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As the most prevalent internal modification in mRNA, N6-methyladenosine (m6A) plays
broad biological functions via fine-tuning gene expression at the post-transcription level.
Such modifications are deposited by methyltransferases (i.e., m6A Writers), removed by
demethylases (i.e., m6A Erasers), and recognized by m6A binding proteins (i.e., m6A
Readers). The m6A decorations regulate the stability, splicing, translocation, and
translation efficiency of mRNAs, and exert crucial effects on proliferation, differentiation,
and immunologic functions of immunocytes, such as T lymphocyte, B lymphocyte,
dendritic cell (DC), and macrophage. Recent studies have revealed the association of
dysregulated m6A modification machinery with various types of diseases, including AIDS,
cancer, autoimmune disease, and atherosclerosis. Given the crucial roles of m6A
modification in activating immunocytes and promoting DNA repair in cells under
physiological or pathological states, targeting dysregulated m6A machinery holds
therapeutic potential in clinical application. Here, we summarize the biological functions
of m6A machinery in immunocytes and the potential clinical applications via targeting m6A
machinery.
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INTRODUCTION

While RNA modification was first identified in 1970s, it becomes a research focus in recent years. It
broadly exists in different species, including fungi (Bodi et al., 2015), plants (Yue et al., 2019), and
animals (Yoon et al., 2017; Xia et al., 2018). During the past decades, researchers have found that
RNA methylation is a widespread modification in coding sequence and non-coding sequence
(Huang et al., 2020), most of which are located at the amine group outside ring, special nitrogen and
carbon positions of purine and pyrimidine, and the oxygen atom of the 2′-OH moiety (Liu and Jia,
2014). If classified by the modified position, RNA methylation mainly consists of N6-
methyladenosine (m6A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), etc., among
which m7G cap at the 5′end of RNA sequence has been rigorously studied for decades
(Devarkar et al., 2016; Pandolfini et al., 2019). However, m6A modification, representing the
most abundant modification, needs further study.

As reported, m6A modifications are localized in the conversed DRACH motifs (D � G/A/U, R �
G/A, H � A/U/C). The distribution of m6A is usually in the coding and 3′ untranslated regions,
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especially enriched in the upstream of stop codon in mRNA
(Roundtree et al., 2017). Recent researches find that m6A
modification is also an important biological mark of
endogenous circular RNA (circRNA) (Chen et al., 2019).
Moreover, m6A modification in lncRNA can regulate the
efficiency of glycolysis (Liu J et al., 2019) or promote
oncogenesis (Chen et al., 2020). Since m6A modification is
dynamic and reversible, the biological function and molecular
mechanism of m6A modification have become a research hotspot
in many medical fields.

WRITERS, ERASERS, AND READERS

The most momentous breakthrough in this field is the discovery
of the m6A machinery involved in m6A modification, including
“Writers,” “Erasers” and “Readers,” performing the function of
methyltransferase, demethylase, and recognizing the m6A
structure, respectively. They dynamically regulate the
homeostasis of m6A and its functions in cells.

Writers
With the function of forming m6A structure, “Writers” protein is
a 1 MDa complex composed of multiple subunits, containing
Methyltransferase like-3 (METTL3) (Liu et al., 2014),
Methyltransferase like-14 (METTL14) (Weng et al., 2018),
Wilm’s Tumor 1-associating protein (WTAP) (Ping et al.,
2014; Sorci et al., 2018), etc. METTL3 is responsible for
catalyzing the transfer of methyl group with the support of
S-adenosyl-methionine (SAM) in many types of RNA
including mRNA and miRNA, while METTL14 is a catalytic
cofactor capable of recognizing and binding the target mRNA.
WTAP is in charge of recruiting the targeting RNA and locating
the METTL3/METTL14/WTAP complex into the nuclear
speckles, which is relevant to the prognosis and cisplatin
resistance (Ma et al., 2021) of cancer and the infiltration of T
lymphocyte within tumors (Li H et al., 2020). New subunits,
termed RBM15/RBM15B (Knuckles et al., 2018), KIAA1429 (Lan
et al., 2019), ZFP217 (Song et al., 2019), and ZC3H3 (Silla et al.,
2020), have been identified, and their functions involve in the
recruitment, m6A modification of mRNA or lncRNA, and
regulation of the m6A catalytic efficiency. Different types of
“Writers” may interact with each other, as a result of which
may influence the progression of some diseases such as colorectal
cancer (Chen H et al., 2021).

Erasers
Them6A structure can be erased by the “Erasers” protein. Fat mass
and obesity-associated protein (FTO) (Jia et al., 2011) was
supposed to be the first demethylase discovered, whose
existence confirmed the reversibility of m6A modification. FTO
and the second identified “Erasers” called AlkB Homolog 5
(ALKBH5) (Zheng et al., 2013) jointly counter the m6A
modification of “Writers,” thus maintaining the homeostasis of
m6A level in cells, whereas the distribution of the two proteins are
tissue-specific. The amino acid sequence HXDXnH and
RXXXXXR (X � any amino acid) with demethylase activity are

contained in their mutual AlkB domain. Both of them remove the
m6A methylation from mRNA with the Fe (II)/α-ketoglutarate-
dependent dioxygenase (Fedeles et al., 2015). The demonstration of
“Writers” and “Erasers” initiates a new branch, namely, m6A
research, in the field of epigenetics. Recent studies on ALKBH5
gradually elucidate its multiple functions in disease progressing
and therapeutic efficacy, including CD4+ T cell pathogenicity in
autoimmunity (Zhou et al., 2021), anti PD-1 response in tumor
treatment (Li N et al., 2020), glucocorticoid resistance in T-cell
acute lymphoblastic leukemia cell treatment (Gong et al.,
2021), etc.

Readers
The level of m6A in cells is dynamically modulated by “Writers”
and “Erasers,” while “Readers” can recognize the m6A structure
and regulate the subsequent cell processes such as translation
and stability of mRNA. The YTH domain-containing family is
the first confirmed component of “Readers,” characterized by
the YTH domain at C terminus. YTHDF1∼3 and YTHDC1∼2
(Kasowitz et al., 2018; Zhou et al., 2020) are identified as m6A
binding proteins, among which researches concerning YTHDF
are more detailed. Generally speaking, the aforementioned m6A
“Readers” proteins have the same function of binding the
m6A-modified mRNA with the consensus YTH domain at C
terminus, while YTHDF1 promote translation by binding the
m6A at translation initiation site (Zhuang et al., 2019);
YTHDF2, characterized by the P/Q/N-rich domain at N
terminus, recruits the CCR4-NOT deadenylase complex and
brings the target mRNA to cytoplasmic P bodies (Du et al.,
2016), resulting in the destabilization of mRNA (Paris et al.,
2019); YTHDF3 is also related to mRNA decay, but it is
regarded to have a synergistic effect on YTHDF1 and
YTHDF2 (Ni et al., 2019). In contrast to YTHDF, additional
Readers such as insulin-like growth factor 2 mRNA-binding
proteins (IGF2BPs) (Hanniford et al., 2020) can uniquely
stabilize the target mRNA, while the eukaryotic initiation
factor 3 (eIF3) (Meyer et al., 2015; Wolf et al., 2020) can
promote cap-independent translation of mRNA with 5′-UTR
m6A modified. Moreover, other m6A Readers like ELAVL1
(Zhang et al., 2017) are being studied recently.

ROLES OF M6A MODIFICATION IN
IMMUNOCYTES

Immunocytes play a crucial role in a variety of bioprocesses, such
as recognizing and presenting the pathogen and immune
response, whose depletion or dysfunction is the important
pathological basis of tumorigenesis, viral infection, and
autoimmune diseases, etc. Previous researches focused on the
function of m6A in cancer cells, including endometrial cancer
(Liu et al., 2018), breast cancer (Cai et al., 2018), bladder cancer
(Cheng et al., 2019), hepatocellular cancer (Zhao X et al., 2018),
nasopharyngeal cancer (Zhang et al., 2018), glioblastoma stem
cells (Cui et al., 2017), acute myeloid leukemia (Cui et al., 2017),
etc. Nevertheless, recent m6A researches on T lymphocyte, B
lymphocyte, DC, and macrophage broaden our cognition
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towards the human immune system, which are the latest
achievements of m6A modification.

T Lymphocyte
T lymphocyte is the executant of human adaptive immune
system, which is related to antitumor immunity and
autoimmune diseases. Furthermore, T lymphocyte is likely to
have interaction with neural stem cells, thus inhibiting its
proliferation and resulting in age-related brain disease (Dulken
et al., 2019); the abnormal level of m5C, another form of RNA
methylation, in CD4+ T lymphocytes may have a potential link
with the pathogenesis of systemic lupus erythematosus (SLE)
(Guo G et al., 2020). According to the differences in function and
phenotype, T lymphocyte can be divided into subtypes including
naïve T cell (Tn), cytotoxic T cell, regulatory T cell (Treg), helper
T cell (Th), etc., which is mainly driven by the stimulation of
inflammation factor such as interleukin (IL) and tumor necrosis
factor (TNF). Recently, bile acid has been proved to be an
accessional regulator of Th17 (Hang et al., 2019) and Treg
differentiation. The newly discovered subtype termed
exhausted T cell (Tex) along with its key transcription factor
called thymocyte selection-associated high mobility group box
(TOX) (Scott et al., 2019) is a breakthrough in antitumor study,
although the connection between Tex and m6A remains to be
explored.

Studies focusing on m6A in T lymphocyte mark the initiation
of m6A study in adaptive immune field. Li H-B et al. (2017) found
that 5 weeks after transplant of wild type Tn, Rag−/−mice develop
colitis due to the differentiation of Tn into effector T cell, whereas
Rag−/−mice withMettl3−/− transplanted exhibit no sign of similar
symptoms and no T cell infiltration or inflammation inside spleen
and colon can be observed. FACS shows the dysfunction of
Mettl3−/− Tn differentiation. Molecular biology studies indicate
that Soc1, Soc3, and CishmRNA are stabilized owing to the lack of
m6A modification; afterwards, elevated SOCS protein inhibits the

phosphorylation of STAT5, then the IL-7 mediated JAK-STAT5
pathway will be blocked, and thus the differentiation of Tn is
suffocated. However, because Mettl3−/− strengthen ERK and APK
pathway simultaneously, no obvious increase in T cell apoptosis
can be observed. Follow-up study (Tong et al., 2018) found that
Tn homeostasis of Mettl3f/f; CD4-Cre mice can be destroyed and
have colitis 3 months after being born, because Treg’s
suppression of effector T cell is faulted. During this process,
genetic depletion ofMettl3 reduces the m6A modification of Socs
mRNA, then stabilizes mRNA, and upregulates its expression.
High level SOCS protein inhibits IL-2-STAT5 pathway, resulting
in the dysfunction of Treg. Additionally, it is demonstrated that
Treg can strengthen type-II DC’s ability of presenting antigen
(Binnewies et al., 2019), enhance antitumor response, and
improve prognosis of checkpoint blockade such as PD-1 block
immunotherapy (shown in Figure 1).

Another study (Lu et al., 2020) unveils the function ofMettl14
in T lymphocytes. In this research, CD4-Cre+/Tg Mettl14FL/FL

conditional knockout mice have found to develop spontaneous
colitis due to the increased level in Th1 cytokines, such as IFN-γ
and TNF-α. Follow-up studies show that RORγt expression in
Mettl14 deficient Tregs is downregulated compared to the wild-
type Tregs and the induction efficacy of Mettl14 deficient Tn to
iTreg is obviously impaired. As a consequence, both the reduction
of iTregs, whose function has reported to be controlling the
experimental colitis, and the dysfunctional Mettl14 deficient
Tregs lead to the development of spontaneous colitis. With the
function of METTL3 in T follicular helper cell differentiation
being clarified recently (Yao et al., 2021), plenty of evidences have
persuade us that m6A may play an irreplaceable role in all
subtypes of T cells.

Furthermore, in acute myeloid leukemia (AML), FTO
inhibition can lead to downregulation of leukocyte
immunoglobulin-like receptor subfamily B member 4
(LILRB4), render AML cells vulnerable to activated T cells,

FIGURE 1 | m6A decoration contributes to the regulation of Tn differentiation and Treg function both through JAK-STAT5 pathway. m6A modifications in Soc1,
Soc3, and Cish mRNA accelerate their degradation, thus decreasing the expression of SOCS. As a consequence, through the JAK/STAT5 pathway, IL-7 induced
differentiation of Tn and IL-2 induced suppressive function of Treg are both influenced afterwards.
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and simultaneously overcome hypomethylating agent (HMA)-
induced immune evasion. FTO’s function in anti-tumor
immunity, especially its function in T cells, can be a
promising therapeutic strategy in the field of m6A research (Su
et al., 2020).

In addition, when CD4+ T cell is infected by the Human
Immunodeficiency Virus (HIV), both HIV RNA and intrinsic
RNA will be obviously increased (Lichinchi et al., 2016)
independent of virus replication. Only gp120 will
upregulate the level of m6A without influencing the
expression of Writers and Erasers (Tirumuru and Wu,
2019). The m6A modification position of HIV RNA mainly
distributes at 3′-UTR (Kennedy et al., 2016), which is directly
involved in the regulation of viral mRNA nuclear export and
protein synthesis. The m6A modification machinery, such as
YTHDF (Tirumuru et al., 2016), METTL3/METTL14, and
ALKBH5 (Lichinchi et al., 2016), act as a crucial regulator of
this process. The m6A modification of HIV RNA will affect the
expression of viral proteins including p55 (the product of gene
gag) and Rev, consequently impacting the viral infectivity and
replication, while suppressing the expression of IFN-I in
monocytic cells and macrophages at the same time (Chen S
et al., 2021). Therefore, antibodies neutralizing gp120 or
CD4+ probably have the potential to counter HIV. Besides,
Fu et al. (2019) for the first time applied HIV transgenic rats
for m6A research and elucidated the role of m6A modification
in mRNA in chronic HIV diseases, especially neurologic
disorder (shown in Figure 2).

In conclusion, the effect of YTHDF2 on virus remains to be
ascertained or can be bidirectional (Toro-Ascuy et al., 2016; Lu W
et al., 2018); YTHDF3 weakens the viral infectivity and inhibits the
viral replication. Uniquely, YTHDF3 can be incorporated into the

virion and still keep its antiviral activation, but the HIV protease
can cleave the virion containing YTHDF3. This mechanism
prevents HIV from being killed thoroughly and provides a new
thought for HIV treatment (Jurczyszak et al., 2020).

All the researches above reveal that m6A along with associated
protein can alter the stability of mRNA and regulate nuclear
export and translation of mRNA, thus influencing the bioprocess
of T cell with different phenotype and promoting the progression
of certain diseases.

B Lymphocyte
B lymphocyte is involved in the humoral immunity by producing
antibodies. Applying bioengineering technology to design special
improbable immunogen can induce the synthesis of antibodies
with high affinity, which have the potential to treat virus
infection, such as HIV (Saunders et al., 2019). A recent
clinical study suggests that m6A modification is closely related
to the oncogenesis and progress of mantle cell lymphoma (Zhang
W et al., 2019). Mantle cell lymphocyte is a kind of non-hodgkin
B cell lymphoma characterized by aggressive phenotype and
rapid rate of progression. After analysis of 123 samples of
clinical patients, the hazard ratios of YTHDF3, METTL3,
FTO, METTL14, ALKBH5, YTHDF2, and WTAP are below 1,
while those of YTHDF1, KIAA1429, and ELAVL1 are above 1,
among which the maximum is ELAVL while the minimum is
YTHDF3, implying that ELAVL and YTHDF3 might be the most
important regulators of mantle cell lymphoma. Moreover, “m6A
index” is proposed to evaluate the prognosis of patients. Without
much available biology research data, this statistical study directs
a path for the following m6A research concerning B lymphocyte.

Recent studies have shown that the deletion of Mettl14 can
decrease the m6A level in developing B cells and inhibit some

FIGURE 2 | m6A-associated proteins in HIV-infected T lymphocytes regulate the expression of HIV mRNA. METTL3/METTL14 can install m6A decoration on HIV
mRNA, while ALKBH5 can remove suchmodification. YTHDF1-3 recognize the m6A structure and influence the expression of HIV mRNA such as Rev and p55. With the
support of Rev, HIV mRNA modified by m6A can export nucleus more easily, which promote the replication of HIV.
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important processes, such as the IL-7-induced Pro-B cell
proliferation and the transition to the Large Pre-B Stage,
which depends on the function of YTHDF2 (Zheng et al.,
2020) (shown in Figure 3). However, the Large-Pre-B-to-
Small-Pre-B Transition depends on METTL14, but is
independent of YTHDF1 or YTHDF2 (shown in Figure 3).

The pathogenesis of diffuse large B-cell lymphoma (DLBCL),
which is the most common subtype of lymphoma derived from B
lymphocytes, has been illustrated to have a link with upregulated
METTL3 and the m6A level of the mRNA of pigment epithelium-
derived factor (Cheng et al., 2020), while PIWI-interacting RNAs
have been identified to function in this process recently (Han
et al., 2021). The association between B lymphocytes and other
m6A methylation-related proteins remains to be explored.

Besides, Kaposi’s sarcoma (KS) is evidently associated with
infection of HIV and Kaposi’s sarcoma-associated herpesvirus
(KSHV). KSHV shows strong lymphotropic and invades B cells in
the circulation (Myoung and Ganem, 2011). During this process,
m6A Reader protein YTHDF2 plays a positive role in KSHV
replication (Hesser et al., 2018). However, inconsistent with its
feature in vivo, KSHV exhibits weaken infectivity and
proliferation in B cells lines in vitro, so the role of m6A and
associated protein in the oncogenesis of KS remains to be
explored.

DC
As the bridge between the innate and adaptive immune, DCs
function as antigen-presenting cells and can also produce VEGF-
α for the recruitment of neutrophil to control cutaneous bacterial

infections (Janela et al., 2019). Therefore, DCs play a core role in
the eradication of pathogen and inducement of immune
tolerance. It has been evidenced that the dysfunction of DC
activation is involved in the progression of multiple
inflammation, cancer, and autoimmune diseases. Tyrosine
kinase AXL can induce the expression of PD-1. IFN-γ and IL-
4 can respectively promote and inhibit the production of IL-12;
thus, blockade of IL-4 receptor can strengthen antitumor
response by expanding the infiltration of T lymphocyte at
tumor position (Maier et al., 2020). Though the association
between the suppression of DCs and extracellular
m6A-modified RNA has been confirmed for decades (Karikó
et al., 2005), studies concerning m6A in DCs are still at its
infant stage.

Wang H et al. (2019) found that total level of m6A in DCs is
increasing parallel with its maturation. The distribution of m6A is
mainly located in NLR, TNF, and NF-κB pathways, which are
responsible for the induction of co-stimulatory factors and pro-
inflammation factors which promote maturation of DCs.
METTL3 was involved in this physiological process. Distinct
from most of the previous laboratory findings, the
fundamental mechanism is the upregulation of translation
efficiency, but not the stability of mRNA (Wang H et al.,
2019) (shown in Figure 4).

Han et al. (2019) discovered the connection between
upregulated translation and YTHDF1. The depletion of
YTHDF1 in DCs will limit the expression of lysosomal
protease, which decelerates the degradation of antigen, thus
improving DCs’ ability of presenting antigen and activating

FIGURE 3 |METTL3/METTL14 complex and YTHDF1 is necessary for the early development of B lymphocytes. METTL14 plays an unreplaceable role in the IL-7
induced Pro-B lymphocyte proliferation, Pro-B-to-Large-Pre-B transition, and Large-Pre-B-to-Small-Pre-B transition. YTHDF2 will recognize the m6A modification
afterwards and decrease the transcripts as a result, which promote early B lymphocyte development. Notably, YTHDF2 only facilitate in the first two process. The Large-
Pre-B-to Small-Pre-B Transition is independent of YTHDF1 or YTHDF2.
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CD8+ T cell. This suggests a new mechanism of immune escape
as well as an important reason for weak antitumor immune
response in certain clinical cases (Han et al., 2019) (shown in
Figure 5).

Macrophage
Macrophage is a kind of innate immune cell dwelling in
various tissues with multiple subtypes, which can be
classified into classically activated macrophages (M1) and
alternatively activated macrophages (M2). Early researches
have implied the possibility of m6A weakening immune
response (Durbin et al., 2016). However, recent researches
indicate that m6A modification plays an important role in
antivirus, negative feedback control of macrophage activation
(Du et al., 2020), and the polarization of macrophages. Roles

of m6A Writers, Erasers, and Readers in macrophages are
summarized in Table 1.

In detail, “Writers”METTL3 catalyzes the m6Amethylation at
coding sequence (CDS) and 3′-UTR of STAT1mRNA, facilitating
the polarization of M1, but having opposite impact on M2 (Liu Y
et al., 2019). Another study has also illustrated METTL3’s
function in promoting M1 differentiation, which afterwards
benefits bone marrow mesenchymal stem cells (Lei et al.,
2021). Moreover, METTL3 can methylate hnRNPA2B1 and
Cgas, Ifi16, and Sting mRNA simultaneously, and then the
affinity of hnRNPA2B1 to three mRNA above is improved,
which ultimately increases the production of IFN-β and
amplifies the immune response to DNA virus (Wang L et al.,
2019). In addition, METTL3 deficiency have proved to impede
the activation of macrophages through TLR4 signaling pathway

FIGURE 4 | METTL3 up-regulates the expression of CD40, CD80, and IL-12, which promote the maturation of immature DC. In the end, its ability of presenting
antigen and interaction with T lymphocytes are strengthened.

FIGURE 5 | YTHDF1 increases the level of cathepsin in mature DCs, which accelerates the cleavage of antigens in phagosome, making DCs’ ability of presenting
antigen impaired.
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by stabilizing Irakm transcripts (Tong et al., 2021). As for
METTL14, there is also indirect evidence indicating its
function in suppressing CD8+ T cell dysfunction and tumor
growth (Dong et al., 2021).

After knockout of “Erasers” FTO, the polarization of both M1 and
M2 can be inhibited, during which the expression of STAT1 in M1
was decreased, while the degradation of STAT6 and PPAR-cmRNA is
increased (Gu et al., 2020). Furthermore, ALKBH5 demethylate
DDX46-binded Mavs, Traf3, and Traf6 mRNAs, leading to the
retention of these mRNAs inside nuclear, indirectly inhibiting
translation and reducing the production of IFN. In the end,
antiviral activation of macrophages is weakened (Zheng et al., 2017).

Knockdown of “Readers”YTHDF2 can stimulate the expression of
STAT1 (Huangfu et al., 2020) and PPAR-c mRNA (Gu et al., 2020),
while forced expression of YTHDF2 could destabilize MAP2K4 and
MAP4K4 mRNA and activate the NF-κB and MAPK pathway (Yu
et al., 2019), which will facilitate LPS-induced osteoclastogenesis and
inflammatory response (Fang et al., 2021). YTHDF3was regarded as a
negative regulator of antivirus. With the assistance of PABP1 and
elF4G2, YTHDF3 can bind the translation initiation site of FOXO3
mRNA and promote translation. As a result, the expression of IFN-
stimulated genes is inhibited, which weakens the immunity response
to Vesicular stomatitis virus (VSV) (Zhang Y et al., 2019). Moreover,
another reader IGF2BP2 has also proved to be associated with the
phenotypic activation of macrophage (Wang X et al., 2021).

Researches focusing on m6A modification in macrophages reveal
its association with some diseases. The occurrence of atherosclerosis
(AS) has proved to be linked with m6A modification. During this
progress, ox-LDL induces the expression of DDX5 in macrophages
and limits the function of METTL3 which transfers the methyl group
to macrophages scavenger receptor A (MSR1) mRNA. Ultimately,
MSR1mRNA is stabilized, and more MSR1 is synthesized. Uptake of
more lipids further facilitates the formation of foam cells, resulting in
the progression ofAS (ZhaoWet al., 2018). In another study, ZhangX
et al. (2021) has also identified the function of METTL3 in promoting
ox-LDL-induced inflammation and mitochondrial dysfunction by

methylating peroxisome proliferator-activated receptor-γ
coactivator 1-alpha (PGC-1α) mRNA with the assistance of
YTHDF2. Intriguingly, m5C, another form of RNA methylation,
can deteriorate AS induced by hyper-homocysteinemia (Wang et al.,
2017), while acute coronary syndrome, whose main pathological basis
is AS, is also related to the m6A modification of circ-0029589 in
macrophage (Guo M et al., 2020).

The dysfunction of m6A in macrophages is also a pathogenesis
factor of autoimmune diseases. Wang J et al. (2019) found that in
patients with rheumatoid arthritis, METTL3 in macrophages is
obviously improved and positively associated with CRP and ESR.
Moreover, lipopolysaccharide (LPS) can stimulate the expression
of METTL3 in macrophages and then slack the immune response
to inflammation through NF-κB pathway (Wang J et al., 2019).
Other autoimmune diseases such as osteoarthritis (Liu Q et al.,
2019) and SLE (Li et al., 2018) show possibility of having
connection with m6A dysfunction in macrophages.

THE APPLICATION OFM6AMODIFICATION
AND ITS DEVELOPMENT PROSPECT

Given the identification of aberrant m6A modification in various
diseases, targeting m6A machinery in specific cells can be
regarded as a new treatment for viral infection, cancer, and
autoimmune diseases. However, changes in m6A levels in
different diseases are lack of consistency, so treatment
targeting m6A should be supposed to modulating m6A level to
normal level, instead of simply accelerating or decelerating m6A
modification (Wang et al., 2018).

m6A-Associated Proteins Modulating DNA
Repair
Plenty of researches have confirmed the correlation betweenm6A and
DNA repair in different situations. Zhang et al. have reported the

TABLE 1 | Roles of m6A Writers, Erasers, and Readers in macrophages.

m6A regulator Cell subtype Target genes Biological function

Writers

METTL3 M1 STAT1 Promote polarization
M2 STAT1 Inhibit polarization
M1/M2 Cgas, Ifi16, Sting, hnRNPA2B1 Increase the production of IFN-β Amplify the immune response to DNA virus

Irakm Promote activation
METTL14 M1/M2 Ebi3 suppress CD8+ T cell dysfunction and tumor growth

Erasers

FTO M1 STAT1 Promote polarization
M2 STAT6, PPAR-c

ALKBH5 M1/M2 Mavs, Traf3, Traf6 Inhibit translation and production of IFN

Readers

YTHDF2 M1/M2 STAT1, PPAR-c Impede macrophage activation
MAP2K4, MAP4K4 Inhibit the expression of pro-inflammatory cytokine and inflammatory response

YTHDF3 FOX O 3 Impede the expression of IFN-stimulated genes and immunity response to VSV
IGF2BP2 TSC1, PPAR-c regulate macrophage phenotypic activation and inflammatory diseases
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METTL3-m6A-YTHDC1 axis which promotes the double-strand
breaks by modulating DNA-RNA hybrid accumulation (Zhang
et al., 2020). Other researches indicate that accumulation of the
three-stranded R-loops, formed by RNA: DNA hybrid and single
stranded DNA, is regulated by YTHDF2 (Abakir et al., 2020),
METTL3, and tonicity-responsive enhancer binding protein
(TonEBP) (Kang et al., 2021). More surprisingly, the arginine
substrates of METTL14 itself at intrinsically disordered C terminus
can also be methylated. It proved to be an initial signal of interaction
between METTL14 and RNA polymerase II, which will afterwards
implement them6Amodification of targetmRNA. Subsequent studies
have confirmed that METTL14 arginine methylation is associated
with the enhanced translation of DNA repair genes (Wang Z et al.,
2021). Recent studies even clarified the correlation between DNA
damage repair and m6A-modified retrotransposable element (RTE)
RNAs, in which intronic Long Interspersed Element-1 (LINE-1)
interacts with the hosting gene transcription, resulting in the
downregulation of its expression (Xiong et al., 2021). KIAA1429
was also recently discovered to have close links with the
modulation of response to cisplatin in germ cell tumor by
interfering with DNA damage response (Miranda-Gonçalves et al.,
2021).

As for Erasers, the homologs of AlkB (ALKBHs), which originally
function as repair proteins in E. coli, are also important regulators of
DNA repair and m6A modification at the same time in mammalian
cells (Müller et al., 2017; Müller et al., 2018). Recently, the ERK/JNK/
ALKBH5-PTMs/m6A axis has been reported to participate in the
regulation of ROS-induced DNA damage response, in which progress
IGF2BP also plays a part in extending mRNA half time (Yu et al.,
2021). METTL3 and FTO can jointly regulate the m6A modification
in RNA at DNA damage sites induced by ultraviolet. The function of
DNA polymerase κ (Pol κ), which is the key DNA repair enzyme,
require the catalytic activity of METTL3, implying the m6A
modification directs the recruitment of Pol κ to the DNA damage
sites (Xiang et al., 2017). Furthermore,METTL14 has proved to play a
tumor-suppressive role in ultraviolet-induced skin tumorigenesis

(Yang et al., 2021). All the m6A-associated proteins which regulate
DNA repair are summarized in Table 2.

In conclusion, since m6A, along with its associated proteins,
plays an important role in the pathogenesis and facilitating DNA
repair, attaching m6A-targeted therapy to traditional chemo- or
radiotherapy may improve the prognosis of some diseases such as
carcinoma through two mechanisms.

Medication Targeting m6A
Abnormally elevated m6A level is the feature of most malignant
tumor, so developing new drugs inhibiting m6A modification is
the most fundamental idea to treat these diseases. Actually, this
kind of drugs has been developed for decades. 3-Deaza-
Adenosine (DAA) with its analogue can block
S-adenosylhomocysteine (SAH) hydrolase, which results in the
accumulation of SAH and feedback suppression of SAM (Chiang,
1998). So DAA can indirectly inhibit the m6A modification of
mRNA. However, since DAA can suppress the m6A modification
in many physiological or pathological processes, there will be
many unexpected side effects, such as the prevention of T
lymphocyte activation, hypotensive effect, and activation of
gene expression. At present, DAA is mainly used for the
treatment of AIDS (Kennedy et al., 2016).

Moreover, some diseases like acute myeloid leukemia
(AML) are characterized by the aberrant decrease of m6A
(Li Z et al., 2017). Rhein (Chen et al., 2012), curcumin (Lu
N et al., 2018), meclofenamic acid (Huang et al., 2015), and
Saikosaponin-D (Sun et al., 2021) can inhibit the function of
FTO by binding the active site of FTO or m6A position of
mRNA. Two emerging small molecules targeting FTO
demethylase called FB32 and FB32-2, which can
dramatically inhibit the progression of AML cells in vitro
and in vivo, have been developed recently (Huang et al.,
2019). Coupled with the latest advancement called
STM2457, which is a highly potent and selective first-in-
class catalytic inhibitor of METTL3 (Yankova et al., 2021),

TABLE 2 | m6A-associated proteins in DNA repair.

m6A regulator Biological function

Writers

METTL3 Modulate DNA-RNA hybrid accumulation
Regulate accumulation of the three-stranded R-loops
Regulate the m6A modification in ultraviolet-induced DNA damage
Direct the recruitment of Pol κ to the DNA damage sites

METTL14 Enhance translation of DNA repair genes
Suppress ultraviolet-induced skin tumorigenesis

KIAA1429 Interfere with DNA damage response in cisplatin-treated germ cell tumor

Erasers

FTO Regulate the m6A modification in ultraviolet-induced DNA damage
ALKBH5 Regulate ROS-induced DNA damage response

Readers

YTHDC1 Modulate DNA-RNA hybrid accumulation
YTHDF2 Regulate accumulation of the three-stranded R-loops
IGF2BP2 Extend mRNA half time in ROS-induced DNA damage response
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we can foresee that the era of treating AML or other diseases
featured by m6A level unbalance using m6A-targeted method
is coming.

Immunotherapy Targeting m6A
Although solid researches data is unavailable, the regulatory
function of m6A modification to immunocytes makes it
possible for m6A to be a new target for immunotherapy. It has
been demonstrated that m6A is a regulator of Tn differentiation,
T lymphocyte homeostasis (Li H-B et al., 2017), and suppressive
function of Tregs (Tong et al., 2018). Recent studies have found
that loss of METTL3 in myeloid cells reprograms the
macrophages and increases Treg infiltration into tumors by
influencing the YTHDF1-mediated translation of SPRED2 (Yin
et al., 2021). Therefore, inhibiting mRNA m6A modification of
Tregs at tumor site or myeloid cells can motivate the antitumor
activation of CD8+ T cell, which can be a promising immunotherapy.
Meanwhile, inhibiting mRNA m6A modification in Tn can reduce
the formation of effector T cell, which is helpful for the treatment for
autoimmune diseases. Furthermore, regulating the expression of
METTL3 (Wang H et al., 2019) and YTHDF1 to a suitable level
can improve DCs’ ability of presenting tumor neoantigen. More
importantly, depletion of YTHDF1 and blockade of checkpoint have
a synergistic effect on strengthening antitumor immunity (Han et al.,
2019), andALKBH5 (Li N et al., 2020) andMETTL3/14 (Wang et al.,
2020) have also proved to regulate anti PD-1 response. So as for
patients resistant to the PD-1 immunotherapy, targeting m6A can be
a new alternative treatment. Since m6A decoration of viral double-
stranded RNA can also downregulate the innate sensing pathway of
antiviral response (Qiu et al., 2021), immunotherapy targetingm6A is
bound to be a promising therapy for various diseases including viral
infections, autoimmune disorders, cancers, etc.

DISCUSSION

As the most abundant post-transcriptional mRNA modification in
mammals, m6A is involved in the occurrence of several diseases.
Recently, an enormous amount of m6A related studies in
immunocytes highlight the fact that targeting m6A can be a
promising new treatment strategy for viral infection, cancer, and
autoimmune diseases. However, in different cell lines, diseases,

even different types of the same diseases, the changes of m6A level,
as well as functions of three m6A-associated enzymes lack
consistency. Moreover, m6A modification is widely involved in a
variety of cellular processes and medication targeting m6A is not
selective. All these reasons indicate that clinical treatment via
targeting m6A modification may be not safe enough. Thus,
there is unmet need to develop more sophisticated techniques
for m6A detection (Dai et al., 2018; Castellanos-Rubio et al., 2019).
Moreover, detailed studies on disease mechanisms are required to
realize the clinical application of m6A-targeting treatment.
Pharmaceutical researches on drugs with high selectivity or
combination of existing drugs and targeted drug delivery system
can also promote the accurate treatment of diseases through the
m6A-targeting method. Some recent experimental results have
indicated the promising prospects of this field (Zhu et al., 2021).
Last but not least, m6A modification is supposed to be highly
relevant to gut microbiota (Jabs et al., 2020), heat shock proteins
(Feng et al., 2020), sepsis (Sun et al., 2020; Xing et al., 2021), and
pulmonary hypertension (Pan et al., 2020) and even peripheral
nerve injury (Zhang L et al., 2021). These studies can provide
valuable experimental basis for development of new treatments.
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