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Abstract

Flower-specific promoters enable genetic manipulation of floral organs to improve crop yield

and quality without affecting vegetative growth. However, the identification of strong tissue-

specific promoters is a challenge. In addition, information on cis elements that is able to

repress gene expression in vegetative tissues remains limited. Here, we report that fusing a

35S enhancer to the stamen- and carpel-specific NtAGIP1 promoter derived from the

tobacco AGAMOUS second intron (AGI) can significantly increase the promoter activity.

Interestingly, although the activity of the new promoter extends to sepals and pedicles, it

does not cross the boundary of the reproductive organs. Serial deletion of the AGI and chro-

matin immunoprecipitation (ChIP) assay reveal a 100-bp fragment that contains a con-

served GAGA factor binding motif contributes to the flower specificity by mediating histone

H3 lysine 27 trimethylation (H3K27me3) modification of the promoter. Furthermore, this

fragment shows significant suppressive effect on the activity of the 35S enhancer in vegeta-

tive tissues, consequently, resulting in a significant increase of the activity of 35S enhancer:

AGI chimeric promoter without sacrifice of its specificity in inflorescence.

Introduction

To generate desired transgenic plants, both transgenes that confer the desired traits and pro-

moters that instruct expression of transgene in targeted tissues are needed [1,2]. Constitutive

promoters, such as cauliflower mosaic virus 35S (CaMV35S) [3], maize ubiquitin [4], and rice

actin promoters [5] have been widely used in both basic and applied studies. Among these, the

CaMV35S promoter is the most frequently used one [1,6,7]. However, in many cases high and

universal expression of target genes is nutrient and energy consuming. Moreover, constitutive

expression of some genes can produce negative impacts on plant growth or agronomic perfor-

mance [8–10].

Tissue-specific promoters allow the expression of targeted genes only in specific tissues

[11,12]. Reproductive tissues (e.g., flower and seed) are frequent targets for transgene
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expression to improve yield or commercial value of plants [13–15]. Thus far, many flower spe-

cific promoters have been isolated and characterized. However, such promoters often have

some drawbacks for applications, e.g., low activity or non-specific leakage [1,10]. To increase

expression of target genes or to avoid homology-based gene silencing, a variety of strategies

have been proposed, such as dCas9-based gene activation tool [16], codon optimization [17],

synthetic promoters [2]. Among them, chimeric or synthetic promoter capable of directing

gene expression with desired strength in right tissue or right developmental stage of plants is a

simple one. Enhancer is a cis-acting DNA sequence that can stimulate transcription from prox-

imal promoters in a distance- and orientation-independent manner [18,19]. To increase the

activity of tissue-specific promoters, a simple and straightforward strategy is fusing an

enhancer to the promoter.

AGAMOUS (AG) is a MADS-box gene that acts in the inner two whorls of Arabidopsis
thaliana flowers to specify stamens and carpels [20,21]. The expression of AG is strictly con-

fined to carpel and stamen primordia and tissues [22,23]. It has been shown that the second

intron/enhancer (AGI) of AG is responsible for conferring the tissue specificity of the gene

[24]. In transgenic Arabidopsis, AG native promoter alone drives GUS expression in both veg-

etative and floral tissues. With the presence of the second intron/enhancer, GUS expression is

specifically localized to carpels and stamens [25]. Furthermore, artificial promoter generated

by fusing AtAGI to the minimal 35S promoter (AtAGIP) is sufficient to drive gene expression

precisely in carpels and stamens [26,27]. Yang and colleagues (2010) isolated two similar AG
second intron/enhancers, NtAGI-1 and NtAGI-2, from tetraploid tobacco (Nicotiana taba-
cum). Fusing them to the minimal 35S promoter, they generated NtAGIP1 and NtAGIP2 pro-

moters. Like AtAGIP, the two promoters are able to drive carpel- and stamen-specific

expression without any leaky activity in vegetative tissues [28].

To increase the activity of NtAGIP1, in this study, we added a 35S enhancer to the pro-

moter. The enhancer significantly increased the promoter activity. Interestingly, although

extended to sepals and pedicles, the activity of the new promoter was still confined to the inflo-

rescence. We showed that the -2835 to -2735 region of NtAGI-1 which contains a conserved

GAGA factor binding motif can suppress the activity of 35S enhancer in vegetative tissues by

mediating histone H3 lysine 27 trimethylation (H3K27me3) modification of the promoter.

Our results provide useful information for the improvement of tissue-specific promoters, and

the resultant 35SNtAGIP1 promoter can be used in transgenic plants when strong expression

of target gene in flowers is required.

Materials and methods

Plant material and growth condition

Common tobacco, Nicotiana tabacum cv. Xanthi, was used in this study. Tobacco plants were

grown on soil in a greenhouse under natural day length conditions. To generate sterilized

plantlets for transformation, seeds were first surface-sterilized, and then germinated on MS

solid medium supplemented with 30% sucrose. The seed sterilization process consists of 75%

ethanol 1 min; 1% sodium hypochlorite (NaOCl) 15 min; wash 6–8 times with sterilized water.

Plated seeds were germinated and grown in a growth chamber under a 16 h light and 8 h dark

photoperiod at 28˚C.

Plasmid construction

The plasmid pBI121 [29] that contain CaMV35S::GUS was used as backbone to construct vec-

tors used for plant transformation in this study. The second intron of NtAG-1 gene was fused

with a 45 bp minimal 35S promoter to create a functional NtAGIP1 promoter [28]. NtAGIP1::
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GUS vector was constructed by replacing the CaMV35S promoter of pBI121 using SalI and

BamHI restriction sites. For constructing 35SNtAGIP1::GUS vector, the 35S enhancer (-396 to

-46) was added at the 5’ end of NtAGIP1 using SalI and SpeI restriction sites that had been

introduced during the construction of NtAGIP1::GUS vector. For generating Promoterless::GUS
vector, the CaMV35S promoter of pBI121 was deleted by SalI and BamHI restriction enzymes.

For serial deletions of the NtAGI-1, shortened NtAGIP1 sequences were PCR amplified

with the PrimeSTAR Max DNA Polymerase (Takara) using primers listed in the S1 Table.

Each shortened version of NtAGIP1 had SpeI and BamHI restriction sites. Then, the fragments

are cloned into the SpeI/BamHI-digested 35SNtAGIP1::GUS plasmid, resulting in replacing

the full length NtAGIP1 with the shortened NtAGIP1 sequences.

To test the inhibitory effect of the 100-bp repressive fragment of NtAGI-1, the three pro-

moters, 35SRF, 35SUC and 35SDC, were synthesized directly, and then fused to upstream of

GUS gene in the pBI121 plasmid using SalI and BamHI restriction sites, generating 35SRF::

GUS, 35SUC::GUS and 35SDC::GUS vectors.

Plant transformation

The resulting plasmids were introduced into Agrobacterium tumefaciens (LBA4404) by electropo-

ration. Leaf disc transformation of tobacco using the Agrobacterium tumefaciens was performed

as previously described [30]. Briefly, bacteria grown in YEB for 20 h were harvested by centrifuga-

tion and resuspended to an OD600 of 0.8–1.0 in MS medium supplemented with 10 g/L sucrose.

Aseptic leaves were cut into pieces (around 6 mm in diameter) and the leaf discs were inoculated

with the bacterial suspension for 30 min, blotted on sterile filter paper, and then transferred to

co-cultivation medium (MS salt containing vitamins, 2.0 mg/L 6-BA, 0.5 mg/L NAA, 10 g/L

sucrose, 2.0 g/L Gelrite, pH 5.4). After maintained at 25˚C in the dark for 2 days, the transformed

leaf discs were transferred onto selection medium Ⅰ (MS salt containing vitamins, 2.0 mg/L 6-BA,

0.5 mg/L NAA, 200 mg/L cephalosporin, 50 mg/L kanamycin, 30 g/L sucrose, 2.0 g/L Gelrite, pH

5.8). When visible calli appeared on explants, the cultures were transferred to selection medium Ⅱ
(MS salt containing vitamins, 200 mg/L cephalosporin, 50 mg/L kanamycin, 30 g/L sucrose 2.0 g/

L Gelrite, pH 5.8) for shoots production and root elongation. Kanamycin-resistant candidate

transgenic plants were verified by PCR amplifying the NptII gene with 2×Taq Master Mix (Novo-

protein, China), and then were transplanted and grown in the greenhouse.

Histochemical detection and microscopy

Histochemical assay of GUS activity was performed as described previously [29]. Detached or

hand-sectioned tissues were incubated in GUS staining solution (1 mM X-Gluc in 100 mM

sodium phosphate (pH 7.0), 0.5 mM K4[Fe(CN)6], 0.5 mM K3[Fe(CN)6], and 0.1% Triton X-

100, 10 mM EDTA-Na2) at 37˚C in the dark overnight. Then, the tissues were bleached with

95% ethanol before photographing. Microscopic observation was performed with OLYM-

PUS-MVX10 microscope (Olympus). Images were captured with Image Pro-Plus software

(Media Cybernetics).

Fluorometric assays of GUS activity

Fluorometric assay of GUS activity was conducted as described by Jefferson et al [29]. Four

lines with strong GUS staining signal of NtAGIP1::GUS and 35SNtAGIP1::GUS transgenic

tobaccos, and all lines of 35SRF::GUS, 35SUC::GUS and 35SDC::GUS transgenic tobaccos were

used for the assay. Tissues were ground in liquid nitrogen with mortar and pestle and homoge-

nized in extracting buffer (50 mmol/L sodium phosphate buffer containing 100 mg/mL PVPP

and 10 mmol/L β-mercaptoethanol, PH 7.0). After incubation on ice for 1 h, the extraction
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mixture was centrifuged at 15000×g for 10 min. The supernatant was used for GUS activity

assay in which 20 μL supernatant was mixed with 50 μL assay buffer containing 1.4 mM

4-methylumbelliferone (4-MU) (Sigma). The reaction was incubated at 37˚C for 30 min and

then stopped with 130 μL stop solution containing 200 mM sodium carbonate. The liberation

of 4-MU was detected by measuring the fluorescence on a microplate reader (TECAN infinite

M200 PRO) with excitation at 365 nm and emission at 455 nm and standardized against

known concentrations of 4-MU diluted in the buffer. The protein concentration was deter-

mined by the Bradford assay [31], using bovine serum albumin as the standard. GUS activity

was calculated as nmol 4-MU/min/mg protein and each test was performed with three biologi-

cal replicates.

H3K27me3 chromatin immunoprecipitation (ChIP)

Tobacco leaves (0.8–1.0 g fresh weight) were harvested and used for the H3K27me3 ChIP

assay. ChIP was performed with EpiQuikTM Plant ChIP Kit (Epigentek, http://www.epigentek.

com) following the manufacturer’s instructions. The anti-H3K27me3 antibody (Millipore,

http://www.emdmillipore.com) was used for immunoprecipitation. 2.0 μL of immunoprecipi-

tated DNA was used for qRT-PCR experiments. Primers used for the qRT-PCR detection are

listed in the S2 Table. qRT-PCR was performed with 1×iQ™ SYBR Green Supermix (Bio-Rad)

on CFX96TM Real-Time System (Bio-Rad). The thermal cycling consisted of an initial dena-

turation (94˚C, 3 min) followed by 40 cycles (94˚C, 20 s; 56˚C, 20 s; 72˚C, 30 s). ChIP assays

were performed with three biological replicates.

Statistical analysis

Data were statistically analyzed by Microsoft Excel. Means and standard deviations (SD) of val-

ues are shown. Statistical comparison was analyzed with two-tailed Student’s t-test, and indi-

cated by asterisks (�, P< 0.001) or NS (NS, not significant, P> 0.05).

Results

Adding 35S enhancer to NtAGIP1 broadens the tissue specificity from

carpels and stamens to whole inflorescence

To increase the promoter activity, we added 35S enhancer fragment (-396 to -46) [32,33] to

the 5 ‘end of NtAGIP1, and generated 35SNtAGIP1 promoter (Fig 1A). Then, NtAGIP1 and

35SNtAGIP1 were fused to the GUS coding region to create NtAGIP1::GUS and 35SNtAGIP1::

GUS fusions (Fig 1A). CaMV35S::GUS and Promoterless::GUS were used as positive and nega-

tive controls, respectively (Fig 1A). The four expressing vectors were used to generate trans-

genic tobaccos through Agrobacterium-mediated transformation using kanamycin resistant

NptII gene as the selectable marker. Putative transformants were verified by PCR detection,

and the positive transformants were selected for studies.

Histochemical analysis of GUS activity was performed to examine the expression pattern

driven by the promoters (Fig 1B–1E). CaMV35S::GUS lines, the positive control, exhibited

strong GUS staining in all vegetative tissues, including leave, stem, and root tissues. Consistent

with previous report [28], GUS activity in NtAGIP1::GUS line was observed only in stamens

and carpels. Interestingly, adding 35S enhancer to the 5’ end of NtAGIP1, the activity of the

promoter was observed not only in stamens and carpels, but also in sepals and pedicels (Fig

1B–1E), indicating that adding 35S enhancer broadens the tissue-specificity in carpels and sta-

mens to the whole inflorescence. Nevertheless, no GUS signal was observed in the vegetative

tissues including roots, stems and leaves of 35SNtAGIP1::GUS lines.
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Adding 35S enhancer to NtAGIP1 increases the promoter activity

We noted that compared with NtAGIP1, adding the 35S enhancer also increased the activity of

NtAGIP1 promoter. Based on the intensity of GUS staining, transgenic lines were classified

Fig 1. Adding 35S enhancer broadens the tissue specificity of NtAGIP1 in inflorescence. (A) Schematic diagram of constructs based on binary

vector pBI121 for the synthetic promoter assays. (B-E) Expression patterns of GUS gene driven by different promoters in (A). Representative GUS

patterns are shown for NtAGIP1::GUS (B), 35SNtAGIP1::GUS (C), CaMV35S::GUS (D), and Promoterless::GUS (E) in transgenic reporter lines.

Independent transgenic lines (n> 20 for each construct) were assayed for GUS expression in inflorescences, leaves, stems and roots. Scale bars, 1 mm.

https://doi.org/10.1371/journal.pone.0230203.g001
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into four groups: strong, intermediate, weak, and no staining (Fig 2A). In NtAGIP1::GUS lines

(n = 27) tested, 15%, 11%, 19%, and 55% lines displayed strong, intermediate, weak, and no

staining respectively. While in 35SNtAGIP1::GUS lines (n = 37), the proportion of strong,

intermediate, weak, and no staining was 46%, 19%, 16%, and 19% respectively (Fig 2B). Quan-

tification of GUS activity of the four strong expressing lines of each group confirmed that the

gene expression in the inflorescence and inner whorls of flowers of 35SNtAGIP1::GUS lines

was much higher than that of NtAGIP1::GUS lines (Fig 3). The data indicate that adding the

35S enhancer can remarkably enhance the activity of NtAGIP1 promoter in inflorescent

tissues.

The -2835 to -2735 region of NtAGIP1 contributes to the suppression of

vegetative expression

Now the question is why adding the 35S enhancer can enhance the activity of NtAGIP1 pro-

moter but not impair its specificity in the reproductive organs. To answer it, a progressive

deletion of full length NtAGIP1 (~4.2kb) promoter was performed. Each shortened sequence

was fused with 35S enhancer at its 5’ end and then linked to GUS reporter gene (Fig 4A). The

resultant constructs were delivered into tobacco, respectively. GUS expression in leaves of

Fig 2. Adding 35S enhancer increased the promoter activity. (A) Examples of strong, weak, intermediate, and no

GUS staining in inflorescence of NtAGIP1::GUS and 35SNtAGIP1::GUS lines. Scale bars, 1 mm. (B) Statistics of lines

showing strong, intermediate, weak, or no GUS staining in inflorescence of NtAGIP1::GUS and 35SNtAGIP1::GUS
transgenic tobaccos.

https://doi.org/10.1371/journal.pone.0230203.g002
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more than 30 transgenic lines for each construct was detected and the expression frequency

was calculated (Fig 4A). When the deletion reached to the upstream -2835, almost no GUS

expression was observed in leaves. However, when the deletion arrived at -2365 and thereafter,

GUS expression was significantly detected in the populations. In -2365 construct, the GUS

expression frequency was 36.3%, and further deletion had no more significant effect on the

GUS expression frequency. These results suggested that putative repressive elements exist

between -2835 and -2365. To characterize the location of potential repressive elements

between -2835 and -2365, we conducted a new series of deletion by every 100 bp. When the

deletion extended to -2735, GUS expression was observed in 9 out of 31 lines. Further deletion

to -2635, -2535, and -2435 did not result in a significant increase of the GUS expression fre-

quency (Fig 4B). These results firmly demonstrate that putative repressive elements locate in

the 100-bp region between -2835 and -2735 of NtAGI-1.

The -2835 to -2735 region of NtAGI-1 can repress the vegetative activity of

35S enhancer

To test the repressive role of the -2835 to -2735 fragment of NtAGI-1 in the vegetative expres-

sion, we fused the fragment between the 3’ end of the 35S enhancer and 5’ end of the 35S mini-

mal promoter, and then generated 35SRF (Repressive Fragment) promoter (Fig 5A). Two

100-bp DNA fragments (-2934 to -2834 and -2736 to -2636) from up- and down-stream of the

repressive fragment were used as controls to generate promoters 35SUC (Upstream Control)

and 35SDC (Downstream Control), respectively (Fig 5A). The promoters were fused to GUS
gene respectively, and then transgenic 35SRF::GUS, 35SUC::GUS, and 35SDC::GUS tobaccos

were generated. GUS staining showed that 86.7% (26/30) of 35SUC::GUS, and 88.5% (23/26)

of 35SDC::GUS reporter lines showed obvious GUS expression in leaves. In contrast, 50.0%

(17/34) of 35SRF::GUS lines showed detectable GUS signal in leaves (Fig 5B). Noticeably, GUS

activity in leaves of 35SRF::GUS lines was significantly lower than (P< 0.001) that of 35SUC::

GUS and 35SDC::GUS lines (Fig 5C). The data indicate that the -2835 to -2735 repressive frag-

ment of NtAGI-1 has ability to repress activity of the constitutive enhancer in the vegetative

tissue.

Fig 3. Adding 35S enhancer enhanced the GUS activity in the inflorescence. GUS activity in the inflorescence (A), and in inner whorls of the

flower (B). Four lines of NtAGIP1::GUS and 35SNtAGIP1::GUS transgenic tobaccos with strong GUS expression were selected randomly for GUS

activity assays. Error bars represent standard deviations of three biological replicates. �, P< 0.001; NS, not significant (P> 0.05) relative to #6 line of

NtAGIP1::GUS tobacco; two-tailed Student’s t-test.

https://doi.org/10.1371/journal.pone.0230203.g003
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The -2835 to -2735 region of NtAGI-1contains GAGA factor binding motif

Bioinformatic analysis result showed that in the -2835 to -2735 region of NtAGI-1 there was a

GAGA factor binding motif (Fig 6) that is involved in the recruitment of polycomb repressive

complex 2 (PRC2) [34–36]. PRC2 is responsible for the repression of flower genes, including

AG, in vegetative tissues. Interestingly, all AG homologs of the five Solanaceae plants, tobacco,

tomato, potato, petunia and pepper, have a big second intron (Fig 7), in which the 100-bp

repressive fragment of NtAGI-1 with GAGA factor binding motif is conserved among the spe-

cies of Solanaceae family (Fig 6 and Table 1).

It has been known that PRC2-mediated repression of flower genes is resulted from

H3K27me3 modification to form epigenetically stable silent chromatin state [37,38]. Our chro-

matin immunoprecipitation (ChIP) assay showed that in the wild-type tobacco the entire

NtAGI-1 intron including the 100-bp repressive fragment was enriched for H3K27me3 modifi-

cation (Fig 8A). In the GUS positive -2735 cells, H3K27me3 level of the chimeric promoter was

Fig 4. Dissection analysis of the NtAG intron to dig potential repressive elements. (A) Schematic diagram of constructs of serial deletions of

NtAGIP1 (left), and GUS expression frequency in leaves of transgenic tobacco lines for each construct (right). (B) Further serial deletions of fragment

between -2835 and -2365 for precise localization of potential repressive elements (left), and GUS expression frequency in leaves of transgenic tobacco

lines for each construct (right).

https://doi.org/10.1371/journal.pone.0230203.g004
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much lower than that in the GUS negative -2835 cells (Fig 8B), indicating that the 100-bp region

can mediate H3K27 tri-methylation to suppress the activity of the promoter. These results sug-

gest the crucial role of GAGA motif in the 100-bp region for the vegetative repression.

Fig 5. The 100-bp repressive fragment of NtAGI-1 is able to suppress 35S enhancer activity in leaves. (A)

Schematic diagram of GUS reporter constructs. (B) GUS expression frequency driven by the chimeric promoter

containing 35S enhancer and the 100-bp repressive fragment and by two control promoters. (C) Quantification of

GUS activity in the three transgenic groups. Statistical significance was determined by two-tailed Student’s t-test. The

horizontal lines represent the medians.

https://doi.org/10.1371/journal.pone.0230203.g005
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Discussion

It is often a dilemma when design a strong tissue-specific promoter: increasing the strength of

the promoter is frequently accompanied by the loss of tissue specificity. In this study, we show

that the well-known strong enhancer (-396 to -46) of 35S promoter can be harnessed for the

design of the chimeric flower-specific promoter by fusing it with the floral organ-specific pro-

moter NtAGIP1. The strength of the promoter in the flower is significantly enhanced. Mean-

while, its activity is confined to the reproductive organs. We further demonstrate that a 100-bp

Fig 6. The 100-bp repressive fragment (orange line) and GAGA motif (red triangles) of NtAGI-1 are conserved in the species of

Solanaceae family.

https://doi.org/10.1371/journal.pone.0230203.g006

Fig 7. Structure of AG homologous genes in different plant species. Grey boxes indicate non-coding regions, black boxes represent coding regions, and lines

indicate introns.

https://doi.org/10.1371/journal.pone.0230203.g007

PLOS ONE A GAGA-containing sequence in AGAMOUS intron suppress the activity of CaMV35S enhancer in vegetative tissues

PLOS ONE | https://doi.org/10.1371/journal.pone.0230203 March 5, 2020 10 / 16

https://doi.org/10.1371/journal.pone.0230203.g006
https://doi.org/10.1371/journal.pone.0230203.g007
https://doi.org/10.1371/journal.pone.0230203


repressive fragment exists in the AG second intron/enhancer that plays crucial role in the

repression of vegetative activity of the chimeric promoter by mediating H3K27 tri-methyla-

tion. Bioinformatic analysis reveals that the 100-bp repressive fragment has a GAGA factor

binding motif, which is conserved among the species of Solanaceae family, underpinning the

importance of this element in the vegetative silencing of AG gene.

Singer and colleagues [39] reported that 35S enhancer could override the AGI-conferred

tissue specificity in Arabidopsis, resulting constitutive expression of the AtAGIP controlled

gene in the vegetative tissues. We notice that a variant of duplicated enhancer was used in their

study. This duplicated 35S enhancer was shown having approximately tenfold higher activity

than that of the single 35S enhancer. Furthermore, it could boost the activity of adjacent pro-

moter by several hundredfold [40]. In our study, we used the 351 bp fragment (-396 to -46) of

35S promoter to increase the activity of NtAGIP1. GUS activity detection showed that the

activity of NtAGIP1 was increased by one- to two-fold. Meanwhile, the promoter maintains its

activity in flower organs. Therefore, it is conceivable that the strong activity of duplicated 35S

enhancer is hard to be suppressed by the potential repressive elements of AGI. In other words,

the ability of repressive elements of tissue-specific promoters to suppress the global activity of

a constitutive enhancer depends on the strength of the enhancer used. Consistently, the 35S

promoter altered the level and patterns of activity of adjacent tissue- and organ-specific gene

promoters, while the similar constitutive Nos promoter that is weaker than the 35S promoter

had no effect on these adjacent promoters [41,42]. Likewise, 35S enhancer could convert the

flower-specific promoter PCHS to non-specific gene promoter, while a weaker OCS enhancer

was able to increase the activity of PCHS promoter specifically in the targeted tissues [10].

Although weak enhancers can increase activity of tissue-specific promoter, it would not be

a good choice when strong expression is needed. Using a strong repressive element or cis-
repressor may benefit overcoming the constitutive activity of strong enhancer (e.g., 35S) in

vegetative tissues. The repressive element of NtAGI-1 we identified is a potential candidate.

Du and colleagues used the 163-bp 35S enhancer fragment (-208 to -46) to increase the activity

of flower specific CHS promoters that contain vegetative repressive element TACPyAT box.

However, the repressive element was unable to suppress the activity of 35S enhancer in vegeta-

tive tissues [10,43]. In our study, the vegetative activity of the longer 351-bp 35S enhancer frag-

ment (-396 to -46) that is responsible for the majority of the 35S promoter strength [33] could

be suppressed by the repressive element of NtAGI-1, showing a potential of the repressive ele-

ment in the design of synthetic reproductive promoters.

Adding 35S enhancer can extend the tissue specificity of NtAGIP1 from inner whorls of

flower (stamens and carpels) to the outer whorls (sepals and petals), but the activity of 35SNtA-

GIP1 does not cross the boundary of flower organs. An array of factors is responsible for the

repression of AG [44,45]. For example, APETALA2 is involved in the repressing the expression

of AG in the outer floral whorls through recruiting the histone deacetylase HDA19, thus

Table 1. Comparison of N.tabacum AG second intron with those from other plants.

Solanaceae species Percent identity with N.tabacum GenBank accession of AG homolog

Petunia x hybrida (petunia) 69.5 AB076051.1

Solanum tuberosum (potato) 58.1 NW_006239189.1

Solanum lycopersicum (tomato) 57.3 NC_015439.3

Capsicum annuum (pepper) 58.3 NC_029978.1

Non-Solanaceae species

Arabidopsis thaliana (Brassicaceae) 48.6 NC_003075.7

Zea mays (maize; Poaceae) 44.0 NC_024466.2

https://doi.org/10.1371/journal.pone.0230203.t001
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preventing gene activation via histone deacetylation [23,46]. Polycomb repressive complex 2

(PRC2) is implicate in the repressing AG in the vegetative tissues by mediating H3K27 tri-

methylation to form epigenetically stable silent chromatin state [37,38]. PRC2 is evolutionarily

conserved [47–49]. The recruitment of PRC2 in Arabidopsis relies largely on binding of trans-
acting factors to cis DNA motifs known as polycomb response elements (PREs) [34–36].

Importantly, GAGA factor binding motif has been found to be involved in the recruitment of

PRC2 in both Arabidopsis and Drosophila. Recently, Wu and colleagues reported that a DNA

region within Arabidopsis AG intron 2 (+2616 to +3348) is involved in the recruitment of

PRC2 to represses AG expression in leaves via the transcribed noncoding RNA [45]. They

pointed out that the identified DNA region also contains PREs which may recruit PRC2. We

found that the GAGA factor binding motif is also included in the region of the AtAGI. Bioin-

formatic analysis indicates that the GAGA motif is conserved among the Solanaceae family.

Furthermore, deletion of the GAGA motif containing 100-bp repressive fragment of NtAGI-1

caused decreased H3K27me3 level and de-repression of the chimeric promoter activity in

leaves, suggesting that the GAGA motif may be involved in the recruitment of PRC2 at the AG
locus for vegetative repression in plants. Thus, our results may inspire studies on the regulation

of other floral genes which need to be suppressed so as to allow normal vegetative development

[50].

In summary, our work constructs a new chimeric flower-specific promoter for plant engi-

neering, and the 100 bp GAGA motif-containing sequence identified here may provide impor-

tant information to investigate the regulation of AGAMOUS genes in plants.
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