A Co-conformationally "Topologically" Chiral Catenane

Arnau Rodríguez-Rubio, Andrea Savoini, Florian Modicom, Patrick Butler, and Stephen M. Goldup*

Cite This: J. Am. Chem. Soc. 2022, 144, 11927-11932

Read Online

ACCESS ${ }^{\text {I }}$	Lull Metrics 8 More	[國Aricice Recommendations	- Supporting hformation

Abstract

Catenanes composed of two achiral rings that are oriented (C_{nh} symmetry) because of the sequence of atoms they contain are referred to as topologically chiral. Here, we present the synthesis of a highly enantioenriched catenane containing a related but overlooked "co-conformationally 'topologically' chiral" stereogenic unit, which arises when a bilaterally symmetric C_{nv} ring is desymmetrized by the position of an oriented macrocycle.

Topology is the study of the properties of objects and networks that are preserved under deformations that do not break connections/surfaces or require surfaces/edges to pass through one another. Chemical topology applies these ideas to molecules. ${ }^{1}$ At the simplest level, constitutional isomers are topologically distinct, as they differ in the network of atoms. More interesting topological isomerism arises when structures contain identical atomic connections, ${ }^{2}$ the most famous examples of which are Möbius ladders (isomers of the untwisted macrocycle), ${ }^{3,4}$ molecular knots (isomers of the unknotted ring), ${ }^{5}$ and [2]catenanes (isomers of two noninterlocked rings). ${ }^{6}$ These structures have nonplanar graphs in that there is no two-dimensional projection of their structures in which bonds do not cross over one another and this property is topologically invariant in three-dimensional space-no matter how the structure is distorted, even drastically altering the geometry around atoms, a planar graph cannot be achieved. ${ }^{1}$
Such topologically nontrivial structures can display chirality in the absence of covalent stereogenic units. ${ }^{2}$ Depending on their topology, Möbius ladders ${ }^{7}$ and molecular knots ${ }^{8}$ can be chiral as a result of the pattern of bond crossing points. Although [2]catenanes do not display unconditional topological stereochemistry, ${ }^{9}$ as recognized by Wasserman and Frisch, ${ }^{10}$ they can be chiral as a result of the constitutional symmetry of the rings; rings that are "oriented" $\left(\mathrm{C}_{\mathrm{nh}}\right.$ symmetry) due to the sequence of atoms in the cycle give rise to topologically chiral catenanes (Figure 1a). ${ }^{11,12}$ The absolute stereochemistry of topologically chiral objects is invariant under all topologically allowed deformations in threedimensional space. ${ }^{1}$
We recently identified ${ }^{11 c}$ "missing" stereogenic units that arise in interlocked molecules and give rise to classes of chiral rotaxanes and catenanes that had yet to be discussed or synthesized. ${ }^{13}$ An example that presents particular linguistic problems are [2] catenanes in which one ring is oriented (C_{nh}) and the other is bilaterally symmetric (e.g., $\mathrm{C}_{2 \mathrm{v}}$) (Figure 1b). The time averaged structure of such catenanes is achiral, but any co-conformation in which the oriented ring does not lie on the internal mirror plane of the $\mathrm{C}_{2 \mathrm{v}}$ ring is chiral. If the structure is designed such that the oriented ring is permanently

Figure 1. (a) Enantiomeric topologically chiral catenanes (two oriented $\mathrm{C}_{1 \mathrm{~h}}$ rings). (b) Achiral and enantiomeric co-conformations of a co-conformationally "topologically" chiral [2]catenane (oriented ring and a $\mathrm{C}_{2 \mathrm{v}}$ ring). (c) Fixed enantiomeric chiral co-conformations of a co-conformationally "topologically" chiral catenane for which coconformational isomerism is sterically prohibited.
prevented from occupying said mirror plane, the molecule will display kinetically fixed molecular chirality (Figure 1c).

As with related co-conformational-covalent ${ }^{14}$ and coconformational mechanical planar stereochemistry in rotaxanes, ${ }^{15,16}$ this stereogenic unit can be considered to appear due to the oriented ring acting as a substituent of the region of $\mathrm{C}_{2 \mathrm{v}}$ ring that it encircles, effectively reducing its symmetry to $\mathrm{C}_{1 \mathrm{~h}}$. Thus, this stereogenic unit arises because one ring is oriented due to its constitution and the other by the molecular coconformation and so we have previously provisionally termed such molecules "co-conformationally "topologically" chiral" to clearly make the link with the established stereogenic unit of topologically chiral catenanes while also highlighting that the stereochemistry of the system is clearly not topologically invariant.

Semantic arguments aside, we set out to synthesize an enantioenriched co-conformationally "topologically" chiral

[^0]
[2]catenane, in part to highlight the potential for interlocked molecules to display hitherto unnoticed stereochemistry. To achieve this, we developed a stereoselective synthesis of topologically chiral [2]catenanes, which was then extended to a co-conformationally chiral target.

The stereoselective synthesis of a co-conformationally chiral catenane requires (i) the oriented ring to be incorporated at a defined position around the $\mathrm{C}_{2 \mathrm{v}}$ macrocycle and (ii) the oriented ring to be installed stereoselectively. The first requirement can be met by forming the mechanical bond such that the oriented ring is trapped between bulky groups. The second is the same problem as encountered in the synthesis of any topologically chiral [2]catenane. ${ }^{17}$ Although the majority of enantioenriched topologically chiral catenanes in which the mechanical bond is the sole source of stereochemistry ${ }^{18}$ have been accessed by chiral stationary phase HPLC (CSP-HPLC) separation, ${ }^{12}$ we recently developed an auxiliary approach in which a chiral covalent auxiliary directs the stereoselective formation of the mechanical bond. ${ }^{19}$ However, in this proof-of-concept synthesis, the stereoselectivity of the mechanical bond formation was low ($d r \sim$ 2:1), which required the mechanical epimers to be separated prior to removal of the auxiliary, limiting the utility of this methodology for more complicated targets. To overcome this challenge, we set out to extend a phenylalanine-based auxiliary, developed for the synthesis of mechanically planar chiral rotaxanes, ${ }^{20,21}$ to the synthesis of topologically chiral [2]catenanes.

Tyrosine-derived pre-macrocycle (S)-1a was synthesized (96% ee, Figure S40) and reacted under pseudo high-dilution active template ${ }^{22} \mathrm{Cu}$-mediated alkyne-azide cycloaddition ${ }^{23}$ (AT-CuAAC) conditions ${ }^{24}$ with bipyridine macrocycle $2 .{ }^{25}$ Catenane 3a was produced with reasonable stereoselectivity (Table 1, entry 1), based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude

Table 1. Effect of Reaction Conditions and Structure of 1 on the AT-CuAAC Synthesis of Topologically Chiral Catenanes 3^{a}

entry	R	$T\left({ }^{\circ} \mathrm{C}\right)$	$t(\mathrm{~h})$	$\mathbf{2 : 3}$:oligos a	$d e^{a}$	yield
1	Et	60	4	$34: 44: 22$	70%	n.d.
2	Et	60	8	$47: 37: 16$	62%	n.d.
3	Et	25	4	$15: 44: 41$	74%	39%
4	${ }^{i} \mathrm{Pr}$	25	4	$14: 30: 56$	82%	26%
5	${ }^{t} \mathrm{Bu}$	25	4	$77: 11: 12$	68%	n.d. ${ }^{b}$

${ }^{a}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction product (SI section S10). ${ }^{b}$ Not isolated due to low conversion of 2 .
reaction product; proton H_{a} of the diastereomers of 3a resonate at 8.98 (major) and 9.07 (minor) ppm, respectively (Figure S111). ${ }^{26}{ }^{1} \mathrm{H}$ NMR analysis also suggested the presence of several other interlocked species, characterized by higher ppm (9.51-9.61; Figure S286) triazole resonances. LCMS analysis indicated that these signals were due to [3] catenane 4 (Scheme 1), which can be formed as three diastereomers, and the corresponding [2]catenane (not shown, two diastereomers) containing a single bipyridine ring (Supporting Information (SI) section S10). We were unable to obtain pure samples of these compounds. ${ }^{27}$

Longer addition times (entry 2) resulted in diminished diastereoselectivity, perhaps due to epimerization of the covalent stereogenic center, and lower conversion of macrocycle 2. Lowering the reaction temperature resulted in

Scheme 1. Synthesis of Topologically Chiral Catenanes 3^{a}

$\left(S, S, S_{m t}, S_{m t}\right)-4 \mathbf{a}-\mathbf{c}+$ other isomers and oligomers (not isolated)
${ }^{a}$ Reagents and conditions: $(S)-\mathbf{1}$ in $\mathrm{CHCl}_{3}-\mathrm{EtOH}(1: 1,10 \mathrm{mM})$ was added to $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}(2)\right] \mathrm{PF}_{6}$ (1 equiv, 24 mM), ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$ (2 equiv) in $\mathrm{CHCl}_{3}-\mathrm{EtOH}(1: 1)$. For full conditions, see Table 1.
enhanced diastereoselectivity (74% de) and reduced quantities of oligomeric species, allowing catenane $\mathbf{3 b}$ to be isolated in 39% yield and 74% de (entry 3). Although increasing the equivalents of 1a resulted in higher conversion of 2, lower yields of 3a were obtained as the non-interlocked triazolecontaining macrocycle was challenging to remove. Varying the solvent did not improve diastereoselectivity or conversion of 2 (SI section S8). Applying the same conditions to (S)- $\mathbf{1 b}$, which features a bulkier ${ }^{i} \operatorname{Pr}$ ester, gave catenane $\mathbf{3 b}$ in $82 \% d e$, albeit the conversion of macrocycle 2 was diminished and the formation of oligomeric biproducts was increased, resulting in a low isolated yield ($26 \%, 82 \%$ de, entry 4). Surprisingly, (S)1c gave poor stereoselectivity ($68 \% d e$, entry 5) and low conversion of 2 ($\sim 25 \%$). Pleasingly, single crystal X-ray diffraction (SCXRD) analysis of a racemic sample of catenane $\mathbf{3 b}$ produced using rac-1b allowed the relative stereochemistry of the major diastereomer to be tentatively assigned as $\left(S^{*}, S_{\mathrm{mt}}{ }^{*}\right)$. Thus, the major product of $(S)-\mathbf{1 b}$ and macrocycle $\mathbf{2}$ is assigned as $\left(S, S_{\mathrm{mt}}\right)-\mathbf{3 b}$ (Figure 2a). ${ }^{28}$

We then turned to methods to remove the covalent stereogenic unit from the mixture of catenane $\mathbf{3 b}$ diastereomers (Scheme 2). Attempts to ablate the covalent stereocenter of a model compound by radical decarboxylation met with failure due to scission of the triazole $\mathrm{N}^{1}-\mathrm{C}$ substituent bond (SI section S9). Ultimately, we found that reduction of ester $3 \mathbf{b}$ to give alcohol catenane $\mathbf{5}$ followed by tandem Oppenauer-type oxidation/Rh-mediated decarbonylation ${ }^{29}$ gave rise to catenane 6 in reasonable isolated yield

Figure 2. Solid state structures of (a) rac- $\left(S, S_{\mathrm{mt}}\right)-3 \mathrm{~b}$ and (b) rac-6. Colors as in Scheme 1 except F (yellow), O (gray), N (dark blue), H (white). Majority of H atoms omitted for clarity. Selected intercomponent interactions highlighted (yellow).

Scheme 2. Decarbonylation of Catenane $3 b^{a}$

${ }^{a}$ Reagents and conditions: i. $\mathrm{LiAlH}_{4}, \mathrm{THF},-30{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; ii. $[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]_{2}, \quad\left[\operatorname{IrCp} * \mathrm{Cl}_{2}\right]_{2}$, benzophenone, rac-BINAP, $\mathrm{K}_{2} \mathrm{CO}_{3}$, mesitylene, $170{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$.
(32% over two steps). CSP-HPLC analysis confirmed that the diastereoenriched starting material ($82 \% \mathrm{de}$) was converted with good fidelity to enantioenriched ($82 \% \mathrm{ee}$) catenane 6. The major stereoisomer of 6 was assigned as $\left(S_{\mathrm{mt}}\right)$ based on the assigned stereochemistry of the major diastereomer of $\mathbf{3 b}$. Crystals of a rac- 6 suitable for SCXRD analysis were obtained, allowing the structure of the product to be confirmed (Figure 2b).
Finally, we turned to the synthesis of a co-conformationally "topologically" chiral target (Scheme 3). Pre-macrocycle (S)-7 was subjected to the AT-CuAAC reaction with macrocycle 2. The product, topologically chiral [2] catenane 8, was isolated as a mixture of diastereomers (88% de), as judged by ${ }^{1} \mathrm{H}$ NMR (Figure 3ai). By analogy with catenane 3b, which seems reasonable given the similarities of the functional groups reacting and the similar stereoselectivity obtained, the major isomer is tentatively assigned as $\left(S, S_{\mathrm{mt}}\right)$-8.

Auxiliary removal from $\left(S, S_{\mathrm{mt}}\right)-8(88 \% \mathrm{de})$ yielded [2]catenane 9 , which contains no previously described stereogenic units-it lacks covalent stereogenic units, and the triazole containing ring is not oriented and so the system does not conform to the definition of a topologically chiral catenane. Nevertheless, whereas the compounds produced from 10 and $\left(S, S_{\mathrm{mt}}\right)-\mathbf{8}$ produce identical ${ }^{1} \mathrm{H}$ NMR spectra (Figure 3aii and 3aiii respectively), the latter is clearly highly enantioenriched, whereas the former is racemic as judged by CSP-HPLC analysis (Figure 3b), which indicates that catenane 9 was formed from $\left(S, S_{\mathrm{mt}}\right)-8$ in $87 \% e e,^{30}$ and circular dichroism spectroscopy (Figure 3c). SCXRD of a sample of rac-9 confirmed the structure of the product. ${ }^{31}$ As expected, both enantiomeric co-conformations were observed in the unit cell (Figure 3d). We tentatively assign the product of $\left(S, S_{\mathrm{mt}}\right)-8$ to

Scheme 3. Synthesis of Co-conformationally "Topologically" Chiral Catenane 9^{a}

$(S)-7\left(\mathrm{R}=\mathrm{CO}_{2}{ }^{i} \mathrm{Pr}\right)$

10

$\left(S, S_{m t}\right)-8\left(\mathrm{R}=\mathrm{CO}_{2}{ }^{i} \mathrm{Pr}\right)$

be $\left(S_{\text {co-mt }}\right)-9$, as the relative arrangements of the rings cannot change during auxiliary removal.

In conclusion, we have developed an auxiliary for the synthesis of topologically chiral catenanes in high enantiopurity and applied it to the synthesis of catenane $\left(S_{\text {co-mt }}\right)-9$, a molecule containing a previously unreported co-conformationally "topologically" chiral stereogenic unit, unambiguously demonstrating the chiral nature of this overlooked form of mechanical stereochemistry. However, it poses a problem of nomenclature-how can the topological stereochemistry of a molecule depend on its co-conformation? In short, it cannot, ${ }^{1}$ but once the fixed co-conformation is considered, the covalent subcomponents of catenane 9 display the same symmetry properties as those that comprise the established stereogenic unit of topologically chiral catenanes, which leads to our linguistic conundrum. One solution to this would be to rename "topologically chiral" catenanes as "mechanically planar chiral", to bring them in line with the analogous rotaxanes to which they are strongly related, but this would require further discussion in the field. Linguistic issues aside, chiral interlocked molecules are attracting increasing attention for applications in catalysis, ${ }^{32,33}$ sensing, ${ }^{34}$ and as chiroptical ${ }^{35}$ or stereodynamic switches. ${ }^{15 b, 16 e}$ By highlighting their potential to display molecular chirality due to unexplored stereogenic units, we hope to inspire further investigation of their rich stereochemistry. ${ }^{36}$

Figure 3. (a) Partial ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of i. catenane 8, ii. catenane rac-9, and iii. enantioenriched catenane $\left(S_{\text {co-mt }}\right)$-9. Atom labels and colors as in Scheme 3, except macrocycle signals (blue). (b) HPLC analysis of catenane rac-9 and $\left(S_{\text {co-mt }}\right)-9$. (c) Circular dichroism spectra of catenane rac-9 and $\left(S_{\text {co-mt }}\right)-9$. (d) Solid state structure of rac- 9 showing a pair of enantiomeric structures related by a point of inversion (orange). Colors as in Scheme 3 except O (gray), N (dark blue), H (white). Majority H atoms omitted for clarity.

- ASSOCIATED CONTENT

(s) Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.2c02029.

Procedures and full characterization data (NMR, MS, CD, SCXRD, HPLC as appropriate) for all novel compounds and supplementary discussion. (PDF)

Accession Codes

CCDC 2125552, 2129422, and 2129424 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/ data_request/cif, or by emailing data_request@ccdc.cam.ac. uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223336033.

- AUTHOR INFORMATION

Corresponding Author

Stephen M. Goldup - Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom;
© orcid.org/0000-0003-3781-0464; Email: s.goldup@ soton.ac.uk

Authors

Arnau Rodríguez-Rubio - Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom; © orcid.org/0000-0001-7435-2779
Andrea Savoini - Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom; © orcid.org/0000-0002-8333-406X
Florian Modicom - Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
Patrick Butler - Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
Complete contact information is available at:
https://pubs.acs.org/10.1021/jacs.2c02029

Notes

The authors declare no competing financial interest. Data (characterization data for reported compounds) is available from the University of Southampton data repository (https://doi.org/10.5258/SOTON/D2279).

ACKNOWLEDGMENTS

S.M.G. thanks the ERC (Agreement No. 724987) for funding and the Royal Society for a Wolfson Research Fellowship (RSWF $\backslash F T \backslash 180010$). P.B. thanks the University of Southampton for a Presidential Scholarship. F.M. thanks the ESPRC for a Doctoral Prize Scholarship (EP/R513325/1).

- REFERENCES

(1) Flapan, E. When Topology Meets Chemistry; Cambridge University Press: 2012.
(2) Walba, D. M. Topological stereochemistry. Tetrahedron 1985, 41, 3161-3212.
(3) Selected examples and reviews: (a) Walba, D. M.; Richards, R. M.; Haltiwanger, R. C. Total synthesis of the first molecular Moebius strip. J. Am. Chem. Soc. 1982, 104, 3219-3221. (b) Herges, R. Topology in chemistry: designing Mobius molecules. Chem. Rev. 2006, 106, 4820-42. (c) Nishigaki, S.; Shibata, Y.; Nakajima, A.; Okajima, H.; Masumoto, Y.; Osawa, T.; Muranaka, A.; Sugiyama, H.; Horikawa, A.; Uekusa, H.; Koshino, H.; Uchiyama, M.; Sakamoto, A.; Tanaka, K. Synthesis of Belt- and Mobius-Shaped Cycloparaphenylenes by Rhodium-Catalyzed Alkyne Cyclotrimerization. J. Am. Chem. Soc. 2019, 141, 14955-14960. (d) Yuan, J.; Song, Y.; Li, X.; Xie, J.; Dong, S.; Zhu, K. A Tubular Belt and a Mobius Strip with Dynamic Joints: Synthesis, Structure, and Host-Guest Chemistry. Org. Lett. 2021, 23, 9554-9558.
(4) Molecules can also adopt conformations with a Mobius conjugated electronic structure. Selected reviews (and ref $3 b$): (a) Rzepa, H. S. Mobius aromaticity and delocalization. Chem. Rev. 2005, 105, 3697-3715. (b) Yoon, Z. S.; Osuka, A.; Kim, D. Möbius aromaticity and antiaromaticity in expanded porphyrins. Nat. Chem. 2009, 1, 113-122. (c) Stepien, M.; Sprutta, N.; Latos-Grazynski, L. Figure eights, Mobius bands, and more: conformation and aromaticity of porphyrinoids. Angew. Chem., Int. Ed. 2011, 50, 4288-340.
(5) Selected reviews: (a) Forgan, R. S.; Sauvage, J. P.; Stoddart, J. F. Chemical topology: complex molecular knots, links, and entanglements. Chem. Rev. 2011, 111, 5434-64. (b) Fielden, S. D. P.; Leigh, D. A.; Woltering, S. L. Molecular Knots. Angew. Chem., Int. Ed. 2017, 56, 11166-11194. (c) Evans, N. H. Lanthanide-Containing Rotaxanes, Catenanes, and Knots. ChemPlusChem. 2020, 85, 783792. (d) Gao, W. X.; Feng, H. J.; Guo, B. B.; Lu, Y.; Jin, G. X. Coordination-Directed Construction of Molecular Links. Chem. Rev. 2020, 120, 6288-6325.
(6) Bruns, C. J.; Stoddart, J. F. The Nature of the Mechanical Bond: From Molecules to Machines; Wiley: 2016.
(7) Nishigaki, S.; Shibata, Y.; Nakajima, A.; Okajima, H.; Masumoto, Y.; Osawa, T.; Muranaka, A.; Sugiyama, H.; Horikawa, A.; Uekusa, H.; Koshino, H.; Uchiyama, M.; Sakamoto, A.; Tanaka, K. Synthesis of Belt- and Mobius-Shaped Cycloparaphenylenes by Rhodium-Catalyzed Alkyne Cyclotrimerization. J. Am. Chem. Soc. 2019, 141, 1495514960.
(8) Selected examples: (a) Gil-Ramirez, G.; Hoekman, S.; Kitching, M. O.; Leigh, D. A.; Vitorica-Yrezabal, I. J.; Zhang, G. Tying a Molecular Overhand Knot of Single Handedness and Asymmetric Catalysis with the Corresponding Pseudo-D3-Symmetric Trefoil Knot. J. Am. Chem. Soc. 2016, 138, 13159-13162. (b) Leigh, D. A.; Pirvu, L.; Schaufelberger, F. Stereoselective Synthesis of Molecular Square and Granny Knots. J. Am. Chem. Soc. 2019, 141, 6054-6059. (c) Zhong, J.; Zhang, L.; August, D. P.; Whitehead, G. F. S.; Leigh, D. A. Self-Sorting Assembly of Molecular Trefoil Knots of Single Handedness. J. Am. Chem. Soc. 2019, 141, 14249-14256. (d) Leigh, D. A.; Schaufelberger, F.; Pirvu, L.; Stenlid, J. H.; August, D. P.; Segard, J. Tying different knots in a molecular strand. Nature 2020, 584, 562-568. (e) Carpenter, J. P.; McTernan, C. T.; Greenfield, J. L.; Lavendomme, R.; Ronson, T. K.; Nitschke, J. R. Controlling the shape and chirality of an eight-crossing molecular knot. Chem 2021, 7, 1534-1543.
(9) The Solomon link, a topological isomer of a [2]catenane displays unconditional topological chirality: (a) Ponnuswamy, N.; Cougnon, F. B.; Pantos, G. D.; Sanders, J. K. Homochiral and meso figure eight knots and a Solomon link. J. Am. Chem. Soc. 2014, 136, 8243-51.
(b) Cui, Z.; Lu, Y.; Gao, X.; Feng, H. J.; Jin, G. X. Stereoselective Synthesis of a Topologically Chiral Solomon Link. J. Am. Chem. Soc. 2020, 142, $13667-13671$.
(10) Frisch, H. L.; Wasserman, E. Chemical Topology. J. Am. Chem. Soc. 1961, 83, 3789-3795.
(11) Selected reviews: (a) Evans, N. H. Chiral Catenanes and Rotaxanes: Fundamentals and Emerging Applications. Chemistry 2018, 24, 3101-3112. (b) Pairault, N.; Niemeyer, J. Chiral Mechanically Interlocked Molecules - Applications of Rotaxanes, Catenanes and Molecular Knots in Stereoselective Chemosensing and Catalysis. Synlett 2018, 29, 689-698. (c) Jamieson, E. M. G.; Modicom, F.; Goldup, S. M. Chirality in rotaxanes and catenanes. Chem. Soc. Rev. 2018, 47, 5266-5311. (d) David, A. H. G.; Stoddart, J. F. Chiroptical Properties of Mechanically Interlocked Molecules. Isr. J. Chem. 2021, 61, 608-621.
(12) Selected examples: (a) Mitchell, D. K.; Sauvage, J.-P. A Topologically Chiral [2]Catenand. Angew. Chem., Int. Ed. 1988, 27, 930-931. (b) Kaida, Y.; Okamoto, Y.; Chambron, J. C.; Mitchell, D. K.; Sauvage, J. P. The Separation of Optically-Active Copper (I) Catenates. Tetrahedron Lett. 1993, 34, 1019-1022. (c) Yamamoto, C.; Okamoto, Y.; Schmidt, T.; Jäger, R.; Vögtle, F. Enantiomeric Resolution of Cycloenantiomeric Rotaxane, Topologically Chiral Catenane, and Pretzel-Shaped Molecules: Observation of Pronounced Circular Dichroism. J. Am. Chem. Soc. 1997, 119, 10547-10548. (d) Tai, T. Y.; Liu, Y. H.; Lai, C. C.; Peng, S. M.; Chiu, S. H. Absolute Configurations of Topologically Chiral [2]Catenanes and the Acid/ Base-Flippable Directions of Their Optical Rotations. Org. Lett. 2019, 21, 5708-5712. (e) Ishizu, Y.; Takeyoshi, A.; Hasegawa, E.; Iwamoto, H. Synthesis and Resolution of Optically Active Topologically Chiral Catenane. Chem. Lett. 2020, 49, 1435-1438.
(13) Recent examples of unusual stereoisomeric behavior in covalent structures: (a) Canfield, P. J.; Blake, I. M.; Cai, Z. L.; Luck, I. J.; Krausz, E.; Kobayashi, R.; Reimers, J. R.; Crossley, M. J. A new fundamental type of conformational isomerism. Nat. Chem. 2018, 10, 615-624. (b) Reisberg, S. H.; Gao, Y.; Walker, A. S.; Helfrich, E. J. N.; Clardy, J.; Baran, P. S. Total synthesis reveals atypical atropisomerism in a small-molecule natural product, tryptorubin A. Science 2020, 367, 458-463.
(14) (a) Alvarez-Perez, M.; Goldup, S. M.; Leigh, D. A.; Slawin, A. M. A chemically-driven molecular information ratchet. J. Am. Chem. Soc. 2008, 130, 1836-1838. (b) Carlone, A.; Goldup, S. M.;

Lebrasseur, N.; Leigh, D. A.; Wilson, A. A three-compartment chemically-driven molecular information ratchet. J. Am. Chem. Soc. 2012, 134, 8321-8323.
(15) Selected examples: (a) Mochizuki, Y.; Ikeyatsu, K.; Mutoh, Y.; Hosoya, S.; Saito, S. Synthesis of Mechanically Planar Chiral rac[2]Rotaxanes by Partitioning of an Achiral [2]Rotaxane: Stereoinversion Induced by Shuttling. Org. Lett. 2017, 19, 4347-4350. (b) Corra, S.; de Vet, C.; Groppi, J.; La Rosa, M.; Silvi, S.; Baroncini, M.; Credi, A. Chemical On/Off Switching of Mechanically Planar Chirality and Chiral Anion Recognition in a [2]Rotaxane Molecular Shuttle. J. Am. Chem. Soc. 2019, 141, 9129-9133.
(16) Catenanes have been shown to display a co-conformational helical stereogenic unit. Selected examples: (a) Hori, A.; Akasaka, A.; Biradha, K.; Sakamoto, S.; Yamaguchi, K.; Fujita, M. Chirality Induction through the Reversible Catenation of Coordination Rings. Angew. Chem., Int. Ed. 2002, 41, 3269-3272. (b) Vignon, S. A.; Wong, J.; Tseng, H. R.; Stoddart, J. F. Helical chirality in donoracceptor catenanes. Org. Lett. 2004, 6, 1095-1098. (c) Hutin, M.; Schalley, C. A.; Bernardinelli, G.; Nitschke, J. R. Helicate, macrocycle, or catenate: Dynamic topological control over subcomponent selfassembly. Chemistry 2006, 12, 4069-4076. (d) Nakatani, Y.; Furusho, Y.; Yashima, E. Amidinium carboxylate salt bridges as a recognition motif for mechanically interlocked molecules: synthesis of an optically active [2] catenane and control of its structure. Angew. Chem., Int. Ed. 2010, 49, 5463-5467. (e) Caprice, K.; Pal, D.; Besnard, C.; Galmes, B.; Frontera, A.; Cougnon, F. B. L. Diastereoselective Amplification of a Mechanically Chiral [2]Catenane. J. Am. Chem. Soc. 2021, 143, 11957-11962.
(17) Maynard, J. R. J.; Goldup, S. M. Strategies for the Synthesis of Enantiopure Mechanically Chiral Molecules. Chem 2020, 6, 19141932.
(18) Selected examples that contain both covalent and topological stereogenic units: (a) Armspach, D.; Ashton, P. R.; Ballardini, R.; Balzani, V.; Godi, A.; Moore, C. P.; Prodi, L.; Spencer, N.; Stoddart, J. F.; Tolley, M. S.; Wear, T. J.; Williams, D. J.; Stoddart, J. F. Catenated Cyclodextrins. Chem.-Eur. J. 1995, 1, 33-55. (b) Lam, R. T.; Belenguer, A.; Roberts, S. L.; Naumann, C.; Jarrosson, T.; Otto, S.; Sanders, J. K. Amplification of acetylcholine-binding catenanes from dynamic combinatorial libraries. Science 2005, 308, 667-669. (c) Prakasam, T.; Lusi, M.; Nauha, E.; Olsen, J. C.; Sy, M.; PlatasIglesias, C.; Charbonniere, L. J.; Trabolsi, A. Dynamic stereoisomerization in inherently chiral bimetallic [2]catenanes. Chem. Commun. 2015, 51, 5840-5843. (d) Sawada, T.; Yamagami, M.; Ohara, K.; Yamaguchi, K.; Fujita, M. Peptide [4]Catenane by Folding and Assembly. Angew. Chem., Int. Ed. 2016, 55, 4519-4522. (e) Inomata, Y.; Sawada, T.; Fujita, M. Metal-Peptide Torus Knots from Flexible Short Peptides. Chem 2020, 6, 294-303.
(19) Denis, M.; Lewis, J. E. M.; Modicom, F.; Goldup, S. M. An Auxiliary Approach for the Stereoselective Synthesis of Topologically Chiral Catenanes. Chem 2019, 5, 1512-1520.
(20) (a) Jinks, M. A.; de Juan, A.; Denis, M.; Fletcher, C. J.; Galli, M.; Jamieson, E. M. G.; Modicom, F.; Zhang, Z.; Goldup, S. M. Stereoselective Synthesis of Mechanically Planar Chiral Rotaxanes. Angew. Chem., Int. Ed. 2018, 57, 14806-14810. (b) de Juan, A.; Lozano, D.; Heard, A. W.; Jinks, M. A.; Suarez, J. M.; Tizzard, G. J.; Goldup, S. M. A chiral interlocking auxiliary strategy for the synthesis of mechanically planar chiral rotaxanes. Nat. Chem. 2022, 14, 179187.
(21) Selected examples of stereoselective rotaxane synthesis: (a) Tian, C.; Fielden, S. D. P.; Perez-Saavedra, B.; VitoricaYrezabal, I. J.; Leigh, D. A. Single-Step Enantioselective Synthesis of Mechanically Planar Chiral [2]Rotaxanes Using a Chiral Leaving Group Strategy. J. Am. Chem. Soc. 2020, 142, 9803-9808. (b) Imayoshi, A.; Lakshmi, B. V.; Ueda, Y.; Yoshimura, T.; Matayoshi, A.; Furuta, T.; Kawabata, T. Enantioselective preparation of mechanically planar chiral rotaxanes by kinetic resolution strategy. Nat. Commun. 2021, 12, 404. (c) Pairault, N.; Bessaguet, A.; Barat, R.; Frederic, L.; Pieters, G.; Crassous, J.; Opalinski, I.; Papot, S.

Diastereoselective synthesis of [1]rotaxanes via an active metal template strategy. Chem. Sci. 2021, 12, 2521-2526.
(22) (a) Crowley, J. D.; Goldup, S. M.; Lee, A. L.; Leigh, D. A.; McBurney, R. T. Active metal template synthesis of rotaxanes, catenanes and molecular shuttles. Chem. Soc. Rev. 2009, 38, 15301541. (b) Denis, M.; Goldup, S. M. The active template approach to interlocked molecules. Nat. Rev. Chem. 2017, 1, 0061.
(23) Aucagne, V.; Hanni, K. D.; Leigh, D. A.; Lusby, P. J.; Walker, D. B. Catalytic "click" rotaxanes: a substoichiometric metal-template pathway to mechanically interlocked architectures. J. Am. Chem. Soc. 2006, 128, 2186-2187.
(24) Lewis, J. E. M.; Modicom, F.; Goldup, S. M. Efficient Multicomponent Active Template Synthesis of Catenanes. J. Am. Chem. Soc. 2018, 140, 4787-4791.
(25) Lewis, J. E. M.; Bordoli, R. J.; Denis, M.; Fletcher, C. J.; Galli, M.; Neal, E. A.; Rochette, E. M.; Goldup, S. M. High yielding synthesis of $2,2^{\prime}$-bipyridine macrocycles, versatile intermediates in the synthesis of rotaxanes. Chem. Sci. 2016, 7, 3154-3161.
(26) The high chemical shift of the triazole protons is attributed to a $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ H-bonding interaction with the bipyridine lone pairs as typically observed in such structures: Lahlali, H.; Jobe, K.; Watkinson, M.; Goldup, S. M. Macrocycle size matters: "small" functionalized rotaxanes in excellent yield using the CuAAC active template approach. Angew. Chem., Int. Ed. 2011, 50, 4151-4155.
(27) Catenanes of the form of 4 contain two covalent stereogenic units and two topological stereogenic units as both the central and peripheral rings are oriented. See SI section S6 for a more detailed discussion.
(28) Although the solid-state structure of $\mathbf{3 b}$ and the high ppm chemical shift of H_{a} are consistent with the bipyridine macrocycle encircling the triazole unit, ${ }^{26}$ over time changes were observed in the ${ }^{1} \mathrm{H}$ NMR spectra of isolated samples of catenanes 3 that suggest this is a metastable co-conformation (SI section S11).
(29) Kreis, M.; Palmelund, A.; Bunch, L.; Madsen, R. A General and Convenient Method for the Rhodium-Catalyzed Decarbonylation of Aldehydes. Adv. Synth. Catal. 2006, 348, 2148-2154.
(30) That catenane 9 is formed from 8 at high temperature, but the stereopurity of the starting material matches closely with the product is consistent with co-conformational motion being completely blocked. In keeping with this, heating a purified sample of 9 in mesitylene at $170^{\circ} \mathrm{C}$ for 24 h did not result in any loss of stereopurity (Figure S260).
(31) We note that that SCXRD data for rac-9 are poor due to it crystallizing as very thin needles (see SI section S7). However, it is sufficient to confirm the connectivity of the product and the lack of any covalent stereogenic unit in the structure.
(32) (a) Kwamen, C.; Niemeyer, J. Functional Rotaxanes in Catalysis. Chem.-Eur. J. 2021, 27, 175-186. (b) Martinez-Cuezva, A.; Saura-Sanmartin, A.; Alajarin, M.; Berna, J. Mechanically Interlocked Catalysts for Asymmetric Synthesis. ACS Catal. 2020, 10, 7719-7733. (c) Heard, R. W.; Suarez, J. M.; Goldup, S. M. Controlling catalyst activity, chemoselectivity and stereoselectivity with the mechanical bond. Nature Reviews Chemistry 2022, 6, 182196.
(33) (a) Cakmak, Y.; Erbas-Cakmak, S.; Leigh, D. A. Asymmetric Catalysis with a Mechanically Point-Chiral Rotaxane. J. Am. Chem. Soc. 2016, 138, 1749-51. (b) Heard, A. W.; Goldup, S. M. Synthesis of a Mechanically Planar Chiral Rotaxane Ligand for Enantioselective Catalysis. Chem 2020, 6, 994-1006.
(34) Selected examples: (a) Lim, J. Y. C.; Marques, I.; Felix, V.; Beer, P. D. Enantioselective Anion Recognition by Chiral HalogenBonding [2]Rotaxanes. J. Am. Chem. Soc. 2017, 139, 12228-12239. (b) Hirose, K.; Ukimi, M.; Ueda, S.; Onoda, C.; Kano, R.; Tsuda, K.; Hinohara, Y.; Tobe, Y. The Asymmetry is Derived from Mechanical Interlocking of Achiral Axle and Achiral Ring Components -Syntheses and Properties of Optically Pure [2]Rotaxanes-. Symmetry 2018, 10, 20. (c) Lim, J. Y. C.; Marques, I.; Felix, V.; Beer, P. D. A Chiral Halogen-Bonding [3]Rotaxane for the Recognition and Sensing of

Biologically Relevant Dicarboxylate Anions. Angew. Chem., Int. Ed. 2018, 57, 584-588.
(35) Gaedke, M.; Witte, F.; Anhauser, J.; Hupatz, H.; Schroder, H. V.; Valkonen, A.; Rissanen, K.; Lutzen, A.; Paulus, B.; Schalley, C. A. Chiroptical inversion of a planar chiral redox-switchable rotaxane. Chem. Sci. 2019, 10, 10003-10009.
(36) Maynard, J.; Gallagher, P.; Lozano, D.; Butler, P.; Goldup, S. Mechanically axially chiral catenanes and noncanonical chiral rotaxanes. Nat. Chem. 2022, DOI: 10.1038/s41557-022-00973-6.

[^0]: Received: February 22, 2022
 Published: June 28, 2022

