are required to better examine the

potential advantages of a tailored treatment with

drugs reducing uric acid in hyperuricaemic patients

with chronic heart failure, in order to improve their

long-term prognosis.

Exercise tolerance in patients with heart failure

and elevated uric acid

The impact of hyperuricaemia on exercise tolerance has

been poorly investigated. Leyver et al.87 evaluated the

relationship between SUA concentrations and the

measures of functional capacity obtained through

CPET. Fifty-nine patients with a diagnosis of chronic

heart failure due to CAD (n¼ 34) or idiopathic dilated

cardiomyopathy (n¼ 25) and 20 healthy controls

underwent assessment of functional capacity. VO2

max and SUA were measured during a maximal tread-

mill exercise test. They reported an inverse relationship

between SUA concentrations and VO2 max in heart

failure patients; this link was independent of diuretic

dose, serum creatinine, fasting insulin, alcohol intake,

body mass index and insulin sensitivity. They conclud-

ed that the strong correlation between SUA and VO2

max suggests that in chronic heart failure, increased

SUA concentrations may reflect an impairment of oxi-

dative metabolism; this hypothesis was supported by

the finding of a positive correlation between serum

uric acid levels VE/VCO2.
It was also reported that in patients with CHF, SUA

concentration is inversely related to the ventilatory

anaerobic threshold, independently of the hyper-

uricaemic effects of renal impairment and diuretic ther-

apy.99 This relationship could be explained considering

the early switch to anaerobic metabolism and conse-

quent accumulation of lactate in heart failure patients’

cells. Reduced cellular availability of oxygen, by caus-

ing depletion of adenosine triphosphate and accumula-

tion of hypoxanthine and uric acid, could also account
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for the observed association between the anaerobic
threshold and SUA.

These data suggest that the relationship between
increased SUA levels and impairments of exercise tol-
erance in heart failure could be consequent to derange-
ment of oxidative metabolism. However, a direct role
of uric acid cannot be excluded. Langlois et al. found
that hyperuricaemia in peripheral arterial disease
patients with hypertension was associated with a
worse functional status of the peripheral circulation,
as evidenced by more pronounced claudication (low
absolute claudication distance) on a treadmill test.100

High SUA levels can cause endothelium injury by
increases in platelet aggregation and through a direct
pro-inflammatory activity.101 Uric acid may also stim-
ulate vascular smooth cell proliferation, whereas it
reduces nitric oxide availability.102 Moreover, high
uric acid levels significantly increased angiotensin II
in cultured endothelial cells and this further prompted
endothelial cell senescence and apoptosis.103

Finally, elevated SUA levels could lead to endothe-
lial dysfunction, which is known to be a key feature of
CHF, contributing to increased peripheral vasocon-
striction and impaired exercise capacity.
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