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Human populations around the world encounter various environmental challenges and, consequently, develop genetic ad-

aptations to different selection forces. Identifying the differences in natural selection between populations is critical for un-

derstanding the roles of specific genetic variants in evolutionary adaptation. Although numerous methods have been

developed to detect genetic loci under recent directional selection, a probabilistic solution for testing and quantifying se-

lection differences between populations is lacking. Here we report the development of a probabilistic method for testing and

estimating selection differences between populations. By use of a probabilistic model of genetic drift and selection, we

showed that logarithm odds ratios of allele frequencies provide estimates of the differences in selection coefficients between

populations. The estimates approximate a normal distribution, and variance can be estimated using genome-wide variants.

This allows us to quantify differences in selection coefficients and to determine the confidence intervals of the estimate. Our

work also revealed the link between genetic association testing and hypothesis testing of selection differences. It therefore

supplies a solution for hypothesis testing of selection differences. This method was applied to a genome-wide data analysis of

Han and Tibetan populations. The results confirmed that both the EPAS1 and EGLN1 genes are under statistically different

selection in Han and Tibetan populations. We further estimated differences in the selection coefficients for genetic variants

involved in melanin formation and determined their confidence intervals between continental population groups.

Application of the method to empirical data demonstrated the outstanding capability of this novel approach for testing

and quantifying differences in natural selection.

[Supplemental material is available for this article.]

When anatomically modern humans emerged from Africa
(Mellars 2006) and subsequently colonized throughout the world
(Hellenthal et al. 2008; Mellars et al. 2013), they encountered
many challenges, including essential environmental alterations,
food resource shifts, and infectious diseases (Hancock et al. 2010,
2011; Leffler et al. 2013). The current large size and wide distribu-
tion of modern human populations demonstrate the evolutionary
success of human beings, which intrigues and attracts geneticists
to investigate the natural selection and genetic adaptation of hu-
man populations. Studies of natural selection, especially direc-
tional selection, focus mainly on beneficial heritable traits and
related genetic alterations (Williams 2008; Fu and Akey 2013). In
recent years, genetic alterations under directional selection have
attracted more attention than ever before. Consequently, some
highly irregular genetic variants were discovered and further ex-
plored using various approaches (Sabeti et al. 2006, 2007; Gross-
man et al. 2010; Bhatia et al. 2011; Xu et al. 2011; Kamberov
et al. 2013; Vitti et al. 2013; Xiang et al. 2013).

Directional selection usually involves genetic adaptation to
local environments. Comparison of selection differences between
populations is therefore important in genetic studies of directional
selection. Differences in allele frequencies are indicators of possi-
ble selection differences between populations. As a measure of fre-

quency difference, genetic distance, such as FST, is the most
popular statistic in studies of natural selection (Lewontin and
Krakauer 1973; Akey et al. 2002). The two-dimensional site fre-
quency spectrum (2D-SFS) method was also designed to compare
frequency differences between populations and thus to identify
selection differences (Nielsen et al. 2009). Selection differences
can also be detected by comparing selective sweeps in different
populations, such as cross-population extended haplotype homo-
zygosity (XP-EHH) and cross-population composite likelihood
ratio methods (XP-CLR) (Sabeti et al. 2007; Chen et al. 2010).
Unfortunately, these methods lack efficient strategies to identify
statistical outliers from the “background noise” of genetic drift.
Theoretical distributions of these statistics are not known in
closed-form expressions. All the methods determine confidence
levels based on empirical data distribution or computer simulation
with limited prior knowledge of the demographic history (Akey
et al. 2002; Sabeti et al. 2007; Nielsen et al. 2009; Chen et al.
2010). Although computer simulation can handle complicated
genetic scenarios, it is unlikely that the “real” population genetic
history can be accurately represented in computer simulations
(Teshima et al. 2006). Furthermore, existing approaches do not
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provide effective solutions to quantify selection differences be-
tween populations.

In this report, we present a probabilistic method for esti-
mating and testing selection differences between populations.
The theoretical distribution of the involved statistics is well
known and easy to compute. It enables us to conduct strict
hypothesis testing without tedious computer simulation. Our ap-
proach supplies estimates and their confidence intervals for differ-
ences in selection coefficients. To demonstrate the capability of
our approach, we conducted statistical hypothesis testing on a
whole-genome data set including samples of Han Chinese and
Tibetan populations. The results regarding the EPAS1 and EGLN1
genes rejected the null hypothesis and confirmed their signifi-
cant differences in selection between the populations. We further
estimated differences in the selection coefficients between con-
tinental populations for genetic variants involved in melanin
formation.

Results

Model

In a scenario with two populations, we assumed that popula-
tions A and B have the same ancestral population O. For a
given locus, we denoted the frequencies of mutated allele in
the three populations as pmO , p

m
A , and pmB and frequencies of wild-

type allele as pwO, pwA , and pwB , respectively. In a deterministic
approximation with selection, the difference of logarithm ratio
of frequencies was determined by divergence time t and selection

coefficient s in the populations, say log
pmA
pwA

− log
pmo
pwo

( )
= sA × t

)(

and log
pmB
pwB

( )
− log

pmo
pwo

( )
= sB × t. Therefore, the difference of se-

lection coefficients with uncertainty can be presented as

F = sA − sB = log
pmA
pwA

( )
− log

pmB
pwB

( )[ ]
/t +V,

where V = 1
t

∑t

i=1

[(vw
A,i − vm

A,i) − (vw
B,i − vm

B,i)] indicates uncertainty

due to genetic drift (for details, see Supplemental Material).

Estimating

Numbers of chromosomes sampling from populations A and B
with mutated alleles are denoted Cm

A and Cm
B , with those carrying

wild-type alleles are denoted as Cw
A and Cw

B . When population
divergence time t is large, the general effect of genetic drift Ω
will approximate a normal distribution with mean zero following
the central limit theorem (Feller 1968). The differences in the
strength of natural selection between populations A and B can
be estimated as

F̂ = E(sB − sA) = log(Odds)
t

, (1)

where Odds = (Cm
AC

w
B )/(Cw

AC
m
B ). Variance of the estimation could

be calculated as

Var(F̂) = Var[log(Odds)]/t2 + Var(V). (2)
Consequently, 95% confidence interval of the estimation is deter-
mined as F̂+ 1.96 · std(F̂).

For a neural locus i, we have F̂
2
i = Var[log(Oddsi)]/

t2 + Var(V). Therefore, when a sample has n neural loci and the

n is large, the general effect of genetic drift between population
A and B can be estimated as

V̂ar(V) = median{F̂2
i /0.455− Var[log(Oddsi)]/t2, n ≥ i ≥ 1},

where the variance of the log-odds ratio could be effectively ap-
proximated as Var[log(Odds)] = 1/Cm

A + 1/Cw
B + 1/Cw

A + 1/Cm
B .

Testing

It is straightforward to propose a statistic for natural selection of a
candidate locus, as follows:

d = F̂2/Var(F̂). (3)
Under the null hypothesis that differences in natural selection are
absent, the statistic δ follows a central χ2 distribution with a degree
of freedom= 1. Under the alternative hypothesis with a selection
difference, the statistic δhas a noncentral χ2 distributionwith non-
centrality parameter F̂2 and a degree of freedom= 1.

The aforementioned statistical test for a single candidate lo-
cus could be generalized for a scenario with multiple linked loci
to boost its power for detecting differences.We can rewrite the sta-
tistic as

d = X′S−1X,

whereX is a vector with elements {F̂1, F̂2, . . . , F̂m}, and Σ is the co-
variance matrix of the vector with elements

Cov(F̂i, F̂j) = Cov[log(oddi), log(oddj)] + Var(V), i = j
Cov[log(oddi), log(oddj)], i = j

{
.

The covariance of two correlated log-odds ratios is given as
(Bagos 2012)

Cov[log(oddi), log(oddj)] =
∑
k

∑
l

∑
m

(−1)l−m Cklm

Ckl+Ck+m

( )
.

The notations for the covariance calculation are defined in
Table 1. When testing for multiple linked loci, the statistic δ ap-
proximates a central χ2 distribution under the null hypothesis,
and the degree of freedom is the same as the number of involved
loci (De Maesschalck et al. 2000).

Connection with case-control studies and its statistical power

The theoretical framework presented above bears an intrinsic con-
ceptual and statistical connection with population-based associa-
tion studies, as presented in Figure 1. The left panel illustrates
the conceptual framework of the null hypothesis and alternative
hypothesis in a genetic association study with the population
stratification described by Devlin et al. (2001). Genetic association
studies detect indirect associations between genetic markers (G)
and phenotype (Y) that are mediated by correlations between
the genetic cause (X) and phenotype (Y). A special approach,

Table 1. Notations for the covariance calculation

Locus 1
l = 1 l = 0

Locus 2
m = 1 m = 0 m = 1 m = 0

Pop A k = 1 C111 C110 C101 C100
Pop B k = 0 C011 C010 C001 C000

Cklm is the haplotype count from population “k,” which carries alleles in
states “l” and “m” at locus 1 and 2, respectively.
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such as genomic control (GC), is capable of eliminating sporadic
associations due to genetic confounding effects (C). The right pan-
el presents the framework of the null hypothesis and alternative
hypothesis in our method. The difference between the panels is
that our method focuses on the difference in selection (D) but
not phenotype (Y). Our method can distinguish selection differ-
ences from genetic background noise (B). GC controls type I errors
using an inflation factor λ, while ourmethod considers differences
in the genetic background in the variance calculation by introduc-
ingVar(Ω) (Equation 2). TheGCmethod remains the same as a reg-
ular association test if λ≈ 1; our method also degenerates to a
regular association test if Var(Ω) approximates zero.

As the statisticof ourmethod followsaχ2distribution, the stat-
istical power of the research design can be conveniently calculated.
In this study, with a given difference in selection coefficients of
5.0 × 10−3 per generation, we show examples to demonstrate how
sample size, genetic drift, and divergence time contribute to the
statistical power of our method. Given a population divergence
timeof300generations,ourcalculation indicates that the statistical
power effectively increases with an increase in the sample size (Fig.
2A).With a sample size of 500 chromosomes for each of the paired
populations and genetic drift per generation Var(Ω) = 1.0 × 10−6,
the statistical power of our method is as high as 0.98 (Fig. 2A). The
power increase, however, is limited with an increase in the sample
size when genetic drift is large. With genetic drift per generation
Var(Ω) = 5.0 × 10−5, power is onlyabout0.20, even ifwehavea sam-
ple size as large as 500 chromosomes for each population (Fig. 2A).

We also investigated the relationship between the population
divergence time and statistical power. The increase in power with
an increase in the sample size is prominent when the divergence
time of involved populations is small (Fig. 2B, power curvemarked
by “o” or asterisk). When the divergence time is large, however, an
increase in the sample size has only a minor effect on statistical
power (Fig. 2B, power curve marked by ◊ or “x”). This could be
due to the fact that accumulated genetic drift contributes signifi-
cantly to the statistic’s variance in this scenario. Because ourmeth-
od is based on allele frequencies of individual loci, but not a strict
selective sweep, it is especially helpful for studying a “soft sweep.”
Other selection sweep–based methods, such as XP-EHH and XP-
CLR, cannot work as well without significant linkage disequili-

brium.We therefore strongly suggest that both ourmethod and se-
lection sweep–basedmethods shouldbe appliedas complementary
methods to selection identification. Furthermore, ourmethod sup-
plies an estimate for differences in selection coefficients, whereas
the others do not.

Testing selection differences between Tibetan

and Han genomes

We applied our method of hypothesis testing on genotype data of
Tibetan andHanChinese. Because several genetic loci are reported
to be involved in adaptation to high altitude, most of these were
not further verified by strict hypothesis testing but solely by in-
spection in simulation-based inference. A QQ plot of our single-
variant testing showed that the obtained P-value was well fitted
to the expectation (Fig. 3), suggesting that our theoretical model
handled genetic divergence of populationswell, as least for this ex-
ample. In particular, population divergence between Han and
Tibetan populations did not lead to inflation of the type I error
in our hypothesis testing.

The criterion to declare a genome-wide statistical significance
is given by P-value ≤1.0 × 10−8 in this study. Nineteen variants of
the EPAS1 gene have P-values that fit the criterion (Fig. 4A). This
observation agrees with previous reports suggesting that the
EPAS1 gene plays a major role in the high-altitude adaptation of
Tibetan people (Simonson et al. 2010; Peng et al. 2011; Xu et al.
2011). We also conducted our aforementioned multivariant anal-
ysis on single nucleotide polymorphism (SNP) bins with different
sizes. With a bin size of 5, 10, or 15 SNPs, SNP bins in the EGLN1
gene region showed significant selection differences between the
populations in our genome-wide hypothesis testing (Fig. 4B).
The power increase was consistent with previous reports that a
multivariant analysis could bemore powerful than a single-variant
approach in statistical tests of genetic data (Akey et al. 2001; He
et al. 2011). These results support previous findings that both
EPAS1 and EGLN1 genes are critical to high-altitude adaptation
of the Tibetan population (Lorenzo et al. 2014). We obtained no
positive findings in other gene regions, except for EPAS1 and
EGLN1. Other reported candidate genes should be further verified
when more genetic data becomes available.

Figure 1. Conceptual framework of statistical tests for an association
study and our method. (Left) Conceptual framework of an association
study in the presence of population stratification. (Right) Conceptual
framework of our method in the same manner. (Top) Conceptual frame-
works for the null (H0) hypothesis. (Bottom) Conceptual frameworks of
the alternative (H1) hypothesis. Genetic background noise (B), confound-
ing effects (C), difference in selection (D), genetic markers (G), genetic
cause (X), phenotype (Y).

Figure 2. Statistical power of our single-variant method increasing with
an increase in the sample size. Statistical power is represented on the y-axis;
sizes of the involved haplotypes, on the x-axis. Allele frequency of one pop-
ulation was given to be constant at 0.9, and frequency of the other popu-
lation was determined by differences in selection coefficients of 5.0 × 10−3

per generation and divergence time. (A) Power curvewith a constant diver-
gence time of 300 generations is marked by different symbols for different
drift variances: (o) Var(Ω) = 1.0 × 10−6, (∗) Var(Ω) = 5.0 × 10−6, (◊) Var(Ω)
= 1.0 × 10−5, and (x) Var(Ω) = 2.0 × 10−5. (B) Power curve with constant
drift variance Var(Ω) = 5.0 × 10−6 is marked by different symbols for differ-
ent divergence times: (o) t = 100 generations, (∗) t = 300 generations, (◊) t
= 600 generations, and (x) t = 1000 generations.
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Estimating differences in selection

We estimated differences in the selection coefficients for several
genetic variants of melanin formation between continental popu-
lations (Table 2). In this study, we assumed a simplified stepping
stone model with four worldwide population groups (Fig. 5).
Selection differences were compared between neighboring groups,
whilemutated alleles of the ancestral group served as a reference to
determine the direction of the selection differences (Equation 1).

Our estimations and their 95%confidence intervals suggested
thatmost of the involvedvariantshad similar selection coefficients
in south and north Eurasian groups, except variant rs12913832 of
theOCA2 gene had an obvious difference F̂ = 4.87× 10−3 (Fig. 6).
For south and north Eurasian groups, 95% confidence intervals
of the estimations were larger than those
of population-grouppairs involving both
African and non-African groups (Fig. 6).
This finding indicated that sampling
variance contributed to the variance of
the estimations of the south and north
Eurasian groups. Therefore, the estima-
tions could be further improved by in-
creasing the sample sizes. Selection
coefficients had only minor differences
between Asians and Africans (Fig. 6),
suggesting that there are other genetic
variants having a critical role in melanin
formation in Asians (Edwards et al.
2010). The observed directions of the
selection differences suggest that mu-
tated alleles of the variants involved
in melanin formation were more favor-
ably selected in non-African populations
(Wilde et al. 2014).

Discussion

Wemeasured the differences in allele fre-
quencies between populations using
their logarithm odds ratios. Because ge-
netic association studies usually present

theeffect sizeof risk alleles inodds ratioswithestimatedconfidence
intervals, this study revealed a statistical connection between our
approach and classical genetic association studies. The close con-
nection further allowedus theopportunity to explorenatural selec-
tion in a genome-wide statistical test. There are other statistics with
statistical properties better than logarithm odds ratio, especially
when sample size is limited. As we present in this report, howev-
er, the logarithm odds ratio is an estimate of differences in the se-
lection coefficient, while the other statistics lack a direct
connection with selection difference. Further, performance of
logarithm odds ratio was acceptable in the presented case of
the Han–Tibetan comparison, demonstrating the merits of loga-
rithm odds ratio. When population divergence is small, variance
of our estimate is due mainly to sampling variance but not ge-
netic drift (Equation 2) (Fig. 2). It is therefore possible to signifi-
cantly improve the power of the statistical test by increasing the
sample sizes. In this scenario, the benefit introduced by the large
sample size is similar to that in genetic association studies. The
statistical power of the hypothesis test using our method can
be calculated for a specified study design. This provides a great
advantage for determining the technical details of a research
design, especially for determining sample sizes. When the evalu-
ated locus is neutral in one of the two involved populations, our
method provides estimation for selection coefficient in the rest
population.

In our genetic model, the overall effects of demographic im-
pact are summarized by variance in genetic drift (Equation 2). It
is therefore unnecessary to separately consider the scale and dura-
tion of each demographic event in the analysis. The scales and du-
rations of demographic events of the populations are often
unknown, although some consensus has been reached in the re-
search community. Tedious computer simulation is unnecessary
in our approach, while simulation is the only way to determine
the confidence level in most previous reports. This simulation-
free feature is a significant advantage for selection studies because

Figure 3. QQ plot of single-variant analysis of Han-Tibetan data.
Observed significance levels are represented on the y-axis on a scale of
−log10(P-value). Expected quartile is represented on the x-axis on the
same scale.

Figure 4. Manhattan plots of significance levels for analysis of Han-Tibetan data. Chromosomes are
shown on the x-axis; y-axis shows significance levels in −log10(P). (A) Manhattan plot of single-variant
analysis of all autosomes. (B) Manhattan plots of single- and multivariant analysis of Chromosomes 1
and 2. Bin sizes are shown under the x-axis.
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actual population history is unlikely to be accurately represented
by computer simulation. It should be noted that our method of
modeling genetic drift differs from the Wright-Fisher process.
We use total variance Var(Ω) to capture the overall effect of genetic
drift but not effective sample sizes.

There are other statistics thatmeasure the differences in allele
frequencies between populations, such as FST and ΔDAF. Both FST
and ΔDAF have been applied to studies of natural selection (Akey
et al. 2002). There is a close relationship between our logarithm
odds ratio with FST and ΔDAF. When FST or the absolute value of
ΔDAF is larger, we generally have a larger positive or smaller nega-
tive logarithm odds ratio. Theoretical distributions of the FST and
ΔDAF statistics, however, are not available in straightforward
approaches. It therefore hinders their application in testing of se-
lection difference. Furthermore, in the presence of population
stratification, there is no convenient approach for quantifying
the contribution of natural selection to FST and ΔDAF of individual
variants. There lacks a perfect quantitative correlation between the
statistics.

In our genetic model, we considered only the mutations that
occurred before the population stratification. This assumption
holds for most genetic variants of the human genome, given its
short evolutionary history. Our method is therefore applicable
to populations with limited genetic divergence (Fig. 2). When
the frequency of an allele is low and the sample size is small,
minor alleles may be missing from the samples. In these cases,
we suggested a continuity correction in the calculation of the
logarithm odds ratios and the variance (Friedrich et al. 2007).
Consequently, differences in selection coefficients may be under-

estimated in this scenario. This potentially biased estimation
could be partially improved in two ways. First, a larger sample
size may be helpful for counting the minor allele; second,
Bayesian estimationmay be helpful for determining the frequency
of the missing allele.

To summarize, we developed a probabilistic method for test-
ing and estimating selection differences between populations.
This method offers a statistical solution to study directional selec-
tion without tedious computer simulation. It is very powerful
when the populations under investigation have close genetic con-
nection. This method can be used to quantify differences in selec-
tion coefficients but not genotype fitness. Efficient estimation of

Figure 5. Simplified stepping-stone model of four population groups.
Details of genetic demographic history were ignored in the model, such
as backward gene flows and genetic admixture, etc. The four continental
population groups areNorth Eurasian (NEU), South Eurasian (SEU), African
(AFR), and Asian (ASN). Divergence of African and non-African groups was
assumed to be 5000 generations. We further assumed that NEU and SEU
have a divergence time of 400 generations.

Table 2. Candidate sites involved in our estimation

Gene Chromosome dbSNP ID Coordinate AA DA Reference

OCA2 15 rs12913832 28365618 A G Eiberg et al. (2008); Sturm et al. (2008)
TYRP1 9 rs1408799 12672097 T C Nan et al. (2009); Posṕiech et al. (2014)
TYR 11 rs1042602 88911696 C A Durso et al. (2014); Posṕiech et al. (2014)
DCT 13 rs1407995 95096013 T C Zhu et al. (2007); Edwards et al. (2010)
SLC24A5 15 rs1426654 48426484 G A Basu Mallick et al. (2013); Durso et al. (2014); Tekola-Ayele et al. (2014)
SLC45A2 5 rs16891982 33951693 C G Branicki et al. (2008); Fernandez et al. (2008); Durso et al. (2014)

(AA) Ancestral allele; (DA) derived allele.

Figure 6. Differences in selection coefficients between population
groups. Estimated differences in selection coefficients are represented on
the y-axis. Error bars, 95% confidence interval. Estimation for each neigh-
boring group pair is marked by a group name and allele-frequency pie
chart of the corresponding descendant group. Frequency of the derived
allele is represented by the light color in the pie chart. North Eurasian pop-
ulation (NEU) is a combination of the 1000 Genome populations CEU, FIN,
and GBR; South Eurasian population (SEU), a combination of populations
IBS and TSI; African population (AFR), combination of populations YRI and
LWK; and Asian population (ASN), a combination of populations CHB,
CHS, and JPT.
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genotype fitness remains a difficult task when no time-serial data
are available.

Methods

Data

Genotype data for 137 Han Chinese and 123 Tibetan unrelated in-
dividuals from three previous studies of human high-altitude ad-
aptation were analyzed in this report (Xu et al. 2011; Xing et al.
2013;Wuren et al. 2014). All involved individuals were genotyped
using Affymetrix genome-wide human SNP array 6.0. To investi-
gate differences in the selection of genetic variants involved in
melanin formation, genotype data of worldwide populations
were downloaded from the website of the 1000 Genomes Project
(The 1000 Genomes Project Consortium 2010).

Computing

Haplotypes of the individuals were reconstructed using BEAGLE
(version 4.0) (Browning and Browning 2007). Other computing
works of this report were conducted in R (version 2.14.2) (R Core
Team 2015), a free software environment for statistical computing
and graphics.
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