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Abstract

The first-degree power-law polynomial function is frequently used to describe activity metabolism for steady swimming
animals. This function has been used in hydrodynamics-based metabolic studies to evaluate important parameters of
energetic costs, such as the standard metabolic rate and the drag power indices. In theory, however, the power-law
polynomial function of any degree greater than one can be used to describe activity metabolism for steady swimming
animals. In fact, activity metabolism has been described by the conventional exponential function and the cubic polynomial
function, although only the power-law polynomial function models drag power since it conforms to hydrodynamic laws.
Consequently, the first-degree power-law polynomial function yields incorrect parameter values of energetic costs if activity
metabolism is governed by the power-law polynomial function of any degree greater than one. This issue is important in
bioenergetics because correct comparisons of energetic costs among different steady swimming animals cannot be made
unless the degree of the power-law polynomial function derives from activity metabolism. In other words, a hydrodynamics-
based functional form of activity metabolism is a power-law polynomial function of any degree greater than or equal to
one. Therefore, the degree of the power-law polynomial function should be treated as a parameter, not as a constant. This
new treatment not only conforms to hydrodynamic laws, but also ensures correct comparisons of energetic costs among
different steady swimming animals. Furthermore, the exponential power-law function, which is a new hydrodynamics-based
functional form of activity metabolism, is a special case of the power-law polynomial function. Hence, the link between the
hydrodynamics of steady swimming and the exponential-based metabolic model is defined.
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Introduction

Activity metabolism represents the relationship between meta-

bolic rate and steady speed. Any functional form that is an

interpolant of activity metabolism can be used to describe activity

metabolism. For example, the conventional exponential function

and the cubic polynomial function have been used to describe

activity metabolism for steady swimming animals [1–6]. In theory,

activity metabolism can also be described by the nth-degree power-

law polynomial function, that is, a fractional polynomial function

of the form f xð Þ~
Pn§1

k~0 wkxkp, where power p (?0) and

coefficients wk are real-valued parameters [7]. (Note that if kp

are exclusively natural numbers, then f (x) is a conventional

polynomial function of np degree.) In particular, the first-degree

power-law polynomial function is frequently used to describe

activity metabolism for steady swimming animals to evaluate

important parameters of energetic costs, such as the standard

metabolic rate and the drag power indices [5,8–10]. Although

many functional forms can be used to describe activity

metabolism, only the power-law polynomial function models drag

power for steady swimming animals [11]. In fact, the power-law

polynomial function can be characterized as a power series in the

Reynolds number, which is used to describe the Oseen drag

coefficient to evaluate drag on a sphere [12–14]. Thus, only the

power-law polynomial function conforms to hydrodynamic laws

[5,8,11,15,16]; it is because of this important property that the

first-degree power-law polynomial function is the standard

functional form used in all hydrodynamics-based metabolic

studies. Nonetheless, the first-degree power-law polynomial

function describes only one of many hydrodynamics-based

functional forms of activity metabolism. Consequently, if activity

metabolism is governed by the power-law polynomial function of

any degree greater than one, then the standard functional form

yields incorrect parameter values, leading to incorrect comparisons

of energetic costs among different steady swimming animals.

Therefore, the objective of this manuscript is to resolve the issue by

first deriving the power-law polynomial function, in which the

degree is unconstrained, and then showing that this function

always describes the correct functional form governing activity

metabolism. Moreover, I show that the power-law polynomial

function describes many hydrodynamics-based functional forms of

activity metabolism; one such functional form is the exponential

power-law function. I thus provide a new link between the

hydrodynamics of steady swimming and the exponential-based
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metabolic model. Finally, I show that if different hydrodynamics-

based functional forms share the same activity metabolism, then

different degrees of the power-law polynomial function yield

different parameter values of energetic costs, implying that only

with the power-law polynomial function, in which the degree

derives from activity metabolism, can one obtain the correct values

of the standard metabolic rate and the drag power indices.

The power-law polynomial function
The first-degree power-law polynomial function, which is the

standard functional form used in hydrodynamics-based metabolic

studies, is [5,8–10]:

M~fs Uð Þ~azbUc

~a 1za{1bUc
� �

)
for

aw0

bw0

1vcv3

8><
>: , ð1Þ

and its natural logarithm-transformed linear form is:

ln M~g Vð Þ~ln azy:ln 1za{1bUc
� �

if y~1, ð2Þ

where dependent variable M is the total metabolic rate,

independent variable U is the steady swimming speed, variable

V (~1za{1bUc) is the relative energetic cost of drag, parameter

a is the standard metabolic rate, parameters b and c are drag power

indices, and parameter y (~ln Ma{1
� ��

ln 1za{1bUc
� �

) is the

metabolic-to-drag power conversion index, which depends on

physiological factors similar to factors affecting b (e.g., capillary

and mitochondrial densities) and physical factors similar to factors

affecting c (e.g., pressure and viscous drag forces). Note that the

variable Ma{1 (.1) is the relative metabolic cost of steady

swimming [17], which is equal to V only if y is equal to 1. The

parameters a, b, c, and y represent energetic costs: a is the

minimum metabolic rate needed to sustain physiological mainte-

nance [2,6,18]; b and c are inversely related to the swimming

capacity and swimming efficiency, respectively [5,9,15,19]; and y
is inversely related to the power conversion efficiency ( = drag

power over metabolic power). For convenience, it is assumed that

measurement error, that is, stochastic and systematic variation in

fs Uð Þ irrelevant to the hydrodynamics, is negligible; this implies

that a, b, c, and y are realized values, not estimates.

Equation (2) is the log-linear form of equation (1). Thus, like any

log-linear function, equation (2) has an intercept ( = ln a) and a slope

( =y), which is constrained to 1 to satisfy equation (1). The assumption

that follows from this constraint is that all of the metabolic power

( = M2a) required to overcome hydrodynamic drag converts into

drag power (~bUc) [11], even though a power conversion efficiency

of 1 is unattainable [20,21]. For steady swimming fish, equation (1)

and direct hydromechanical models yield similar estimates of drag

power [11], suggesting that y is close to 1.

Equation (1) tacitly assumes a constant y of 1 and thus does not

take into account the differences in the power conversion

efficiency, which is usually different for individuals within species

and almost always different for individuals among species. The

Second Law of Thermodynamics explicitly states that the power

conversion efficiency is always less (never greater) than 1 [21].

Hence, drag power is always less than metabolic power; this is

because not all of the metabolic power required to overcome

hydrodynamic drag converts into drag power, some is lost as heat

due to physiological and physical factors [20]; then to compensate

for heat loss, metabolic power must be greater than drag power. As

a result, the metabolic-to-drag power conversion index (y) is

always greater (never less) than 1. Therefore, to ensure correct

comparisons of energetic costs among different steady swimming

animals, y must be treated as a parameter, not as a constant.

If y is treated as a parameter, then the power-law polynomial

function derives from the antilogarithm-transformed curvilinear

form of equation (2) for y greater than or equal to 1:

M~f Uð Þ~a 1za{1bUc
� �y

~

aedUc

if lim
a{1b?0z

y??

f Uð Þ

azbUc if y~1

8<
: , ð3Þ

where the exponential power-law function is:

M~ lim
a{1b?0z

y??

f Uð Þ~aedUc

for

aw0

dw0

1vcv3

8><
>: ð4Þ

and parameter d is equal to a{1by (Methods, equations 10–13).

Thus, d represents a three-way interaction between a, b, and y; if

the cost of physiological maintenance is much greater than the cost

of swimming, that is, if the value of a{1b is much less than 1, and if

the cost of power conversion is very high, that is, if the value of y is

much greater than 1, then equation (3) converges to equation (4)

because the limit of f (U) as a{1b approaches 0 and y approaches

‘ defines the exponential power-law function (Methods, equations

10–13). Naturally, if y is equal to 1, then equation (3) is equivalent

to equation (1). Note that, like equation (1), equation (4) is a

hydrodynamics-based model because it is a special case of

equation (3); also, if c equals 1, which does not conform to

hydrodynamic laws, then equation (4) is the conventional

exponential function. Furthermore, like equation (1), equation (3)

derives from hydrodynamics, from which the compound param-

eter cy is inversely related to the overall energetic efficiency

(Methods, equations 14–17).

The four parameters (a, b, c, and y) in equation (3) can be easily

evaluated by maximum likelihood parameter estimation; for best

results, the following constraints should be imposed: a.0, b.0,

c.1, and y$1; and lognormal error should be assumed since

equation (2) is a log-linear function.

Hydrodynamics-based functional forms of activity
metabolism

Equation (3) links the total metabolic rate (M) to a power-law

polynomial function and thus describes many hydrodynamics-based

functional forms of f (U); this can be shown by expanding equation

(3) using the Maclaurin series [22]. Thus, the following expansion is

equivalent to equation (3) (Methods, equations 18–21):

M~f Uð Þ~az
Xn

k~1

f kð Þ h 0ð Þð Þ
k!

Ukc

for
n~

y

?

(
if y~tys

if y=tys

UƒUm if y=tys

8>><
>>: ,

ð5Þ

where the floor function tys is the highest integer less than or equal

to y, the parameter Um (~ a=bð Þ1=c
) is the maximum sustained U at

which bUc equals a, the summation term
Pn

k~1
f kð Þ h 0ð Þð Þ

k! Ukc

represents drag power, h(U) is equal to U1=c, and f kð Þ h 0ð Þð Þ is a

differential sequence of coefficients that contain the parameters a, b,

and y (Methods, equation 20). It is important to note that if y is not

Power-Law Polynomial Function
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an integer, then equation (5) converges to an unspecified nth (wtys)
degree power-law polynomial because ‘ is not a number; for this

case, the value of n depends on the precision with which the

convergence is calculated. Conversely, if y is an integer, then

equation (5) converges to a specified nth (~y~tys) degree power-

law polynomial. Also, if a{1b approaches 0 and y approaches ‘,

then equation (5) equals:

M~ lim
a{1b?0z

y??

f Uð Þ~az
X?
k~1

adk

k!
Ukc~aedUc

, ð6Þ

where the limit lim
a{1b?0z

y??

f kð Þ h 0ð Þð Þ is equal to adk. It is apparent

from equation (6) that the exponential power-law function is a power-

law polynomial function, since y converges to a value much greater

than 1, and thus conforms to hydrodynamic laws; also, the

conventional exponential function ( = equation 6 for c = 1) is simply

a conventional polynomial function and thus, like the cubic

polynomial function, does not conform to hydrodynamic laws.

Investigators who use the conventional exponential function tacitly

assume c is 1, even though they provide no theoretical support for this

assumption. As a result, constraining c to 1 should not be imposed.

According to equation (5), the degree of the power-law

polynomial function (or the value of n, which depends on the

value of y) corresponds to the functional form of f (U); for

example, the first-degree power-law polynomial function (n = 1 if

y= 1), the second-degree power-law polynomial function (n = 2 if

y= 2), and the third-degree power-law polynomial function (n = 3

if y= 3) are three different hydrodynamics-based functional forms

of f (U) (Figure 1A). The power-law polynomial function is not only

based on hydrodynamic principles, but also represents the

generalized functional form governing f (U). Equation (3) is

complete because any value of y does not modify the functional

form of equation (2)—that is, the functional form of equation (2)

remains log-linear for any value of y (Figure 1B); this implies that

all hydrodynamics-based functional forms account for the same

amount of systematic variation in f (U) relevant to the

hydrodynamics. Thus, fitting different hydrodynamics-based

functional forms of f (U) to the same f (U) results in similar

correlation coefficients and in similar optimum swimming speeds

(~ a=b cy{1ð Þð Þ1=c
), which are useful for comparing transport

costs among different steady swimming animals [23]. This

important result must hold because the logarithm of metabolic

power ( = ln(M2a)) is a linear function of the logarithm of drag

power [8,10,15,16].

Differences in the parameter values among different
degrees of the power-law polynomial function

The parameters a, b, and c are extensively used in hydrody-

namics-based metabolic studies because these parameters have

useful hydrodynamic and metabolic interpretations

[5,8,9,15,19,24,25]. For instance, the standard metabolic rate (a)

is used in numerous contexts, such as in growth [25–27], in

morphology [25,28], and in swimming performance [25,29]. The

drag power indices (b and c) are also used in numerous contexts,

especially in regard to hydrodynamics; for example, b and c are

used to calculate the dimensionless drag indices derived from the

function describing the relationship between the drag power

coefficient and the Reynolds number (see Appendix 1 in

Papadopoulos [5]), and thus are useful for comparing drag power

among different steady swimming animals [30]. In particular,

because c is directly related to the drag exerted by the water on the

animal’s body [5,9,19], it can be used to assess the relationship

between body shape and swimming efficiency [24,25]. Indeed, the

parameters a, b, and c have broad ecological and evolutionary

significance [25]. Yet, fitting different hydrodynamics-based

functional forms of f (U) to the same f (U) results in different

parameter values; equation (1) yields incorrect values of a, b, and c

if equation (3) for y greater than 1 governs f (U); this is an inherent

bias of equation (1), which is the standard equation used in all

hydrodynamics-based metabolic studies.

I show that fitting different hydrodynamics-based functional

forms of f (U) to the same f (U) results in different values of a, b, and

c. Note that a hydrodynamics-based functional form of f (U) is a

power-law polynomial function of any degree greater than or

equal to 1; the degree of the power-law polynomial function

corresponds to the value of n, which ultimately depends on the

value of y.

Only the standard metabolic rate (a) is evaluated by extrapo-

lating to zero U; and because the extrapolant of f (U) solely

depends on the interpolant of f (U), the value of a, like the values of

b and c, depends on the functional form used to interpolate f (U). In

other words, different values of the metabolic-to-drag power

conversion index (y) result in different values of a, b, and c; this can

be shown mathematically by applying composite function

operators to f (U).

If f (U) is governed by equation (3) for y equal to a, but equation

(3) for y equal to b (?a) is used to interpolate f (U), then aa (a-

specific value of a) and ab (b-specific value of a) can be evaluated

using the following first derivative of the composite function:

DU f j Uð Þð ÞjU~0
y~a
¼D DU f j Uð Þð ÞjU~0

y~b

aaa ¼D abb

9>=
>; for a=b, ð7Þ

where j(U) is equal to ab{1U
� �1=c

; similarly, b and c can be evaluated

using the following first derivative of the composite functions:

DU f h Uð Þð ÞjU~0
y~a
¼D DU f h Uð Þð ÞjU~0

y~b

baa ¼D bbb

9>=
>; for a=b ð8Þ

and

DU f l Uð Þð ÞjU~0
y~a
¼D DU f l Uð Þð ÞjU~0

y~b

caa ¼D cbb

9>=
>; for a=b, ð9Þ

where h(U) and l(U) are equal to U1=c and cb{1U
� �1=c

, respectively.

Equations (7)–(9) are conditional, implying that equality is guaran-

teed only if different hydrodynamics-based functional forms of f (U)

share the same f (U); otherwise, this analysis is inconclusive. Since a is

not equal to b, but aaa, baa, and caa are equal to abb, bbb, and cbb,

respectively, it must follow that aa, ba, and ca are not equal to ab, bb,

and cb, respectively. Because f (U) is governed by equation (3) for y

equal to a, aa, ba, and ca are the only correct parameter values. This

is a very important result: there is only one correct functional form

governing f (U); and only with equation (3), in which parametery is a

consequence of f (U), can one obtain the correct parameter values.

Note that because only a is the value of f (U) at U equal to 0, aa is

approximately equal to ab if the values of V are small enough such

that different values ofy result in similar values of a for the same f (U);

this rare condition can only occur when a is much greater than b and

most of the measured values of U are less than 1. Also, if a is less than

Power-Law Polynomial Function
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b, then it must follow that aa, ba, and ca are greater than ab, bb, and

cb, respectively. Thus, if equation (3) fory greater than 1 governs f (U)

(see Figure 2A), but equation (1), that is, equation (3) fory equal to 1,

is used to interpolate f (U) (see Figure 2B), then the values of a, b, and c

derived from equation (1) are not only incorrect, but also greater than

the correct values of a, b, and c (Table 1).

Figures 2A and 2B illustrate the importance of using only

equation (3) to interpolate f (U). In Figure 2A, all three individuals

have the same values of a, b, and c (Table 1). Yet, fitting equation

(1) to f (U) results in all three individuals having different values of

a, b, and c (Figure 2B; Table 1). One would then conclude from

equation (1) that the cost of physiological maintenance (a) and the

costs of swimming (b and c) among the three individuals are

different, but, in fact, they are not. It is due to the different values

of only y that the three curves in Figures 2A and 2B are different.

In other words, it is only the differences in the power conversion

efficiency that makes the three curves appear different. Equation

(3) takes into account the differences in y, whereas equation (1)

tacitly assumes that there are no differences in y—that is, equation

(1) tacitly assumes y is equal to 1, but y is really equal to 1.6, 2.5,

and 3.3 for individual 1, 2, and 3, respectively (Table 1). Making

the assumption that y is constant is clearly flawed and thus leads to

incorrect comparisons of energetic costs among different steady

swimming animals. Therefore, equation (3) must, by definition,

overrule any special-case function (e.g., equations 1 and 4) because

it is a generalized hydrodynamics-based model; any value of y
($1) is justified if it is a consequence of f (U).

How would one interpret the association between the energetics

and the hydrodynamics of steady swimming from the observed

data in Figure 2A? First, the power conversion efficiency decreases

as the values of y increase, from 1.6 to 3.3, implying that some of

the metabolic power is transformed into heat; and thus, to

compensate for the heat loss, a supplement of metabolic power is

required to overcome hydrodynamic drag. Consequently, if the

incorrect model (equation 1) is used to interpolate f (U), then the

heat loss is completely converted into drag power, which is

physiologically impossible [20]. Second, because the cost of

Figure 1. The data represent the curvilinear and log-linear forms of activity metabolism. A. The data are described by the power-law
polynomial function (equation 3). All three curves represent different hydrodynamics-based functional forms of f (U), even though parameters a, b,
and c are shared. Note that only the values of y are different. Circles, squares, and triangles are characterized by the first-degree power-law
polynomial function (y= 1; equation 1), the second-degree power-law polynomial function (y= 2), and the third-degree power-law polynomial
function (y= 3), respectively. B. The data correspond to the log-linear form of f (U), or correspond to g(V) (equation 2).
doi:10.1371/journal.pone.0004852.g001

Figure 2. The data represent activity metabolism, which is described by the power-law polynomial function (equation 3). A.
Hypothetical representation of actual observed data, where circles represent f (U) for individual 1 (a = 0.90; b/a = 3.7; c = 1.9; y= 1.6), squares
represent f (U) for individual 2 (a = 0.90; b/a = 3.7; c = 1.9; y= 2.5), and triangles represent f (U) for individual 3 (a = 0.90; b/a = 3.7; c = 1.9; y= 3.3). Note
that only the values of y are different. B. The curve-fit of equation (1), in which y= 1.0, to the actual observed data. Note that the parameters values
of a, b, and c from equation (1) are incorrect (see Table 1 for their deviations).
doi:10.1371/journal.pone.0004852.g002
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physiological maintenance and the costs of swimming are the same

for all three individuals, but the cost of power conversion is

different, implies that only the metabolic response due to the

conversion of biochemical energy to mechanical power of the

muscles is different among the three individuals. Although this is

an interesting hypothetical case, the difference in only y among

the three individuals is most likely due to the difference in

ventilatory capacity as opposed to the difference in respiratory

capacity, since the values of b are the same.

Discussion

For over 30 years, the first-degree power-law polynomial

function (equation 1) has been used to describe f (U) for steady

swimming animals, especially for fish [5,8–10,15,19,24,25,31–33].

Concurrently, the conventional exponential function ( = equation

4 for c = 1) has also been used to describe f (U) [1,2,6,15,25,31–33].

Some argue that equation (1) is more appropriate than the

conventional exponential function because only equation (1) is

based on hydrodynamic principles [9,11]. Yet others argue that

the conventional exponential function is a more robust predictor

of f (U) than equation (1) because the conventional exponential

function has two, as opposed to three, parameters [15,33]. In fact,

both arguments are disputable: equation (1) and equation (4),

which is a generalization of the conventional exponential function,

are hydrodynamics-based models because they represent special

cases of equation (3); and, with or without measurement error,

equations (1) and (4) predict f (U) with a similar level of statistical

robustness because both functions have the same number of

parameters, that is, three.

Two methods can be used to formulate equation (3): in the first

method, equation (1) is factored into two multiplicative parts, a

and V, and the natural logarithm of the factorization is

calculated, thus exposing the model as a log-linear function

(equation 2), in which the intercept ( = ln a) and the slope ( =y)

are defined—variable V and parameters a and y have important

biological interpretations; in the second method, f (U) is derived

from hydrodynamics (Methods, equations 14–17). In both

methods, y is assumed to be constant (that is, 1), thus

characterizing f (U) as a first-degree power-law polynomial

function, making f (U) incomplete; however, by simply allowing

y to be a parameter, f (U) becomes complete (equations 3 and 5;

Figure 1A). As result, a high degree power-law polynomial

function (that is, y&1) converges to equation (4) as a{1b

approaches 0 (equation 6).

Like all hydrodynamics-based functional forms of f (U), the

conditions that satisfy equation (4) have a biological interpretation:

the standard metabolic rate (a) must be much greater than the drag

power index (b), and the metabolic-to-drag power conversion index

(y) must be much greater than 1. Note that if y is close or equal to 1

and a{1b is much less than 1, then equation (3) converges to a

because the limit of f (U) as a{1b approaches 0 and y approaches 1

equals a, which is nonsensical because a is, by definition, a

parameter, not a variable. Thus, for equation (3) to make sense, y
must be much greater than 1 only if a{1b is much less than 1.

Remarkably, this three-way interaction is also fundamental to the

definition of equation (4) (Methods, equations 10–13).

In conclusion, equation (3) describes many hydrodynamics-

based functional forms of f (U) because it is characterized as a

power-law polynomial function (equation 5). Different hydrody-

namics-based functional forms, or different degrees of the power-

law polynomial function yield different values of a, b, and c for the

same f (U) (equations 7–9; Figures 2A and 2B; Table 1). Thus, it is

important that equation (3), not equation (1), is used because

equation (1) describes only one of many hydrodynamics-based

functional forms of f (U); equation (1) can only yield the correct

values of a, b, and c if y is very close or equal to 1, either of which

is theoretically justified for only fish [11]. Yet, because hydrody-

namic laws permit y to take any value greater than or equal to 1

(Figure 1B), y should always be treated as a parameter, not as a

constant.

Methods

Derivation of the exponential power-law function from f
(U)

The following derivation of the exponential power-law function

(equation 4) is an adaptation of the definition of the conventional

exponential function lim
n??

1zn{1
� �n

~e first proposed by Jacob

Bernoulli in 1683 and then generalized to lim
n??

1zn{1x
� �n

~ex by

Leonhard Euler in 1748 (see Example 8 on page 392 in Finney

and Thomas [22]). Start with the natural logarithm of equation (3):

ln M~g Uð Þ~ln azy:ln 1za{1bUc
� �

for

aw0

bw0

1vcv3

yw1

8>>><
>>>:

ð10Þ

and then calculate the first derivative of equation (10) with respect

to U, and take the limit of the derivative as a{1b approaches 0 and

y approaches ‘:

lim
a{1b?0z

y??

g’ Uð Þ~ lim
a{1b?0z

y??

y:a{1bcUc{1

1za{1bUc
~y:a{1bcUc{1; ð11Þ

next, calculate the antiderivative (that is, the indefinite integral) of

equation (11) with respect to U:

lim
a{1b?0z

y??

ð
y:a{1bcUc{1

1za{1bUc
dU~ lim

a{1b?0z

y??

g Uð Þ

~ln azy: a{1bUc
� �

;

ð12Þ

Table 1. A comparison of the parameters of energetic costs
among different individuals.

Individual 1 (N) a b c y

actual values from f (U) 0.90 3.3 1.9 1.6

incorrect values from fs Uð Þ 0.95 9.2 2.4 1.0

deviation from f (U) 0.050 5.9 0.50 20.60

Individual 2 (&) a b c y

actual values from f (U) 0.90 3.3 1.9 2.5

incorrect values from fs Uð Þ 1.0 36 3.1 1.0

deviation from f (U) 0.10 33 1.2 21.5

Individual 3 (m) a b c y

actual values from f (U) 0.90 3.3 1.9 3.3

incorrect values from fs Uð Þ 1.2 115 3.8 1.0

deviation from f (U) 0.30 112 1.9 22.3

doi:10.1371/journal.pone.0004852.t001
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finally, calculate the antilogarithm of equation (12):

M~ lim
a{1b?0z

y??

f Uð Þ~aea{1by:Uc

~aedUc

9>>=
>>;, ð13Þ

which is equivalent to equation (4).

Derivation of f (U) from hydrodynamics
Parameter c is inversely related to the swimming efficiency, not

the overall energetic efficiency, which takes into account both the

power conversion efficiency and the swimming efficiency

[6,34,35]. If parameter y is inversely related to the power

conversion efficiency, then the compound parameter cy is

inversely related to the overall energetic efficiency; two dimen-

sionless parameters representing two types of efficiency, like c and

y, can be multiplied, from which the product represents an overall

measure of energetic efficiency [6,34,35]. Thus, cy can be derived

from the following expression [5]:

y:f ’s Uð Þ
fs Uð Þ{að ÞU{1

~cy; ð14Þ

next, rearrange equation (14) such that the first derivative of

y:fs Uð Þ, that is, y:f ’s Uð Þ, is equal to the first derivative of the

natural logarithm of f Uð Þ, that is, g’ Uð Þ, multiplied by fs Uð Þ:

y:f ’s Uð Þ~cy fs Uð Þ{að ÞU{1

~fs Uð Þg’ Uð Þ

)
, ð15Þ

and then rearrange equation (15) such that it equals g’ Uð Þ:

g’ Uð Þ~y:f ’s Uð Þ
fs Uð Þ ; ð16Þ

finally, calculate the antilogarithm of the antiderivative of equation

(16) with respect to U:

f Uð Þ~e

Ð
g’ Uð ÞdU

~a 1za{1bUc
� �y

, ð17Þ
which is conditionally governed by fs Uð Þ.

The Maclaurin series expansion of f (U)
Start with equation (3):

M~f Uð Þ~a 1za{1bUc
� �y

for

aw0

bw0

1vcv3

y§1

8>>><
>>>:

ð18Þ

and then transform equation (18) into the composite function:

f h Uð Þð Þ~a 1za{1bU
� �y

, ð19Þ

where h(U) is equal to U1=c; this transformation ensures that the

differential function f kð Þ h 0ð Þð Þ for the Maclaurin series does not

equal 0. The series generated by the k ( = 1, 2, 3, 4, …, n) order

derivatives of equation (19) at U = 0 is:

f kð Þ h 0ð Þð Þ~f kð Þ h Uð Þð Þ
��
U~0

~y y{1ð Þ y{2ð Þ y{3ð Þ � � �

y{kz1ð Þa 1{kð Þbk

~
C yz1ð Þ

C y{kz1ð Þ a
1{kð Þbk

9>>>>>=
>>>>>;

, ð20Þ

where the gamma function C(y+1) is equal to y! (‘‘y factorial’’)

and is an extension (or a generalization) of the factorials that

includes any real number y (see equations 4 and 5 in Kleinz and

Osler [36]). If y is an integer, that is, if y equals the floor function

tys, then equation (20) ends after y+1 terms because the

coefficients on k =y+1 are zero, and thus n must equal y. If,

however, y is not an integer, that is, if y does not equal the floor

function tys, then the series in equation (20) is infinite (n = ‘) and

converges for all U values less than or equal to Um ~ a=bð Þ1=c
� �

,

that is, the maximum sustained U at which drag power equals the

standard metabolic rate; this is because equation (18) is an

adaptation of the binomial series, which converges for any value of

bUc less than or equal to a only if y does not equal tys [22].

Incidentally, this convergence has a hydrodynamic and metabolic

interpretation worth noting: Weihs [29] stated that drag power

(~bUc: = the propulsive rate of energy) reaches its optimum value

(~bUc
m) when it equals the standard metabolic rate ( = a : = the

rate of energy expenditure on internal metabolic processes

independent of U) (see equation 10 in Weihs [29]). Finally,

substituting equation (20) into the Maclaurin series formula results

in the series expansion of equation (18):

M~f Uð Þ~az
Xn

k~1

C yz1ð Þa 1{kð Þbk

C y{kz1ð Þk!
Ukc

~az
Xn

k~1

f kð Þ h 0ð Þð Þ
k!

Ukc

9>>>>>=
>>>>>;

for
n~

y

?

(
if y~tys

if y=tys

UƒUm if y=tys

8>><
>>: ,

ð21Þ

which is equivalent to equation (5).
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