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Cite This: J. Phys. Chem. B 2020, 124, 4673−4685 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Interactions among proteins, nucleic acids, and other macromolecules
are essential for their biological functions and shape the physicochemcial properties of
the crowded environments inside living cells. Binding interactions are commonly
quantified by dissociation constants Kd, and both binding and nonbinding interactions
are quantified by second osmotic virial coefficients B2. As a measure of nonspecific
binding and stickiness, B2 is receiving renewed attention in the context of so-called
liquid−liquid phase separation in protein and nucleic acid solutions. We show that Kd is
fully determined by B2 and the fraction of the dimer observed in molecular simulations
of two proteins in a box. We derive two methods to calculate B2. From molecular
dynamics or Monte Carlo simulations using implicit solvents, we can determine B2 from
insertion and removal energies by applying Bennett’s acceptance ratio (BAR) method or the (binless) weighted histogram analysis
method (WHAM). From simulations using implicit or explicit solvents, one can estimate B2 from the probability that the two
molecules are within a volume large enough to cover their range of interactions. We validate these methods for coarse-grained Monte
Carlo simulations of three weakly binding proteins. Our estimates for Kd and B2 allow us to separate out the contributions of
nonbinding interactions to B2. Comparison of calculated and measured values of Kd and B2 can be used to (re-)parameterize and
improve molecular force fields by calibrating specific affinities, overall stickiness, and nonbinding interactions. The accuracy and
efficiency of Kd and B2 calculations make them well suited for high-throughput studies of large interactomes.

1. INTRODUCTION

In biological cells, most protein, DNA, and RNA molecules
have to bind to specific binding partners to perform their
biological functions. These specific interactions compete with
nonspecific interactions, and cells have evolved various
mechanisms to minimize wasteful nonspecific binding.1,2

However, nonspecific interactions shape the physicochemical
properties of the crowded environments inside cells.3 The
quantification of binding affinities and interaction strengths of
biological macromolecules is thus crucial for the understanding
and modeling of cellular processes. In the following, we focus
on protein−protein interactions, but all of our results are
generally applicable to other specific and nonspecific binding
interactions.
Experimentally, protein interactions are quantified by the

dissociation constants Kd and the second osmotic virial
coefficient Bij of protein species i and j. We follow the
common convention and use B22 for self-interactions and B23
for cross-interactions. The dissociation constant Kd quantifies
the amount of bound proteins and can be measured in
isothermal titration calorimetry, surface plasmon resonance, or
analytical ultracentrifugation experiments, for example.4 The
interaction strength of pairs of proteins in binding and
nonbinding configurations can be quantified by measuring the
second osmotic virial coefficient Bij, which relates the
microscopic protein interactions to the macroscopic osmotic
pressure.5−7 Moreover, the second osmotic virial coefficient is

related to solubility and used as a predictor for protein
crystallization conditions.8,9 In experiments, Bij is measured by
sedimentation10−12 and size-exclusion chromatography.8 Scat-
tering experiments, such as static light scattering (SLS) and
small-angle X-ray scattering (SAXS) experiments, can provide
approximate estimates for Bij.

13,14

Kd and Bij are crucial quantities to relate molecular
simulations of interacting proteins to the experiment. Such
comparisons become increasingly important as molecular
simulations of crowded cell-like environments have become
computationally feasible, even in full atomic detail.15,16 In
simulations of strong binders, Kd is usually determined by
calculating the binding free energy to specific binding
interfaces.17 If binding interfaces are unknown, Kd values are
often calculated from the ratio of bound and unbound
populations,18 as recently applied to RNA−RNA binding.19

As we will discuss here, this approximation is accurate only for
special cases. Bij can be estimated by integration over the
configuration space,20−22 by Mayer sampling,23,24 from
molecular simulations using radial distribution functions or
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potentials of mean force,25−28 and by simply counting all
configurations in which proteins do not interact.29,30

Here, we show that Kd is fully determined by Bij and the
fraction pb(V) of bound proteins estimated from molecular
simulations of two proteins in a box with volume V, i.e.

=
−

K
N p V V B

1
( )( 2 )ij

d
A b (1)

Here NA is Avogadro’s constant. In the derivation of this
equation, we do not make any assumptions about the
interaction strength or about the degrees of freedom of
proteins or the solvent. Thus, it is generally applicable and
valid not only for coarse-grained simulations using implicit
solvents but also for fully atomistic molecular dynamics
simulations using explicit solvents. We present two different
routes to calculate Bij and thus Kd.
For simulations using implicit solvents, we can apply protein

insertion and removal moves to estimate the free energy that
corresponds to the two-particle partition function determining
Bij. The insertion ensemble can be generated with any Monte
Carlo or molecular dynamics code to sample from the
canonical ensemble without modification. We estimate the
partition function by combining the insertion and removal
ensemble using either Bennett’s acceptance ratio (BAR)
method31 or the binless weighted histogram analysis method
(WHAM).32−34 In contrast to the Mayer sampling meth-
od,23,24 which uses molecular Monte Carlo integration to
calculate virial coefficients even of higher orders, here, we use
exactly the same simulation system for the calculation of Bij as
we use to sample from the canonical ensemble.
For simulations using either implicit or explicit solvents, Bij

can be calculated accurately by estimating the probability that
the two proteins are outside of their interaction range.29 We
present mathematically simple expressions for Bij and Kd in
terms of this probability, which provide insights into their
physical interpretations complementary to more common
formulations based on radial distribution functions or
potentials of mean force.
We quantify the interactions of the two proteins when they

are not bound using Kd and Bij. Previously, theoretical models
for excluded volumes have been used to extract nonbinding
interactions from experimentally measured Bij values.

35 Here,
we use the fact that the contributions of bound configurations
to Bij are completely determined by Kd and show that the
remaining contributions have a simple and clear interpretation.
Moreover, we propose that these contributions of nonbinding
interactions can be estimated in experiments.
The article is organized as follows. In Section 2, we derive

expressions to calculate the dissociation constant and the
second osmotic virial coefficient from simulations. We present
the details of our methods in Section 3 and a validation of our
methods and results for three weekly binding proteins using
coarse-grained simulations in Section 4. We end with
conclusions in Section 5.

2. THEORY
For simulations of two proteins in a box, we show that the
dissociation constant Kd is determined by the binding
probability and the second osmotic virial coefficient Bij of
protein species i and j. The latter is determined by the two-
particle partition function, which in general can be estimated
from the fraction of states where proteins are outside of their

interaction range29 or, for implicit solvents, by performing a
free energy calculation using insertion and removal moves.

2.1. Preliminaries. McMillan and Mayer5 have shown how
we can apply results of statistical mechanics to describe
osmotic properties of solutions. Integrating out solvent degrees
of freedom, only solute degrees of freedom remain and solutes
interact with each other via effective potentials. For such a
system with m solute species, the virial equation of state36,37

becomes the osmotic virial equation of state, i.e.

∑ ∑ ∑Π
= + + ···

= = =
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where Π is the osmotic pressure, Vm is the molar volume, R is
the gas constant, T is the temperature, xi is the mole fraction of
species i, and Bij is the osmotic second virial coefficient of
proteins of species i and j.
We can express the second virial coefficients Bij of an

arbitrarily shaped particle of species i and an arbitrarily shaped
particle of species j, via one- and two-particle configurational
partition functions. To do so, we extend the derivation by
McQuarrie to nonspherical particles7 and start from the grand
canonical partition function
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where V is the volume, Ni is the number of molecules of
species i containing ni atoms each, and zi = exp(βμi) is the
fugacity determined by the chemical potential μi of species i
and the inverse temperature β = 1/(kbT). kb is Boltzmann’s
constant. The osmotic pressure is a function of the fugacities
and given by βΠV = ln Ξ(T,V, z1,...,zm).38,39 Here, we write the
canonical partition function Q(N1,...,Nm) of m species of
arbitrarily shaped particles as
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!=
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where N N( , ..., )m1 is the corresponding configurational
partition function

∫= β−
| |

N N eX( , ..., ) dm
V

U X
1

( )
X (5)

where the potential energy U(X) depends on the set X of all
|X| = ∏i Nini atom positions. In eq 4, we introduced V( )i for
the single-particle canonical partition function, e.g.,

= (0, 1, 0, ..., 0)2 . For spherically symmetric particles,
=V V( )i and we recover McQuarrie’s expression7 for Q(N1,

..., Nm). For rigid cylindrically symmetric and asymmetric
particles, π=V V( ) 4i and π=V V( ) 8i

2, respectively.
Note that in the following, we use “Z” instead of “ ” for
these expressions for rigid molecules to distinguish them from
the full configurational partition function of flexible molecules
written as calligraphic “ ”. We obtain for the second osmotic
virial coefficients

= − [ − ]B
V

2ij
i j

ij i j
(6)

where we introduced ij for the two-particle partition

function, e.g., = (1, 1, 0, ..., 0)12 for a pair of particles
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of species 1 and 2 or = (2, 0, 0, ..., 0)11 for a pair of
particles of species 1.
2.2. Estimating the Dissociation Constant. We show

how to obtain a box-size-independent estimate of the
dissociation constant Kd from simulations of two proteins in
a box. Kd is related to the Gibbs binding free energy ΔG via

βΔ = + ΔG
K
c

pVln d

0 (7)

where c0 = 1M is the standard concentration and Δp is the
pressure difference between bound and unbound states.40 The
last term is usually small and can be neglected.
For large enough box volumes V, one would be tempted to

estimate the dissociation constant of two proteins A and B
directly from the binding probability pb(V). For a discussion of
suitable definitions of bound states, see Section 2.7. Using the
concentrations of free proteins [A] = [B] = (1 − pb(V))/
(NAV) and the concentration of bound protein [AB] = pb(V)/
(NAV), a first rough estimate of the dissociation constant is
given by

= [ ][ ]
[ ]

=
−

K
A B
AB

p V

N Vp V

(1 ( ))

( )d
b

2

A b (8)

For small box sizes typically used in simulations, this estimate
suffers from finite-size effects. Accurate estimates using eq 8
would require unusually large boxes, as we show in Section 4,
which makes sampling highly inefficient.
To overcome this finite-size effect, we effectively extend the

box volume analytically and calculate Kd in the limit of infinite
volume (Figure 1). We emphasize here that in the following

derivation, we consider fully flexible proteins without any
restrictions on their internal degrees of freedom. We remove
the translational and rotational degrees of freedom of the
protein of species i, which correspond to a factor Zi(V) = 8π2V
in the partition function for asymmetric proteins. That is, we
fix the position and orientation of the protein of species i,

which leaves the internal degrees of freedom due to the
flexibility of the protein unchanged. The corresponding
partition function of j in the presence of i, with i fixed in
position and orientation but internally flexible, is given by

=V
V

Z V
( )

( )

( )
ij

i (9)

We extend this system with a fixed position and orientation of
the flexible protein i by an additional volume ΔV accessible to
the second protein. The contribution to the partition function
of a protein of species j being in this additional volume ΔV is
given by

Δ Δ = Δ ̃ ̃V Z V( ) ( )j i j (10)

where Zj(ΔV) = 8π2ΔV gives the contribution due to the
translational and rotational degrees of freedom of an
asymmetric protein to the partition function. ̃

i and ̃
j are

the partition functions of individual proteins i and j, whose
positions and orientations are fixed in space. That is, ̃

i and
̃
j contain only contributions due to the respective internal

degrees of freedom of free proteins and due to the degrees of
freedom of solvent molecules in the vicinity of the proteins,
which differ from the bulk due to the presence of the protein.
For rigid protein models in implicit solvents, ̃ = ̃ = 1i j .
The probability pb(Vex) that the two proteins are bound in

the extended volume Vex = V + ΔV is now given by the ratio of

the partition function (b) of the bound proteins to the
partition function of the extended system + Δ ΔV V( ) ( ).
With the position of protein i fixed, (b) is independent of the
size of the volume V and thus the same for the simulation box

and for the extended system, i.e., = V p V( ) ( )(b)
b .

Consequently

=
+ Δ ̃ ̃p V

V p V

V Z V
( )

( ) ( )

( ) ( )j i j
b ex

b

(11)

To calculate a Kd value unaffected by the finite size of the
simulation box, we now substitute eq 11 into eq 8. We then
take the limit ΔV → ∞ and use that Zj(V)/V = 8π2 to obtain

=
̃ ̃

K
Z V Z V

N V V p V

( ) ( )

( ) ( )
i j i j

ij
d

A b (12)

We can rewrite this equation realizing that the partition
function of all bound states of the system, where also protein i

can move and rotate, is given by =V V p V( ) ( ) ( )ij ij
(b)

b .

Note that V( )ij
(b) is proportional to V. Equation 12 becomes

=
̃ ̃

K
N V

Z V Z V

V
1 ( ) ( )

( )
i j i j

ij
d

A
(b)

(13)

Expressing V( )ij by the second osmotic virial coefficient
defined in eq 6

= − ̃ ̃ −B
V V

Z V Z V2

( )

( ) ( )
1ij

ij

i j i j

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ (14)

Figure 1. Calculating the dissociation constant Kd and the second
osmotic virial coefficient Bij from simulations of two proteins in a box
of volume V. The red protein has a single specific wedge-shaped
binding site for the triangular blue protein. The light-blue protein
configurations illustrate different interaction modes of the two
proteins considered in the derivation of eqs 1 and 28. To obtain a
Kd estimate independent of box size, we analytically extend the two-
particle partition function for the simulation box by the contributions
of an extension volume ΔV (gray shaded area) and perform the limit
ΔV → ∞. We calculate Bij from the probability pv(V) that the two
proteins are within a subvolume v (green), which is at least large
enough to cover all protein−protein interactions (yellow shaded
area).
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and inserting the resulting expression in eq 12, we obtain the
relationship between Kd and Bij given in eq 1

=
−

K
N p V V B

1
( )( 2 )ij

d
A b

As a corollary, the volume dependence of the fraction of bound
proteins

=
−

p V
N K V B

( )
1

( 2 )ij
b

A d (15)

is parameterized by Kd and Bij.
As we derive in the following, Kd and Bij fulfill the

approximate relation

≈ −K
N B

1
2 ij

d
A (16)

This approximate relationship becomes an exact relationship if
we define all interacting states as bound states41,42 or for
proteins that do not interact when they are not bound (see
Section 2.4). We write V( )ij as a sum of the partition

functions V( )ij
(b) for the bound and V( )ij

(u) for the unbound

states, i.e., = +V V V( ) ( ) ( )ij ij ij
(b) (u) , and insert this

expression in eq 14. We then obtain

= −
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If unbound interactions are weak, then

̃ ̃ − ≪ ̃ ̃
V

Z V Z V

V

Z V Z V
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such that

≈ − ̃ ̃ = −B
V V

Z V Z V N K
1
2

( )

( ) ( )
1

2ij
ij

i j i j

(b)

A d (19)

where we used eq 13. Rearranging this equation, we arrive at
eq 16. We can now insert this expression into eq 15 and obtain

≈
+

p V
N K V

( )
1

1b
A d (20)

from which we can express Kd to obtain an approximate
estimate for Kd, which we call Kd′, i.e.

≈ ′ =K K
N V

p V

p V
1 ( )

( )d d
A

u

b (21)

Here, we introduced the fraction of unbound protein
configurations as pu(V) = 1 − pb(V). Note that eq 21
corresponds to eq 13 of de Jong et al.18 For the exact
relationship between Kd and Kd′, see Section 2.4.
2.3. Estimating the Second Osmotic Virial Coefficient.

As we have shown above, we have to estimate Bij to accurately
estimate Kd. To do so, we apply the same concepts as we have
used for the calculation of Kd. We first remove contributions to
the partition function due to the translational and rotational
freedom of the whole system by keeping the position and the
orientation of the otherwise flexible protein i fixed (eq 9).
Around this protein, we define a subvolume v < V, which has

to be big enough such that it captures all protein−protein
interactions (Figure 1). Outside this subvolume, protein−
protein interactions can be neglected. That is, the flexible
protein j moves freely when it is in volume δv = V − v.
The probability pv(V) that protein j is in subvolume v is

given by

δ
=

+ ̃ ̃p V
v

v Z v
( )

( )
( ) ( )v

i j j (22)

where v( ) is given analogous to eq 9 and Zj(δv) = 8π2δv for
asymmetric proteins. We can express v( ) from eq 22 as

δ
=

̃ ̃

−
v

p V Z v

p V
( )

( ) ( )

1 ( )
v j i j

v (23)

Usiing eq 9 for v( ), it follows that

δ
=

̃ ̃

−
v

p V Z v Z v

p V
( )

( ) ( ) ( )

1 ( )ij
v j i i j

v (24)

1 − pv(V) is the probability that protein j is in volume δv.
Consequently

δ
= −

−
−B

v p V
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Using that Zj(v) and Zj(δv) are proportional to their
arguments with the same prefactor (see Section 2.1) and
that δv = V − v, where V is the box volume, we obtain

= −
−

− −B
v p V

p V
V v

v2

( )

1 ( )
1ij

v

v
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Solving for pv(V), we obtain

=
−
−

p V
v B

V B
( )

2

2v
ij

ij (27)

which describes the dependence of pv(V) on the box volume V
and the subvolume v.
We emphasize that eq 26 is generally valid for arbitrary

binding partners, without making any assumptions about
symmetry or the number of internal degrees of freedom of the
binding partners or of the solvent. The only condition is that
interactions between binding partners are negligible outside of
the volume v. We can introduce correction terms based on an
effective pairwise potential acting between the binding partners
if this condition is not fulfilled (see Section 2.7).
To motivate the interpretation of eq 26, we rewrite it as

= −
−

−
−B

V
p V2

1

1 ( )
1ij

v
V

v

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ (28)

Note that the prefactor in eq 28 contains the box volume V,
whereas the prefactor in eq 26 contains the subvolume v. The
first term in the brackets, determining the two-particle
partition function, is the ratio of the probability of finding
one protein outside of the subvolume v for the ideal system, 1
− v/V, to the corresponding probability for the interacting
proteins, 1 − pv(V). This ratio, which is the inverse of the
quantity f 2(V) of Ashton and Wilding,29 is independent of the
subvolume v, chosen to be just large enough to cover the
interaction range. Consequently, the first term in the brackets

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://dx.doi.org/10.1021/acs.jpcb.9b11802
J. Phys. Chem. B 2020, 124, 4673−4685

4676

pubs.acs.org/JPCB?ref=pdf
https://dx.doi.org/10.1021/acs.jpcb.9b11802?ref=pdf


in eq 28 can be written as 1/exp[−βFo(ex)(V)], where we
introduced the excess free energy of finding the two proteins
outside of their interaction range in the box of volume V as

β = −
−

−
F V

p V
( ) ln

1 ( )

1
v

v
V

o
(ex)

(29)

We express Kd as a function of pv(V) by inserting eq 28 into eq
1 and obtain

=
−

−
= β−K

VN p V

p V

VN p V
1

( )

1 ( )

1
1

( )
ev

v
V

F V
d

A b A b

( )o
(ex)

(30)

We next establish the commonly used relationship of Bij to the
partial radial distribution function g(r).7 The ratio of pv(V)/(1
− pv(V)) can be estimated from the probability density of
center-of-mass distances p(r) of two proteins in a box, for
instance, which is itself related to the radial distribution
function g(r). To do so, we define a spherical volume v =
4πR3/3 and a spherical shell around this sphere with volume δv
= 4π[(δR + R)3 − R3]/3. The ratio is then given by

∫

∫−
= δ+

p V

p V

p r r

p r r

( )

1 ( )

( )d

( )d
v

v

R

R

R R
0

(31)

We define a radial distribution function g(r) through

π∝p r r g r( ) 4 ( )2
(32)

We can choose the proportionality constant such that g(r) = 1
for r > R, where p(r) ∝ r2. Then, 4π ∫ R

R+δR g(r)r2 dr = δv and
we may write

∫δ
π

−
=

p V

p V v
g r r r

( )

1 ( )
1

4 ( ) dv

v

R

0

2

(33)

Inserting this expression in eq 26 and using that ∫ 0
R 4πr2dr = v,

we obtain

∫π= − [ − ]B g r r r2 ( ) 1 dij

R

0

2
(34)

By introducing an effective interaction potential βw(r) =
−ln g(r), we can write eq 34 as it is commonly presented

∫π= − [ − ]β−B r r2 e 1 dij

R
w r

0

( ) 2
(35)

Using eq 28 instead of eq 34 or 35, we can avoid the
computation of distance distribution functions and potentials
of mean force, respectively, and the subsequent integration.
Importantly, we also do not have to estimate the plateau value
of g(r), which in simulations is different from one and which
depends on system size and the thermodynamic ensemble.29,43

Although these differences might be viewed only as a minor
simplification, eq 28 emphasizes that Bij is independent of the
detailed shapes of g(r) and w(r) and determined by the excess
free energy Fo

(ex)(V) of finding the two proteins outside of their
interaction range. Note that our results also apply to the
infinite dilution limits of the Kirkwood−Buff integrals Gij = 4π
∫ r=0
∞ [g(r) − 1]r2 dr = 2Bij.

13,44,45

2.4. Contribution of Nonbinding Interactions to Bij.
We can use Kd and Bij to quantify the nonbinding interactions
of two proteins. Let us first consider two nonbinding proteins

for which ij
(b)(V) = 0. Consequently, eq 17 becomes

= − ̃ ̃ −B
V V

Z V Z V2

( )

( ) ( )
1ij

ij

i j i j

(u)
(u)

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ (36)

where we use the superscript “(u)” to indicate contributions of
the unbound states. For binding proteins, Bij

(u) is given by the
difference between Bij = Bij

(u) + Bij
(b) and the contributions to

Bij
(b) due to binding

= − ̃ ̃ = −B
V V

Z V Z V N K2

( )

( ) ( )
1

2ij
ij

i j i j

(b)
(b)

A d (37)

i.e., we can quantify the nonbinding interactions for two
binding proteins via

= − = +B B B B
N K

1
2ij ij ij ij

(u) (b)

A d (38)

which becomes

= −
−

−
−B
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p V

p V
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1
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( ) 1ij
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For hard spheres, pu(V) = 1 and pv(V) = (v − vexc)/(V − vexc),
where vexc is the excluded volume, such that Bij

(u) = vexc/2. For
attractive nonbinding interactions Bij

(u) < vexc/2, and for
repulsive nonbinding interactions Bij

(u) > vexc/2. Note that for
asymmetric proteins, vexc corresponds to an excluded region in
the configuration space, which, for instance, is spanned by
Cartesian coordinates and Euler angles in the case of rigid
proteins. Thus, in general, vexc should be viewed as an effective
volume corresponding to a thermodynamic free energy.
We now show that Bij

(u) quantifies the difference between the
approximate expression for Kd in eq 21 and the box-size-
independent expression for Kd in eq 1. Inserting eq 11 into eq
21, we obtain

′ = −K K
B

V
1

2 ij
d d

(u)i

k

jjjjjjj
y

{

zzzzzzz (40)

such that the relative difference is given by

′ −
= −

K K
K

B

V

2 ijd d

d

(u)

(41)

Consequently, the approximate estimate Kd′ deviates system-
atically from the true value Kd, with deviations proportional to
Bij
(u), but converges to the true value with increasing box

volume as 1/V.
2.5. Indistinguishable Binding Partners (Homo-

dimers). So far, we have assumed that the proteins are
distinguishable, i.e., that they form heterodimers, but all
expressions derived here are also valid for indistinguishable
binding partners forming homodimers. To consider the case of
two identical binding partners, we rewrite eq 13 as

=K
N V

V

V
1 ( )

( )
ij

ij
d

A

(free)

(b)
(42)

where we introduced V( )ij
(free) for the partition function of

two free proteins, which is determined by the product of two
single-protein partition functions. For indistinguishable bind-

ing partners forming homodimers, both V( )ij
(free) and
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V( )ij
(b) would have to be multiplied by a factor 1/2 to

account for the indistinguishablity of the proteins. However,
these factors then cancel in the ratio in eq 42.
2.6. Kd and Bij from a Single Simulation. We can

estimate Kd and Bij from the fraction of bound protein pb(V)
and the probability pv(V) of one protein being located in a
subvolume v around the other. The latter determines Bij

according to eq 28, which we then insert into eq 1 to obtain
the finite-size corrected estimate of Kd. We call this method the
subvolume method. To calculate Bij, we can also estimate the
two-particle partition function Zij(V), now for simplicity but
without loss of generality only considering rigid molecules,
using free energy methods.46 For implicit solvents, we can use
insertion and removal moves of the proteins to efficiently
estimate Zij(V), as explained in the following. We call this
method the insertion/removal method.
2.6.1. Estimating Two-Particle Configurational Partition

Functions for Implicit Solvents. A simulation of a pair of
proteins in a box of volume V at reciprocal temperature β gives
us immediately the particle-removal energy distribution as the
normalized distribution of potential energies. We define xi =
(ri,Ωi), where ri are the Cartesian coordinates of the geometric
center of protein i and Ωi are its Euler angles defining its
orientation. We denote the configuration space as W = V × Ω
to simplify the notation. The particle-removal energy
distribution is then given by

∫ δ

β
=

[ − ]β−

p E
x x E U x x

Z
( )

d d e ( , )

( )
W

U x x

rem

2 3
( , )

2 3

23

2
2 3

(43)

where Z23(β) = ∫ W
2 dx2dx3e

−βU(x2,x3) and δ[·] is Dirac’s delta
function.
The particle-insertion energy distribution pins(E) is formally

given by

∫ δ

β β
=

[ − ]

= =
p E

x x E U x x

Z Z
( )

d d ( , )

( 0) ( 0)
W

ins

2 3 2 3

2 3

2

(44)

where Zi(β = 0) = ∫ W dxi. Sampling the particle-insertion
energy distribution pins(E) for a given box size is straightfor-
ward. All one needs is a replica with reciprocal temperature β =
0 exactly. All moves will then be accepted, and the energies
saved are those of random insertions. Alternatively, one could
make trial moves of the two proteins with Monte Carlo move
widths ±L/2, where L is the box length, and the orientation
changes about random axes by ±π, and to write out the
absolute trial (!) energies (not the energy differences or the
accepted energies). With such a move protocol, it would not
matter if one or both particles were moved and if moves are
accepted or not. It also does not matter what the “acceptance
rate” is (i.e., it can be zero!). What is important, though, is that
the box volumes in insertion and removal runs are the same.
The normalized removal and insertion energy distributions

are related to each other by

β
β β

=
= =

β

p E p E
Z

Z Z
( ) ( )

e ( )
( 0) ( 0)

E

ins rem
23

2 3 (45)

which follows from
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The ratio of partition functions defines the free energy of going
from a system of two noninteracting particles to a system in
which they interact

β
β β

=
= =

β− Z
Z Z

e
( )

( 0) ( 0)
F 23

2 3 (47)

Note that F = −Fo(ex)(V) (see eq 29). An efficient way of
determining this free energy is to use the Bennett acceptance
ratio (BAR) estimator31

∑ ∑
+

=
+β β

=
−

=
̲ +

1
1 e

1
1 ei

N

N
N

E F
i

N

N
N

E F
1

ins

ins
rem

( )
1

rem

rem
ins
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(48)

where Ei are the uncorrelated (by construction) insertion
energies and Ei are the uncorrelated removal energies.
However, it is clear that this is problematic in cases where
the proteins are strongly bound (forming a dimer!) because
then one would have very little information about higher
energies.
This problem can be remedied using all of the data in a

temperature replica exchange simulation. In effect, the high-
temperature runs allow us to estimate an accurate density of
states to a pretty high energy. The particle-insertion energies
complement this density of states on the high-energy side. All
of the runs at different temperatures can be combined with the
list of insertion energies using binless WHAM. As a reference,
we take the temperature of interest (β = β1 without loss of
generality). The bias energies at replicas with reciprocal
temperature βi are then ΔU = (βi/β − 1)U. This formula
works also for the insertion energies coming from a run with βi
= 0. The insertion energies can be thought of as coming from a
run with the bias potential ΔU = −U, i.e., on potential zero. A
binless-WHAM analysis using these bias energies as input will
produce the required free energy F as the difference between
the reference state and the insertion run.

2.7. Practical Considerations. In the derivation of Kd and
Bij, we have assumed that the volume is large enough such that
interactions between the protein with a fixed position and
orientation and the protein in the extended volume can be
neglected. If this condition is not fulfilled, then we can correct
for residual interaction energies using a simple distance-
dependent interaction potential ϕ(r) in the calculation of

∫π βϕΔ = × [− ]Z V rr( ) 8 d exp ( )j
2 , where denotes the

Cartesian space defining ΔV. For example, at large distances,
the interaction of charged proteins can be approximated by
(screened) Coulomb interactions of the total charges located
at the centers of charge. In such a case, we would include for
the calculation of the fraction bound only configurations of the
simulation where the two proteins are separated less than a
cutoff distance, usually given by half the shortest box length.
Such a system corresponds to a spherical volume with one
protein at its center and the other one moving unrestrained.
Doing so, we assume that the residual interaction modeled as a
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simple pair-potential has a negligible effect on the internal
degrees of freedom and the degrees of freedom of the
surrounding solvent, i.e., ̃

i and ̃
j are unchanged.

Suitable definitions of bound states will depend on the
molecular model we use for simulations. In our simulations of
rigid proteins in implicit solvents, we consider a state as bound
if the interaction energy of the two proteins is smaller than
−2kbT. Additionally demanding that two proteins have to have
a minimum Cα distance smaller than 0.8 nm to be counted as
bound does not have a noticeable effect on the binding
probability. For molecular dynamics simulations using explicit
solvents, a combination of distance- and energy-based criteria
and using transition-based-assignment of states47 might be
necessary to reliably distinguish bound states from spurious
contacts.
In simulations of two proteins in a box, we can estimate

pv(V) using a distance-based criterion as has been introduced
by Ashton and Wilding.29 We define a distance between the
two proteins, e.g., the center-of-mass distance r. We introduce
a distance R such that interactions between proteins are
negligible for distances r > R. For an ensemble of N structures,
we count the number of structures Nv for which r ≤ R. In these
structures, the center-of-mass of protein 2 lies within a
spherical volume v = 4πR3/3 centered at the center-of-mass of
protein 1. We then estimate pv(V) = Nv/N.
For strong binders and in boxes of typical size, pv(V) is close

to one. For pv(V) = 1, (1 − v/V)/(1 − pv(V)) in eq 28
diverges. Consequently, pv(V) has to be determined with
sufficient numerical precision to obtain accurate estimates. For
example, if we sample 10 000 configurations, then the
numerical precision of pv(V) is limited to 1/10 000. The
precision can be increased by sampling more configurations or,
in the case of replica simulation, by including additional
replicas using WHAM when calculating pv(V). For weak
binders with Kd ≳ 100 μM, 10 000 configurations are sufficient
to estimate Kd and Bij even without applying WHAM.

3. METHODS

We chose three weakly binding protein pairs with experimental
Kd values covering 3 orders of magnitude from ∼μM to ∼mM.
The lysozyme homodimer has an experimental Kd value of Kd
≈ 2710 ± 240 μM48 (PDB 6LYZ49), the ubiquitin/CUE dimer
(PDB 1OTR50) has a Kd ≈ 155 ± 9 μM,50 and the dimer of
the uracil-DNA glycosylase UDG and its uracil-DNA
glycosylase inhibitor protein (Ugi) has a Kd ≈ 1. 3 ± 0.3
μM51 (PDB 1UUG52).
To simulate these protein pairs, we use the amino-acid-level

coarse-grained model developed by Kim and Hummer for
weakly binding proteins53 implemented in the Complexes++
software (https://www.github.com/bio-phys/complexespp).
We treat all proteins as rigid bodies. In contrast to the original
model, which is called the KH-model, we shift the original
Miyazawa and Jernigan parameters54,55 by e0 = −1.875 kbT,
where T = 300 K, to account for the solvation energy and we
scale the resulting parameters by λ = 0.1243 to balance them
with the electrostatic interactions. In the original model, e0 =
−2.27 kbT and λ = 0.159. The new values have been chosen to
better reproduce the B22 value of lysozyme and the Kd value of
the ubiquitin/UIM1 complex. We chose residue charges of
−1.0e for Asp and Glu, +1.0e for Arg and Lys, and +0.5e for
His because its isoelectric point is at pH 7. e is the elementary
charge. Consequently, the total charges of the proteins are

+8.5e for lysozyme, +0.5e for ubiquitin, −4.5e for CUE, +7.5e
for UDG, and −11.5e for Ugi. We set the dielectric constant to
80 and the Debye length to 1 nm, corresponding to the
conditions in an aqueous solution of 100 mM NaCl.
To generate Boltzmann ensembles of configurations, which

also provide the removal energy distributions defined in eq 43,
we perform temperature replica exchange Monte Carlo
(REMC) simulations using 24 replicas. Temperatures were
equally spaced between 300 and 530 K. In a Monte Carlo
sweep, each protein performs one trial move on average, which
can be translation or rotation. Replica exchanges are attempted
every 10 sweeps. For the rotation move, a rotation axis is
randomly generated by drawing a point from a sphere. Then,
we rotate around this axis by an angle, which we draw from a
box distribution with a width given by twice the maximum
angle. This maximum angle is set to 0.1 rad for the coolest
replica and to 1.25 rad for the hottest replica and spaced
equidistantly in between. Similarly, we set the maximum
displacement for the translation move to 0.2 nm in the coolest
replica and to 1.35 nm in the hottest replica, with equal spacing
in between. In our simulations, we use a cutoff radius of 3 nm
to truncate our interaction potentials.
To sample the insertion energy distribution defined in eq 44

in simulations, we switch off all interactions by setting all
interaction parameters and residue charges to zero. We use a
maximum displacement of half the box length and a maximum
rotation angle of π. We accept and sample all configurations to
generate the insertion ensembles, for which we then recalculate
all energies for switched-on potentials.
To estimate the two-particle partition function, we combine

results from REMC simulations (removal ensemble) and the
energies calculated for the ensemble of noninteracting proteins
(insertion ensemble) using binless WHAM.32−34 To avoid
numerical problems, we clip interaction energies at 100 kbT.
We define two proteins as being bound if their total interaction
energy is below −2kbT.
For equilibration, we performed 106 Monte Carlo sweeps in

each replica. For production, we performed 107 sweeps and we
sampled every 100th sweep, yielding 105 structures for each
protein pair per replica. We also performed 106 insertion
moves for each pair, which by design creates uncorrelated
configurations.
To study the box volume dependence of the fraction bound

pb(V), we calculated for the coolest replica pb = NE≤−2kbT/N.

NE≤−2kbT is the number of structures with energies E ≤ −2kbT,
and N = 105 is the total number of structures. To study the box
volume dependence of the subvolume probability pv(V), we
calculated for the coolest replica pv = Nv/N, where Nv is the
number of structures within the subvolume v. We defined this
volume as a spherical volume with a radius given by the sum of
(Di + Dj)/2, where Di and Dj are the largest diameters of
proteins of species i and j, respectively, and our cutoff radius of
3 nm. The resulting radii are between ∼6.7 and ∼7.4 nm for
the three proteins. For each protein pair, we performed
simulations for 17 box sizes with volumes ranging from 3375 to
106 nm3. We calculated the standard errors of the mean by
block averaging.56,57

We validate the insertion/removal method and the
subvolume method for the smallest boxes used here with
volume ̃V = 153 nm3 = 3375 nm3. With uniform probability,
we selected at random 10 000 of the N = 105 samples and
chose for each replica the configurations corresponding to the

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://dx.doi.org/10.1021/acs.jpcb.9b11802
J. Phys. Chem. B 2020, 124, 4673−4685

4679

https://www.github.com/bio-phys/complexespp
pubs.acs.org/JPCB?ref=pdf
https://dx.doi.org/10.1021/acs.jpcb.9b11802?ref=pdf


same 10 000 indices. We also drew 10 000 configurations of
the 106 configurations in the insertion ensemble with uniform
probability. In the insertion/removal method, we then applied
WHAM using these 250 000 configurations in total to calculate
pb( ̃V ) and ̃V( )ij , from which we then estimated Kd and Bij.
We repeated this procedure 1000 times and calculated the
averages of Kd and Bij and their covariance matrices. We
confirmed visually that the distributions of the estimates of Kd
and Bij are distributed according to two-dimensional Gaussians
with the estimated covariance matrices. We use the same
protocol to obtain estimates and uncertainties from resampling
for the subvolume method, in which we do not use the
insertion ensemble.

4. RESULTS

We calculated Kd and Bij using the insertion/removal method
and the subvolume method for three protein pairs, i.e., the
lysozyme homodimer and the heterodimers ubiquitin/CUE
and UDG/Ugi. As we will show, these estimates allow us to
quantify the contributions due to binding and nonbinding
interactions to Bij.
In the insertion/removal method, we determine Kd and Bij

from replica exchange simulations at a box volume ̃V and from
insertion ensembles. We first estimated pb( ̃V ) and Zij( ̃V ) by
combining the insertion ensemble and the replicas of our
temperature REMC simulations using WHAM. We then
evaluated eq 14 to obtain Bij and used this value together
with our estimate for pb( ̃V ) in eq 1 to obtain Kd. By
resampling, we estimated the covariance matrix.
In the subvolume method, we first estimated pv( ̃V ) and

pb( ̃V ) from all replicas using WHAM. We used eq 26 to
calculate Bij from pv( ̃V ) and used this estimate together with
pb( ̃V ) to estimate Kd using eq 1.
We find that the estimates for Kd and Bij from the insertion/

removal method and the subvolume method agree excellently
with each other (Figure 2 and Table 1). Moreover, the
estimates have similar uncertainties. Kd values and Bij values
calculated by resampling are correlated for both methods
(Figure 2). A smaller value of Bij, i.e., a more negative value,
leads to a smaller value of Kd according to eq 1.
For additional validation, we use the results for Kd and Bij

obtained at the box volume ̃V to predict the box-size
dependence of the fraction bound pb(V) and the subvolume
probability pv(V). We use eq 15 and our estimates for Kd and
Bij obtained at a box volume ̃V to calculate pb(V) (Figure 3).
We use eq 27 and our estimates for Bij obtained at a box
volume ̃V to calculate pv(V) (Figure 4). The resulting curves
reproduce the box volume dependencies of pb(V) and pv(V)
observed in the entire range of simulations, covering nearly 3
orders of magnitude in volume.
For strong binders, the fraction bound pb(V) and the

subvolume probability pv(V) take on similar values (compare
Figures 3 and 4). In these cases, pv(V) is dominated by
binding. For small boxes, pb(V) is close to one and
consequently so is pv(V). For box sizes large enough such
that pb(V) is significantly below one, the contribution of the
size of the subvolume v to pv(V) is small. For UDG/Ugi, the
strongest binding complex considered here, the fraction bound
dominates pv(V) such that the pv(V) curve in Figure 4 looks
nearly identical to the corresponding pb(V) curve in Figure 3.
However, the differences in these curves are significant as they

are not only determined by the size of the subvolume v but also
by the nonbinding interactions.
We can extract the contributions Bij

(u), eq 38, of nonbinding
interactions to Bij. We can do so even in the case of strong
binders for which the Kd value is close to Bij

(b) = −1/(2NAKd)
according to eq 16 (Figure 5, top). With the estimates
provided by either the insertion/removal method or the
subvolume method, we can resolve the small difference Bij

(u) =
Bij − Bij

(b) (Figure 5, center). Focusing on the results from the
insertion/removal methods, we find that for lysozyme Bij

(u) ≈
83 ± 4 nm3 > 0. This value is close to what one would expect
for hard spheres of equal volume, i.e., Bij

(u) = vexc/2 ≈ 70 nm3.
For ubiquitin/CUE, the interactions are clearly attractive, but
Bij
(u) ≈ −9 ± 3 nm3 nearly vanishes. For UDG/Ugi, Bij

(u) ≈ −94
± 5 nm3 indicates attractive interactions (Figure 5 and Table
1).
Note that for Ubi/CUE and UDG/Ugi, the estimates for

B23
(u) = B23 − B23

(b) are much smaller than the individual errors of
B23 and B23

(b) (∼27 000 nm3 for UDG/Ugi and ∼40 nm3 for
Ubi/CUE; Table 1). Naively, one would think that these large
uncertainties preclude reliable estimates for the comparably
small difference B23

(u) in such a situation. However, the estimates
for B23 and B23

(b) from resampling are highly correlated because
of the strong correlation of B23 and Kd (Figure 2). That is, the
individual errors of B23 and B23

(b) do not determine the errors of
their difference.
Next, we show that the naive estimate of Kd from

concentrations using eq 8 actually suffers from a finite-size
effect and that it converges to the estimates obtained with the
insertion/removal and subvolume methods for large system
sizes (Figure 6). For comparison only, we evaluate eq 8 for our

Figure 2. Comparison of the accuracy of the insertion/removal
method (ins/rem, black, solid lines) and the subvolume method
(subvol, red, dashed lines) to estimate Kd and Bij for three different
protein pairs (top to bottom). The most likely estimates are indicated
by horizontal and vertical dashed lines. The contour lines indicate the
limits of the 25, 50, 75, and 95% confidence regions. The insertion/
removal method (eqs 14 and 1 and the two-particle partition function
from WHAM (Section 2.6.1), black) and the subvolume method (eqs
26 and 1, red) agree excellently with each other, and they have similar
uncertainties. For UDG/Ugi, contour lines collapse on to a single line
due to the strong correlation between the estimates for Kd and Bij.
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predictions of pb(V) obtained at a volume ̃V (Figure 3) and
extrapolate the naive estimates for Kd until convergence is
reached. For typical box sizes used in simulations, Kd is
underestimated by about 10% for the lysozyme homodimer,
the weakest binder considered here, and by 3 orders of
magnitude for UDB/Ugi, the strongest binder considered here.
To reach convergence when using eq 8, the box volumes have
to be increased by a factor ∼100 for the weakest binder and by
a factor ∼100 000 for the strongest binder compared to typical
box sizes.
Using eq 1, we obtain finite-size effect-free estimates for Kd

at all box volumes (see Figure 6). In contrast, the estimates
obtained using the approximate relation given by eq 21 (eq 13
of de Jong et al.18) show small but systematic deviations

determined by Bij
(u) (eq 41); (see Figure 6). These systematic

deviations decrease with increasing box volume as 1/V (Figure
7). For the three dimers considered here, these differences are
in the range of ±5% for the smallest box sizes used here.

5. CONCLUSIONS
We have shown how to calculate the dissociation constant Kd
of two proteins in a box from the fraction of protein dimers
and the second osmotic virial coefficient Bij. We derived and
validated two methods to calculate Bij: For implicit solvents, we
can use standard Monte Carlo or molecular dynamics
simulations of two proteins in a box and determine insertion
and removal energy distribution functions. From the latter, we
determine the two-particle partition function and thus Bij using

Table 1. Kd, Bij, and the Contributions of Binding Interactions, Bij
(b), and Nonbinding Interactions, Bij

(u), to Bij for Three Protein
Complexes (PDB codes 6LYZ, 1OTR, 1UUG) for the Insertion/Removal Method (“ins/rem”) and the Subvolume Method
(“subvol”)a

lysozyme method Kd [μM] B22 [nm
3] B22

(b) [nm3] B22
(u) [nm3]

ins/rem 5191 ± 63 −77 ± 4 −160 ± 2 83 ± 4
subvol 5188 ± 68 −78 ± 4 −160 ± 2 82 ± 3

Ubi/CUE method Kd [μM] B23 [nm
3] B23

(b) [nm3] B23
(u) [nm3]

ins/rem 153 ± 1 −5444 ± 37 −5435 ± 37 −9 ± 3
subvol 153 ± 1 −5455 ± 39 −5444 ± 38 −11 ± 3

UDG/Ugi method Kd [μM] B23 [nm
3] B23

(b) [nm3] B23
(u) [nm3]

ins/rem 0.25 ± 0.002 −3 332 000 ± 27 000 −3 332 000 ± 27 000 −94 ± 5
subvol 0.25 ± 0.002 −3 308 000 ± 27 000 −3 308 000 ± 27 000 −81 ± 7

aErrors are standard errors of the mean.

Figure 3. Box-size dependence of the binding probability pb(V) is
determined by Bij and Kd via eq 15. We show simulation results (blue)
for three protein pairs (top to bottom). Error bars indicate the
blocked standard errors of the mean. The lines are predictions using
eq 15 and estimates for Kd and Bij obtained at a box volume ̃V = 3375
nm3 (magenta vertical line) using the insertion/removal method
(black, solid lines) and the subvolume method (red, dashed lines).

Figure 4. Box-size dependence of the subvolume probability pv(V) is
determined by Bij via eq 27. We show simulation results (blue) for
three protein pairs (top to bottom). Error bars indicate the blocked
standard errors of the mean. The lines are predictions using eq 27 and
estimates of Bij obtained at a box volume ̃V = 3375 nm3 (magenta
vertical line) using the insertion/removal method (black, solid lines)
and the subvolume method (red, dashed lines).
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BAR/WHAM. For implicit and explicit solvents, we can
calculate the probability that the two proteins are within a
volume at least covering the interaction range of the two
proteins.29 Calculating Bij from the radial distribution function
or equally the potential of mean force via an integral is
equivalent to this method. For the coarse-grained simulations
performed here, both methods provide accurate results with
comparable uncertainties.
The relationship between Kd and Bij given by eq 1 is also

well suited for the quantification of protein interactions in
molecular dynamics simulations using explicit solvents. Fully
atomistic simulations of concentrated protein solutions in
explicit solvents have become computationally feasible on the
microsecond scale.15,16 These studies have been facilitated by
recent improvements in molecular force fields, which correct,
among other things, for an increased stickiness of protein
surfaces.58−61 These parameterization efforts can benefit from
comparisons of Kd and Bij to the experiment.
Fully atomistic simulations are within reach for the protein

pairs considered here. The box volume ̃V used here
corresponds to about 300 000 particles in fully atomistic
simulations using explicit solvents. The binding and unbinding
of weakly binding proteins like lysozyme can be simulated
atomistically without bias.15 For more strongly binding
proteins, enhanced sampling techniques have to be applied.62

Binding and unbinding events of proteins and other molecules
can be simulated efficiently without bias also in molecular
dynamics simulations using explicit solvents using the
MARTINI model, for example.63−65

The sampling strategy used here for weak binders is different
from the sampling strategy commonly used for strong binders.
Strong binders usually have specific interfaces, and the
dissociation constant is determined by the binding free energy

to these specific interfaces. If these interfaces are known, then
we only have to calculate the binding free energy for these
specific binding poses dominating Kd.

17 For weak binders, also

Figure 5. Contributions of binding and nonbinding interactions to Bij
= Bij

(b) + Bij
(u) for three protein pairs. We show estimates from the

insertion/removal method in color and estimates from the subvolume
method using larger symbols in gray. Bij of the strongest binders is
dominated by contributions of binding Bij

(b) = −1/(2NAKd) such that
the ratio of |Bij

(b)/Bij| is close to one (top). In these cases, nonbinding
contributions to Bij are relatively small, i.e., |Bij

(u)/Bij| ≪ 1 (center).

Figure 6. Finite-size correction gives box-size-independent dissocia-
tion constants Kd (eq 1, red symbols). The naive estimate of Kd (eq 8,
blue symbols) suffers from finite-size effects and converges to the true
value (gray horizontal line) for increasing box size. We illustrate this
convergence by evaluating eq 8 for the predictions for pb(V) from the
insertion/removal method (black solid line) and the subvolume
method (red dashed line). Approximately corrected estimates (eq 21,
eq 13 of de Jong et al.,18 green symbols) suffer from finite-size effects
and converge to the true value for increasing box volume. Error bars
have been obtained by resampling.

Figure 7. Relative difference between the approximate estimates Kd′
(eq 21, eq 13 of de Jong et al.18) and the box-size-independent
estimates Kd (eq 1) for the dissociation constant as shown in Figure 6
(discs) as functions of the inverse box volume 1/V. This difference is
proportional to 1/V and to the contribution of unbound states to the
second osmotic virial coefficient, Bij

(u) (eq 41, lines).
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nonspecific binding can contribute significantly to Kd and thus
has to be sampled.
Bij also plays an important role in understanding phase

separation by which liquid droplets are formed within cells.66

Specifically, the Flory−Huggins solution theory is used to
model liquid−liquid phase separations.67,68 In this framework,
the Flory interaction parameter χ is determined by Kd and Bij.

69

Bij also determines the “effective solvation volume” up to a
proportionality constant, a quantity commonly used in
polymer science.70

The interactions of proteins in nonbinding configurations
can be quantified by Bij

(u), which is fully determined by Kd and
Bij and which is thus a well-defined thermodynamic quantity.
These interactions shape the physicochemical properties of the
crowded environments inside cells. For example, nonbinding
interactions can lead to demixing and therefore to colocaliza-
tion of binding partners. This colocalization effectively
increases the binding probability.
In principle, the contributions Bij

(u) of nonbinding
interactions to Bij can be determined experimentally. SAXS
experiments provide information about Bij in the forward
scattering intensities as well as information about dimerization,
and thus Kd, encoded in the radius of gyration. Varying protein
concentrations in equilibrium sedimentation experiments can
provide estimates for Kd and Bij.

10 The latter is used to correct
for the nonideality of the protein solution. Equation 1 can be
viewed as such a correction for nonideality. Especially for weak
binders, we expect that Kd and Bij can be estimated accurately
enough such that the contributions Bij

(u) of nonbinding
conformations to Bij can be determined. Similar to the
calculations performed here, we expect that in sedimentation
experiments, the uncertainties in the estimates for Bij

(u) will be
much smaller than the individual uncertainties in the estimates
for Kd and Bij.
Complexes++ simulation software and the binless-WHAM

code can be downloaded free of charge at https://www.github.
com/bio-phys/complexespp and at https://github.com/bio-
phys/binless-wham, respectively.
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