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which is regulated by histone lysine methyltransferases and histone

lysine demethylases. Lysine�specific demethylase 1 (LSD1) specifi�

cally demethylates mono� and dimethyl�lysine on histone H3

(H3K4Me/Me2, H3K9Me/Me2) to control chromatin structure,

resulting in transcriptional repression or activation of target genes.

Furthermore, LSD1 is overexpressed in various cancers. Therefore,

LSD1 inhibitors would be not only potential therapeutic agents

for cancers but also chemical tools to research biological signifi�

cance of LSD1 in physiological and pathological events. However,

known assay methods to date have some inherent drawbacks.

The development of simple method in detecting LSD1 activity has

been indispensable to identify useful inhibitors. In this study, we

designed and synthesized artificial substrates based on inhibitors

of LSD1 to examine LSD1 activity by an absorption increment.
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IntroductionHistone modifications, including acetylation, methylation,
phosphorylation and so on, change chromatin dynamics,

and regulate gene and protein expressions, which is known as
epigenetic regulation.(1) Among the histone modifications, lysine
(Lys) methylation is one of the most important modification,
which is regulated by histone lysine methyltransferases (KMTs)
and histone lysine demethylases (KDMs).(2)

Lysine-specific demethylase 1 (LSD1), also known as KDM1A,
is firstly identified as a histone demethylase belonging to the
amine oxidase family. LSD1 demethylates methylated Lys
residues of target proteins through flavin-adenine dinucleotide
(FAD)-dependent enzymatic activity, and generate demethylated
product, hydrogen peroxide (H2O2) and formaldehyde (HCHO)
(Fig. 1A).(3) LSD1 specifically demethylates mono- and dimethyl-
lysine on histone H3 (H3K4Me/Me2, H3K9Me/Me2) to control
chromatin structure, resulting in transcriptional repression or
activation of target genes.(4–7) In addition, it is reported that LSD1
demethylates several non-histone proteins, such as p53, DNMT1,
STAT3, and E2F1, whose functions and stabilities are altered by
methylation levels.(8–11) Furthermore, the expression level of LSD1
is related with some cancers. Indeed, it has been reported that
LSD1 is overexpressed in various human cancers: including breast
and colon cancers, and neuroblastoma.(12–14) In such cancer cells,
knockdown or pharmacological inhibition of LSD1 is reported
to suppress tumor cell growth.(15) Therefore, the inhibition of
LSD1 activity would be not only a potential therapeutic strategy
for cancers but also a chemical method to research biological
significance of LSD1 in physiological and pathological events.
So far, various LSD1 inhibitors have been developed and few of
them has been used for clinical trials.(16–20)

To date, many kinds of assay method to detect LSD1 activity
have been reported for screening LSD1 inhibitors. For example,
mass spectrometry (MS)-based method is used to directly detect

demethylated products to evaluate LSD1 activity.(21,22) Also,
indirect methods to evaluate LSD1 demethylase activity have
been developed, in which H2O2 or HCHO, that are byproducts
after LSD1 enzymatic reaction, are measured. In a coupled
method with horseradish peroxidase (HRP) to detect generation of
H2O2, products with fluorescence or chromophore are generated
in H2O2 concentration-dependent manner.(23,24) In contrast, in a
coupled method with formaldehyde dehydrogenase (FDH) to
detect HCHO, HCHO is metabolized by FDH with NAD+ as a
co-enzyme, and generate NADH that are detectable through
fluorescence and absorption changes.(25) However, reported methods
have some inherent drawbacks with regard to low-throughput and
false positive or negative results due to a usage of other enzymes.
To develop new LSD1 inhibitors, simple and reliable method for
detecting LSD1 activity has been needed. Therefore, in this study,
we have synthesized artificial LSD1 substrates based on a struc-
ture of LSD1 inhibitor and explored the reactivity of LSD1.

Materials and Methods

Chemicals. Proton nuclear magnetic resonance spectra (1H
NMR) and carbon nuclear magnetic resonance spectra (13C NMR)
were recorded on a Varian VNMRS 500 or JEOL JNM-ECZ500
spectrometer in the indicated solvent. Chemical shifts (d) are
reported in parts per million relative to the internal standard tetra-
methylsilane (TMS). Electrospray ionization (ESI) mass spectra
were recorded on a JEOL JMS-T100LC mass spectrometer
equipped with a nanospray ion source. Ultraviolet−visible-light
absorption spectra were recorded on an Agilent 8453 spectro-
photometer (Agilent Technologies Japan, Tokyo, Japan). Fluores-
cence spectra were recorded on an RF-5300PC fluorometer
(Shimadzu, Kyoto, Japan). Analytical HPLC was performed with
a Shimadzu pump system equipped with a reversed-phase ODS
column (Inertsil ODS-3 4.6 mm ´ 150 mm, GL Science, Tokyo,
Japan) at a flow rate of 1.0 ml/min. Microplate assay was
performed on an ARVO X5 plate reader (PerkinElmer Japan,
Kanagawa, Japan). LSD1 fluorometric drug discovery kit (BML-
AK544-0001) containing recombinant LSD1 (BML-SE544-0050)
and LSD1/HRP buffer (BML-KI566-0020) was purchased from
Enzo Life Sciences, Inc. (Farmingdale, NY). All other reagents
and solvents were purchased from Sigma-Aldrich (St. Louis, MO),
Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan), FUJIFILM
Wako Pure Chemical Corporation (Osaka, Japan), Kanto Chemical
Co., Inc. (Tokyo, Japan), Junsei Chemical Co., Ltd. (Tokyo, Japan),
Nacalai Tesque (Kyoyo, Japan), or Watanabe Chemical Ind., Ltd.
(Kyoto, Japan) and used without further purification. Flash column
chromatography was performed using silica gel 60 (particle size
0.032–0.075) supplied by Taikoh-shoji (Aichi, Japan). LSD1
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substrates were synthesized as shown in Fig. 2. Experimental
procedures were shown in Supporting Information*. The purity of
all synthesized compounds was assessed by HPLC and was ³93%
(recorded by 254 nm).

Absorption and fluorescence spectroscopy. Absorption 
and fluorescence spectra were measured in a quartz cuvette
(10 ´ 4 ´ 45 mm) on Agilent 8543 and RF5300PC instruments,
respectively. Spectra of LSD1 substrates were measured in Tris-
HCl (pH 8.0), containing 150 mM NaCl. The final concentration
of each LSD1 substrates was 5 mM (0.1% DMSO) except for 8a
and 9a (10 mM, 0.1% DMSO). The fluorometer slit width was
1.5 nm for both excitation and emission, the sensitivity was set
to high, and the excitation wavelength was 360 nm.

Reactivity of LSD1 substrates for LSD1. LSD1 substrates
(500 mM) and 10 ng/ml LSD1 were prepared by diluting each
stock solution with LSD1/HRP buffer (Enzo Life Sciences,
Inc.). LSD1 substrates solution (500 mM, 5 ml) and LSD1/HRP
buffer (45 ml) were dispensed to each well (50 ml), then was added
10 ng/ml LSD1 (50 ml) or LSD1/HRP buffer (50 ml). The final
volume of samples was all 100 ml [final conc; (LSD1 substrate) =
25 mM, (LSD1) = 5.0 ng/ml, 0.25% DMSO]. The assay plate was
incubated for 3 h at 25°C. Absorption or fluorescence intensities
were measured on plate reader at every 5 min (ARVO X5,
lAbs = 405 nm or Ex = 355/40 nm, Em = 460/25 nm). Experiments
were run in triplicate, and the results are shown as mean ± SD.

Reactivity of 8a and 9a for LSD1 and denatured LSD1.
Active LSD1 was denatured by heat at 90°C for 5 min. This

assay was conducted using the same procedure as above.
Inhibition assay for LSD1 activity using 8a and 9a, and

HPLC analysis. 500 mM 8a and 9a, LSD1 (10.3 ng/ml) and 8 mM
GSK-LSD1 were prepared by diluting each stock solution with
LSD1/HRP buffer. 10.3 ng/ml LSD1 (49 ml) and 8 mM GSK-
LSD1 (1 ml) or LSD1/HRP buffer (1 ml) were dispensed to each

well, then pre-incubated at 25°C for 30 min [conc. (LSD1) =
10 ng/ml, (GSK-LSD1) = 160 nM]. After pre-incubation, 500 mM
8a or 9a solution (5 ml) and LSD1/HRP buffer (45 ml) were added
to each well. The final volume of samples was all 100 ml [final
conc; (8a or 9a) = 25 mM, (LSD1) = 5.0 ng/ml]. The assay plate
was incubated at 25°C for 3 h. Absorption were measured on plate
reader at every 3 min (ARVO X5, lAbs = 405 nm). Experiments
were run in triplicate, and the results are shown as mean ± SD.

After 3 h, each corresponding well containing 9a was analyzed
by HPLC. HPLC conditions: A:B = 90:10 (0 min) to 0:100
(20 min) with a linear gradient, A = 0.1% TFA and B = 0.1% TFA
CH3CN. Absorption was monitored at 320 nm.

Detection of H2O2 for HRP coupled method. It was per-
formed using a LSD1 fluorescent assay kit (Enzo Life Sciences,
Inc., BML-AK544-0001). A mixture of CeLLestialTM Red (1/100),
HRP (1/50), 9a (25 mM), and LSD1 (0.5 mg/well) were deposited
in all wells. The assay plate was incubated at 25°C for 3 h.
Absorption were measured on plate reader at every 3 min (ARVO
X5, Ex. = 531/25 nm, Em. 595/60 nm). Experiments were run in
triplicate.

Statistical analysis. Data are presented as the mean ± SD
(shown as error bars). Statistical significance was examined
by means of Student’s t test or Bonferroni-type multiple t test
by using GraphPad Prism6: *p<0.05, **p<0.01, ***p<0.001,
****p<0.0001, ns, not significant.

Results and Discussions

Our strategy for detecting LSD1 activity. Fluorescence 
probes for monoamine oxidases (MAOs), which are FAD depen-
dent amine oxidases same as LSD1, have been reported, whose
detecting strategies are based on an amine oxidation followed by
b-elimination mechanism.(26–28) Generally, MAO florescence probes

Fig. 1. (A) FAD�dependent demethylation mechanism of methylated lysine by LSD1. (B) Our strategy to detect LSD1 activity through b�elimination.

*See online. https://doi.org/10.3164/jcbn.20�9
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consist of amine, propyl linker, and fluorophore moieties, and are
firstly oxidized by MAOs to generate imine, which is subsequently
hydrolyzed by H2O to form aldehydes. Then, b-elimination reac-
tion rapidly occurs and the fluorophore is released along with the
generations of acrolein and ammonia, resulting in fluorescence
increment. This strategy is so simple for detecting amine oxidases
that such MAO fluorescence probes can be applicable to chemical
screening. However, LSD1 probes based on this mechanism has
not been developed.

Tranylcypromine (PCPA) is an irreversible and non-selective
inhibitor for FAD-dependent amine oxidase.(29) Focused on the
mechanism-based inhibition of PCPA, LSD1 selective inhibitor
has been developed.(30–32) The lysine moiety of LSD1 specific
inhibitors have been efficiently recognized by LSD1 because a
methylated lysine residue is the substrate of LSD1, indicating

that a Lys moiety functions as a career to deliver irreversible
inhibitors to the LSD1 activity pocket.(33)

Based on the findings of MAO fluorescence probes and LSD1
selective inhibitors, we newly designed artificial LSD1 substrates.
The substrates are composed of Lys derivatives conjugated to
fluorophore or chromophore, via propyl linker. We anticipated
that LSD1 would oxidize e-amine group of modified Lys and
convert it to an iminium intermediate, which is immediately
hydrolyzed to form aldehyde, and the chromophore moiety and
acrolein would be released through b-elimination reaction as the
same mechanism of MAO fluorescence probes (Fig. 1B). We
selected p-nitrophenol and coumarin derivatives as chromophore/
fluorophore moieties, which have different molecular sizes, so
that we can easily evaluate substrate reaction with LSD1 as an
absorption and fluorescence increments, respectively.

Fig. 2. Synthesis of various LSD1 artificial substrates.
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Synthesis of LSD1 substrates. LSD1 substrates bearing
various chromophore moieties have been synthesized as shown in
Fig. 2. Briefly, a common N-(2-nitrobenzenesulfonyl) (Nosyl)
intermediate (6) was synthesized from Boc-Lys(Cbz)-OH (1) in
five steps through condensation reactions and removals of
protecting groups. The bromopropylated chromophores (12a–g)
were synthesized through SN2 reactions of chromophores with
1,3-dibromopropane. Next, conjugation reaction of 6 and 12a–g
gave 7a–g, which were deprotected by a treatment of thiol under
basic condition to afford LSD1 pro-substrates 8a–g. Furthermore,
N-methylated LSD1 substrates 9a–g were prepared by reductive
amination of 8a–g. Structure of each LSD1 substrate was deter-
mined by 1H-NMR, 13C-NMR and HRMS.

Photochemical properties of LSD1 substrates. Firstly, we
measured absorption and fluorescence spectra of synthesized LSD1
substrates (Supplemental Fig. 1 and 2*). Absorption maxima
(lmax) of LSD1 substrates were blue-shifted compared with
original chromophores. Notably, p-nitrophenol-based LSD1 sub-
strates (8a and 9a) showed no absorption at 405 nm, which is a
lmax of p-nitrophenol. In addition, as we expected, some fluores-
cence substrates (8b–g and 9b–g), showed no fluorescence upon
excitation of coumarin (lmax = 360 nm), in contrast, coumarin
derivatives themselves showed strong fluorescence at the same
excitation light. Therefore, these results suggest that when LSD1
substrates are demethylated/dealkylated by LSD1 and chromo-
phores were released through b-elimination, we can detect absorp-
tion or fluorescence increments.

Reactivity of synthesized LSD1 substrates with LSD1.
We next examined whether absorption or fluorescence increment
can be observed concomitantly with LSD1 reaction (8a–g and 9a–g;
LSD1, 5 ng/ml). However, LSD1 fluorescence substrates (8b–g
and 9b–g) didn’t show fluorescence increment unfortunately
(Supplemental Fig. 3*). On the other hand, LSD1 substrates with
a p-nitrophenol moiety (8a and 9a) showed absorption increment
at 405 nm, indicating that 8a and 9a were recognized and metabo-
lized by LSD1 (Fig. 3 and Supplemental Fig. 4A*). As for the
reason why LSD1 substrates containing coumarin derivatives did
not exhibit fluorescence increment, we speculated that coumarin
fluorophores were too large to accommodate the LSD1 catalytic
pocket.

Furthermore, to confirm whether the absorption increment at
405 nm was taken place in an LSD1 catalytic activity-dependent
manner, we conducted following two independent experiments.
Firstly, we measured the time-dependent absorption increment
using heat-denatured LSD1 and found that absorption increment
was completely suppressed both in 8a and 9a assays (Fig. 3 and
Supplemental Fig. 4A*). Secondly, when LSD1 was pre-incubated
with the reported irreversible LSD1 inhibitor (GSK-LSD1) for
30 min,(34) absorption increment of 9a was significantly suppressed
compared with the control experiment [LSD1 (+), Inhibitor (–)]
(Fig. 4), and, in contrast, that of 8a was not suppressed (Supple-
mental Fig. 4B*). We speculated that this difference of reactivity
between 8a and 9a was probably due to the difference of their
relative reactivity (kcat/Km) toward LSD1, because it has been
reported that H3K4 peptide containing a dimethyl lysine residue is
more likely to be a substrate for LSD1 than monomethyl one.(35)

These results indicate that LSD1 substrate 9a would be oxidized
by LSD1 followed by p-nitrophenol release through b-elimination.

In the result of a direct detection of p-nitrophenol in HPLC
analysis, however, generation of p-nitrophenol in enzymatic reac-
tion of 9a with LSD1 was not observed (Supplemental Fig. 5*).
We considered that generated p-nitrophenol was lower than the
detection limit in HPLC analysis due to very slow rate of metabo-
lism of single amino acid derivatives in comparison with native-
like long peptidyl substrate such as 20 mers.(35) We also examined
whether H2O2 generation can be observed during oxidation reac-
tion of 9a with LSD1 (Fig. 1A). As a result, a generation of
H2O2 was also not observed even in HRP-coupled fluorescence

Fig. 3. Enzymatic reaction of 9a with active LSD1 or heat�denatured
LSD1 (90°C for 5 min). Enzymatic reactions were performed in LSD1/HRP
buffer, containing 25 mM 9a, 5 ng/ml LSD1 (active or denatured).
Absorption was measured with ARVO X5 (filters; 405/10 nm) every
5 min for 3 h at 25°C. The results are shown as mean ± SD. (n = 3). (A)
Time�dependent curve (B) Absorption of 9a after enzymatic reaction for
180 min. *p<0.0001 (Student’s t test).

Fig. 4. Enzymatic reaction of 9a with LSD1 in the presence or absence
of LSD1 inhibitor. Enzymatic reactions were performed in LSD1/HRP
buffer, containing 25 mM 9a, 5 ng/ml LSD1 after pre�incubation in the
presence or absence of 160 nM GSK�LSD1 for 30 min. Absorption was
measured with ARVO X5 (filters; 405/10 nm) after 3 h incubation at
25°C. The results are shown as mean ± SD (n = 3). *p<0.001, **p<0.0001
(Bonferroni�type multiple t test).

*See online. https://doi.org/10.3164/jcbn.20�9
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detection method (Fig. 5), whose detection limit is thought to be
lower than an absorption detection with HPLC.

Although we did not get a direct evidence that 9a is oxidized
by LSD1 and p-nitrophenol is released through b-elimination
from above two experiments, suppression of absorption increment
was reproductively observed in denatured LSD1 assay and
pharmacological inhibition assay (Fig. 3 and 4). These biochemical
experiments strongly supported that 9a became a substrate of
LSD1 and should be oxidized by LSD1. In addition, because a
compound having absorption at 405 nm is thought to be only p-
nitrophenol in this assay condition, we think that small amount of
generated p-nitrophenol and H2O2 are just less than detection limit.

In this study, we have found a novel LSD1 substrate 9a which
can detect LSD1 activity as absorption increment. Since lacking of
the evidence for a generation of p-nitrophenol and H2O2, it is pos-
sible that catalytic cycle cannot proceed many times, possibly
partly due to the in situ formation of an FAD-acrolein adduct, in
which acrolein is one of the enzymatic reaction products, or p-
nitrophenol-LSD1 complex (product inhibition), which all may
stop LSD1 enzymatic cycle (Fig. 1A). Because we could not
elucidate the detailed mechanism of such potential suppression,
further investigation is necessary to understand the catalytic
mechanism of LSD1. However, substrate specificity of LSD1
obtained in this research would be helpful for developing new

artificial substrates to directly detect LSD1 activity in one-step
manner.
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