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Abstract

Recent studies have demonstrated that multiple early-onset diseases have shared risk

genes, based on findings from de novo mutations (DNMs). Therefore, we may leverage

information from one trait to improve statistical power to identify genes for another trait.

However, there are few methods that can jointly analyze DNMs from multiple traits. In this

study, we develop a framework called M-DATA (Multi-trait framework for De novo mutation

Association Test with Annotations) to increase the statistical power of association analysis

by integrating data from multiple correlated traits and their functional annotations. Using the

number of DNMs from multiple diseases, we develop a method based on an Expectation-

Maximization algorithm to both infer the degree of association between two diseases as well

as to estimate the gene association probability for each disease. We apply our method to a

case study of jointly analyzing data from congenital heart disease (CHD) and autism. Our

method was able to identify 23 genes for CHD from joint analysis, including 12 novel genes,

which is substantially more than single-trait analysis, leading to novel insights into CHD dis-

ease etiology.

Author summary

With the development of new generation sequencing technology, germline mutations

such as de novo mutations (DNMs) with deleterious effects can be identified to aid in dis-

covering the genetic causes for early on-set diseases such as congenital heart disease

(CHD). However, the statistical power is still limited by the small sample size of DNM

studies due to the high cost of recruiting and sequencing samples, and the low occurrence

of DNMs given its rarity. Compared to DNM analyses for other diseases, it is even more

challenging for CHD given its genetic heterogeneity. Recent research has suggested shared

disease mechanisms between early-onset neurodevelopmental diseases and CHD based

on findings from DNMs. Currently, there are few methods that can jointly analyze DNM

data on multiple traits. Therefore, we develop a framework to identify risk genes for multi-

ple traits simultaneously for DNM data. The new method is applied to CHD and autism
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as a case study to demonstrate its improved power in identifying risk genes compared

with single-trait analyses. Our results lead to new insights on the disease etiology of CHD,

and the shared etiological mechanisms between CHD and autism.

Introduction

The development of sequencing technologies such as Whole Exome Sequencing (WES) has led

to the identifications of the genetic causes of many diseases in the past decades. Studies based

on WES have successfully identified novel causal genes in both Mendelian disorders and com-

plex disorders [1,2]. Because WES may generate a large number of genetic variants in studied

individuals, a strategy to narrow down the pool of candidate variants is to scan for de novo
mutations (DNMs) by comparing the WES data between the healthy parents and their affected

offspring (proband). As DNMs with deleterious effects have not been through natural selec-

tion, they have proved very informative in identifying risk genes for early on-set diseases such

as congenital heart disease (CHD) [3–7]. For instance, Homsy et al. identified an excess of pro-

tein-damaging DNMs in 1,213 exome-sequenced CHD parent-offspring trios, especially in

genes highly expressed in the developing heart and brain [4]. In a recent study, Jin et al. found

that DNMs accounted for 8% of CHD cases and identified striking overlap between genes with

damaging DNMs in probands with CHD and autism [5]. These studies showed that DNM

analyses can play an important role in exploring the genetic etiology of CHD. However, the

statistical power for identifying risk genes is still hampered by the limited sample size of DNM

studies due to its relatively high cost in recruiting and sequencing samples, as well as the low

occurrence of DNMs given its rarity.

Meta-analysis and joint analysis are two major approaches to improve the statistical power

by integrating information from different studies. Meta-analysis studies on WES DNMs and

Genome-wide Association Studies (GWAS) for multiple traits have been conducted [8, 9].

However, these approaches may overlook the heterogeneity among traits, thus hinder the abil-

ity to interpret finding for each single trait. By identifying the intersection of top genes from

multiple traits, some recent studies have shown that there are shared risk genes between CHD

and autism [4,10]. Shared disease mechanism for early-onset neurodevelopmental diseases has

also been reported [11,12]. Based on these findings, joint analysis methods have been proposed

and gained success in GWAS and expression quantitative trait loci (eQTL) studies. Studies

have shown that multi-trait analysis can improve statistical power [13–19] and accuracy of

genetic risk prediction [20–22]. Currently, there lacks joint analysis methods to analyze DNM

data on multiple traits globally, with the exception of mTADA [23].

In addition to joint analysis, integrating functional annotations has also been shown to

improve statistical power in GWAS [15,24] and facilitate the analysis of sequencing studies

[25,26]. There is a growing number of publicly available tools to annotate mutations in multi-

ple categories, such as the genomic conservation, epigenetic marks, protein functions and

human health. With these resources, there is a need to develop a statistical framework for

jointly analyzing traits with shared genetic architectures and integrating functional annota-

tions for DNM data.

In this article, we propose a Multi-trait De novo mutation Association Test with Annota-

tions, named M-DATA, to identify risk genes for multiple traits simultaneously based on plei-

otropy and functional annotations. We demonstrate the performance of M-DATA through

extensive simulation studies and real data examples. Through simulations, we illustrate that

M-DATA is able to accurately estimate the proportion of disease-causing genes between two
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traits under various genetic architectures and has improved power of identifying risk genes

over single-trait analyses. We applied M-DATA to identify risk genes for CHD and autism.

There are 23 genes discovered to be significant for CHD, including 12 novel genes, bringing

novel insight to the disease etiology of CHD.

Methods

Ethics statement

This study is approved by Yale Human Research Protection Program Institutional Review

Boards (IRB protocol ID 2000028735).

Probabilistic model

First, we consider the simplest case with only one trait, and then we extend our model to multi-

ple traits. We denote Yi as the DNM count for gene i in a case cohort, and assume Yi come

from the mixture of null (H0), and non-null (H1), with proportion π0 = 1 − π and π1 = π
respectively. Let Zi be the latent binary variable indicating whether this gene is associated with

the trait of interest, where Zi = 0 means gene i is unassociated (H0), and Zi = 1 means gene i is

associated (H1). Then, we have the following model:

Zi � BernoulliðpÞ

YijZi ¼ 0 � Poissonð2NmiÞ

YijZi ¼ 1 � Poisson 2Nmigið Þ

where N is the sample size of the case cohort, μi is the mutability of gene i estimated using

the framework in Samocha et al. [27] and γi is the relative risk of the DNMs in the risk gene

and is assumed to be larger than 1. The derivation of the parameter of the Poisson distribution

is the same as that in TADA [28,29]. We define this model as the single-trait model without

annotation in our main text.

To leverage information from functional annotations, we use an exponential link between

γi and Xi,

gi ¼ exp XT
i b

� �
;

where XT
i is the transpose of the functional annotation vector of gene i, and β is the effect size

vector of the functional annotations. Under the assumption that risk genes have higher burden

than non-risk genes, we expect the estimated value of γi to be larger than 1.

Now we extend our model to consider multiple traits simultaneously. To unclutter our

notations, we present the model for the two-trait case. Suppose we have gene counts Yi1 and

Yi2 for gene i from two cohorts with different traits. Similarly, we introduce latent variables

Zi = [Zi00, Zi10, Zi01, Zi11] to indicate whether gene i is associated with the traits. Specifically,

Zi00 = 1 means the gene i is associated with neither trait, Zi10 = 1 means that it is only associated

with the first trait, Zi01 = 1 means that it is only associated with the second trait, and Zi11 = 1

means that it is associated with both traits. Then, we have:

Zi � Multinomial 1;pð Þ; with p ¼ ðp00; p10; p01; p11Þ

p00 ¼ Pr Zi00 ¼ 1ð Þ;Yi1jZi00 � Poisson 2N1mið Þ;Yi2jZi00 � Poissonð2N2miÞ
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p10 ¼ Pr Zi10 ¼ 1ð Þ;Yi1jZi10 � Poisson 2N1migi1ð Þ;Yi2jZi10 � Poissonð2N2miÞ

p01 ¼ Pr Zi01 ¼ 1ð Þ;Yi1jZi01 � Poissonð2N1miÞ;Yi2jZi01 � Poissonð2N2migi2Þ

p11 ¼ Pr Zi11 ¼ 1ð Þ;Yi1jZi11 � Poisson 2N1migi1ð Þ;Yi2jZi11 � Poissonð2N2migi2Þ

gi1 ¼ exp XT
i1b1

� �
; gi2 ¼ exp XT

i2b2

� �

where π is the corresponding risk proportion of genes belonging to each class, with ∑l2{00, 10,

01, 11}πl = 1. Then, the risk proportion of the first trait and second trait is π10 + π11 and π01 +

π11, respectively. When the latent variables Z10 + Z11 and Z01 + Z11 are independent, π11 = (π10

+ π11)(π01 + π11). The difference between π11 and (π10 + π11)(π01 + π11) reflects the magnitude

of global pleiotropy between the two traits. μi is the same as our one-trait model. N1, γi1 and

Xi1 are the case cohort size, relative risk and annotation vector of gene i for the first trait. N2,

γi2 and Xi2 are similarly defined for the second trait.

Denote Θ = (π, β1, β2) the parameters to be estimated in our model. As we only consider de
novo mutations, they can be treated as independent as they occur with very low frequency. The

full likelihood function can be written as

L Yð Þ ¼
YM

i¼1

X

l2f00;10;01;11g

plPrðYi1;Yi2jZil ¼ 1;YÞ½ �
Zil

where M is the number of genes. The log-likelihood funciton is

l Yð Þ ¼
XM

i¼1

log
X

l2f00;10;01;11g

plPrðYi1;Yi2jZil ¼ 1;YÞ½ �
Zil :

Estimation

Parameters of our models can be estimated using the Expectation-Maximization (EM) algo-

rithm [30]. It is very computationally efficient for our model without annotation because we

have explicit solutions for the estimation of all parameters in the M-step.

By Jenson’s inequality, the lower bound Q(Θ) of the log-likelihood function is

l Yð Þ � Q Yð Þ ¼
XM

i¼1

X

l2 00;10;01;11f g

Zil log plð Þ þ log Pr Yi1;Yi2jZil ¼ 1;Yð Þð Þ½ �½ �:

The algorithm has two steps. In the E-step, we update the estimation of latent variables Zil,

l 2 {00, 01, 10, 11} by its posterior probability under the current parameter estimates in round

s. That is,

Z sð Þ
il ¼ Pr Zil ¼ 1jYi1;Yi2;Y

sð Þ� �
¼

Pr Zil ¼ 1;Yi1;Yi2jY
sð Þ� �

Pr YijY
sð Þ� �

¼
PrðZil ¼ 1jY

sð Þ
ÞPr Yi1;Yi2jZil ¼ 1;Y

sð Þ� �

P
l02 00;01;10;11f g

PrðZil0 ¼ 1jY
sð Þ
ÞPrðYi1;Yi2jZil0 ¼ 1;Y

sð Þ� � :
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In the M-step, we update the parameters in Θ based on the estimation of Zil in the E-step by

maximizing Q(Θ). For π, there is an analytical solution, which is

p
sþ1ð Þ

l ¼

PM
i¼1

ZðsÞil
M

For the rest of derivation, we take the estimation process for the first trait as an example.

Taking the first order derivative of Q(Θ) with respect to β1 as 0, we have

db1
Q Yð Þ

sð Þ
¼
XM

i¼1
Zi10 þ Zi11ð Þ Yi1Xi1 � 2N1mi exp XT

i1b1

� �
Xi1

� �
¼ 0:

If we do not add any functional annotations to our model (Xi1 degenerates to 1 and β1

degenerates to a scalar), there exists an analytical solution for β1.

b
sþ1ð Þ

1
¼ log

PM
i¼1

Yi1ðZi10 þ Zi11Þ
PM

i¼1
2N1miðZi10 þ Zi11Þ

However, there is no explicit solution for β1, so we adopt the Newton-Raphson method for

estimation after adding functional annotations into our model. The second-order derivatives

for Q(Θ) is

d2

b1
Q Yð Þ ¼ �

XM

i¼1

Zi10 þ Zi11ð Þ 2N1mi exp XT
i1b1

� �
Xi1X

T
i1

� �
;

Then, the estimate of β1 can be obtained as

b
sþ1ð Þ

1
¼ b

sð Þ
1
� d2

b1
Q Yð Þ

sð Þ
h i� 1

db1
Q Yð Þ

sð Þ
;

Functional annotation and feature selection

As we have discussed, there are multiple sources of functional annotations for DNMs. For

gene-level annotations, we can directly plug into our gene-based model. For variant-level

annotations, it is important to collapse the variant-level information into gene-level without

diluting useful information. Simply pulling over variant-level annotations of all base pairs

within a gene may not be the best approach. To better understand the relationship, we calcu-

late the likelihood ratio of the DNM counts under H1 and H0. Under H1, for all positions t

within a gene i, the DNM count Yit follows the Poisson distribution with relative risk γit and

mutability μit, then we have

PðYijH1Þ

PðYijH0Þ
¼

Q
tPðYitjH1ÞQ
tPðYitjH0Þ

¼

Q
tPoissonð2NmitgitÞQ
tPoissonð2NmitÞ

;

where γit = exp(β0 + β1Xit). There is likely to be at most one mutation at each position t due to

the low frequency of DNM. We can further simplify the above equation to

PðYijH1Þ

PðYijH0Þ
¼

Q
texp b0 þ b1XitI Yit ¼ 1f gð Þexpð� 2Nmitexpðb0 þ b1XitÞÞQ

texpð� 2NmitÞ

¼ exp
X

t
ðb0 þ b1XitI Yit ¼ 1f gÞ

!

exp
X

t
� 2Nmit½exp b0 þ b1Xitð Þ � 1�

!  
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Assuming the variant-level effect size β1 is small, we can apply Taylor expansion to the sec-

ond term of the above equation,

PðYijH1Þ

PðYijH0Þ
� exp

X

t
b0 þ b1XitI Yit ¼ 1f gð Þ

�

exp
X

t
� 2Nmit½exp b0ð Þ 1þ b1Xitð Þ � 1�

� �
:

�

If we center the collapsed variant-level annotations, we can apply St Xit = 0 to the above

equation and further simplify it as

P YijH1ð Þ

P YijH0ð Þ
� exp

X

t
ðb0 þ b1XitIfYit ¼ 1gÞ

�

exp
X

t
� 2Nmit½expðb0Þ � 1�

�

¼ exp b
0

0
þ b

0

1

X

t
ðXitIfYit ¼ 1gÞ

�

:

���

The above approximation motivates us to aggregate variant-level annotations to gene-level

annotations by summing up all annotation values of the mutations within a gene after prepro-

cessing each variant-level annotation.

We used variant-level annotations from ANNOVAR [31] in our analysis. We define loss-

of-function (LoF) as frameshift insertion/deletion, splice site alteration, stopgain and stoploss

predicated by ANNOVAR, and define deleterious missense variants (Dmis) predicted by

MetaSVM [32]. Specifically, we included four categories of features including variant-level del-

eteriousness (PolyPhen (D), PolyPhen(P) [33], MPC [34], CADD [35], REVEL [36], and LoF),

variant-level allele frequencies (gnomAD_exome and gnomAD_genome [37]), variant-level

splicing scores (dbscSNV_ADA_score, dbscSNV_RF_score [38] and dpsi_zscore [39]) and

gene conservation scores (pLI and mis_z) downloaded from gnomAD v2.1.1 [37] in real data

analysis. To construct gene-level annotation scores, variant-level annotations were collapsed

by summing up values calculated from the mutation information for each gene. All continuous

gene-level features were normalized before model fitting.

Before performing multi-trait analysis, features were selected separately for each trait by

single-trait analysis. For each trait, all gene-level features were evaluated by Pearson’s correla-

tion. If the Pearson’s correlation between two annotations was larger than 0.7, only one anno-

tation was kept. After model fitting, we kept annotations with the absolute values of effect sizes

larger than 0.01 and refit the model with the selected annotations. For multi-trait analyses, we

constructed the annotation matrices using the features selected from each trait (see more

details in S1 Text).

Hypothesis testing

Without loss of generality, we take the first trait as an example to illustrate our testing proce-

dure. After we estimate the parameters, genes can be prioritized based on their joint local false

discovery rate (Jlfdr) [40]. For joint analysis of two traits, the Jlfdr of whether gene i is associ-

ated with the first trait is

Jlfdr1 Yi1;Yi2ð Þ ¼ Pr Zi00 þ Zi01 ¼ 1jYi1;Yi2ð Þ

¼
p00Pr Yi1;Yi2jZi00 ¼ 1;Yð Þ þ p01Pr Yi1;Yi2jZi01 ¼ 1;Yð Þ

P
l02 00;01;10;11f g

pl0Pr Yi1;Yi2jZil0 ¼ 1;Yð Þ½ �

¼
p00PoissonðYi1; 2N1miÞPoissonðYi2; 2N2miÞ þ p01PoissonðYi1; 2N1miÞPoissonðYi2; 2N2migi2ÞP

l02 00;01;10;11f g
pl0Pr Yi1;Yi2jZil0 ¼ 1;Yð Þ½ �

;

where gi1 ¼ expðXT
i1b1Þ and gi2 ¼ exp XT

i2b2

� �
. When there is no annotation, both β1 and β2

degrade from vectors to single intercept values. Then γi1 and γi2 share the same values exp(β1)

and exp(β2) across all genes. Same formula can be used to compute the Jlfdr of each gene. The

definition of the Jlfdr is the posterior probability of a null hypothesis being true, given the
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observed DNM count vector (Y1, Y2). If we consider the first trait, the corresponding null

hypothesis is the gene i associates with neither trait or only associates with the second trait, i.e.,

Zi00 + Zi01 = 1. And the corresponding Jlfdr is jlfdr1(Yi1, Yi2) = Pr(Zi00 + Zi01 = 1|Yi1, Yi2). In

comparison, the p-value is defined as the probability of observing more extreme results given

the null hypothesis being true, i.e., p-value = Pr(More extreme than (Yi1, Yi2)|Zi00 + Zi01 = 1).

To compute it, we need to firstly define a partial order for comparing two-dimensional vector

(Y1, Y2), with which the genes associate with the first trait can stand out. One way to define the

partial order is to summarize the vector into a one-dimensional test statistic. Since this is not

our focus, we will not discuss how to derive a new test statistic in the article. Although the

Jlfdr1 already informs the probability of whether the gene is associated with the first trait, we

should not directly use it as the p-value to infer the association status due to their different def-

initions and properties. In the simulation studies and real data application, we used Jlfdr as

our inference method for risk gene identification.

The following relationship between Jlfdr and false discovery rates (Fdr) was shown in Jiang

and Yu [40],

Fdr1 Rð Þ ¼ E Jlfdr1 Y1;Y2ð Þj Y1;Y2ð Þ 2 Rð Þ �
1

j Yi1;Yi2ð Þ 2 Rf gj

X

Yi1 ;Yi2ð Þ2R
Jlfdr1 Yi1;Yi2ð Þ;

where the rejection region is the set of two-dimensional vector (Y1, Y2) such that the null

hypothesis can be rejected based on a specific rejection criterion. For example, we can specify

a rejection criterion to select genes with large values of the weighted average DNM counts:

0.9Y1 + 0.1Y2� 5, then the corresponding rejection region is the upper right region above the

line of 0.9Y1 + 0.1Y2 = 5. Here we omit the gene indicator i since the rejection region is defined

on DNM count pairs of two traits regardless of the exact gene labels. Jiang and Yu [40] showed

that the most powerful rejection region for a given Fdr level q is {jldr1(Y1, Y2)� t(q)}. To deter-

mine the threshold t(q), we sort the calculated jldr1 value of each gene in an ascending order

first. Denote the a-th jlfdr1 value as Jlfdra
1
. We can approximate the Fdr of the region Ra ¼

f Y1;Y2ð ÞjJlfdr1 Yi1;Yi2ð Þ � Jlfdra
1
g as

Fdr Rað Þ ¼
1

a

Xa

b¼1
Jlfdrb

1

Denote c ¼ maxfajFdr Rað Þ � qg, and then the threshold t(q) for Jlfdr1 is Jlfdrc
1
. For testing

association with the first trait, we reject all genes with Jlfdr1(Yi1, Yi2)� t(q). For both simula-

tion and real data analyses, the global Fdr is controlled at q = 0.05. The global Fdr is abbrevi-

ated as FDR in the following text.

Implementation of mTADA

We used extTADA [11] to estimate the hyperpriors input for mTADA. For simulation and

real data application, we applied 2 MCMC chains and 10,000 iterations as recommended by

the authors [23]. We applied posterior probability>0.8 as the threshold for risk gene inference.

We benchmarked the computational time of mTADA and M-DATA on Intel Xon Gold 6240

processors (2.6GHZ).

Misspecified model

We tested if M-DATA have proper power when functional annotations affect the latent vari-

ables Zil, l 2{00, 01, 10, 11} rather than the relative risk parameters γi1 and γi2. Further, we

assumed that the latent variable Zi10 is associated with the functional annotation vector Xi1,

which is the functional annotation vector for gene i of the first trait, Zi01 is associated with Xi2,
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which is the functional annotation vector for gene i of the second trait, and Zi11 is associated

with both Xi1 and Xi2 through the following forms:

P Zi00ð Þ ¼
1

1þ exp XT
i1b1

� �
þ expðXT

i2b2Þ þ expðXT
i1b1 þ XT

i2b2Þ

P Zi10ð Þ ¼
exp XT

i1b1

� �

1þ exp XT
i1b1

� �
þ exp XT

i2b2

� �
þ exp XT

i1b1 þ XT
i2b2

� �

P Zi01ð Þ ¼
exp XT

i2b2

� �

1þ exp XT
i1b1

� �
þ exp XT

i2b2

� �
þ exp XT

i1b1 þ XT
i2b2

� �

P Zi11ð Þ ¼
expðXT

i1b1 þ XT
i2b2Þ

1þ exp XT
i1b1

� �
þ expðXT

i2b2Þ þ expðXT
i1b1 þ XT

i2b2Þ

p00 ¼ Pr Zi00 ¼ 1ð Þ;Yi1jZi00 � Poisson 2N1mið Þ;Yi2jZi00 � Poissonð2N2miÞ

p10 ¼ Pr Zi10 ¼ 1ð Þ;Yi1jZi10 � Poisson 2N1migi1ð Þ;Yi2jZi10 � Poissonð2N2miÞ

p01 ¼ Pr Zi01 ¼ 1ð Þ;Yi1jZi01 � Poisson 2N1mið Þ;Yi2jZi01 � Poissonð2N2migi2Þ

p11 ¼ Pr Zi11 ¼ 1ð Þ;Yi1jZi11 � Poisson 2N1migi1ð Þ;Yi2jZi11 � Poissonð2N2migi2Þ;

where π is the corresponding risk proportion of genes belonging to each class, with ∑l2{00, 10,

01, 11} πl = 1. Here, μi is the mutability of gene i. N1, γi1 and Xi1 are the case cohort size, relative

risk and annotation vector of gene i for the first trait. Similarly, N2, γi2 and Xi2 are defined for

the second trait.

Verification and comparison

Estimation evaluation

We conducted comprehensive simulation studies to evaluate the estimation and power perfor-

mance of M-DATA. We set the total number of genes M to 10,000, where genes were ran-

domly selected from gnomAD v2.1.1 [37]. We set the size of the case cohort at 2000, 5000 and

10000, corresponding to a small, medium and large WES study. We assumed the proportion

of risk genes to be 0.1 for each trait (i.e., π10 + π11 = π01 + π11 = 0.1), and varied the shared risk

proportion π11 at 0.01, 0.03, 0.05, 0.07 and 0.09. When π11 = 0.01, it corresponds to the inde-

pendence of latent variables Z10 + Z11 and Z01 + Z11 between two traits, and we expect our

multi-trait models to perform similarly as our single-trait models.

We first evaluated the performance of estimation for our models, and then we conducted

power analysis for our single-trait models and multi-trait models. To evaluate the estimation

performance for multi-trait models, we simulated the true model with two Bernoulli annota-

tions, and set the parameter of the Bernoulli distributions to 0.5 for both traits. We varied the

effect sizes of annotations (βj0, βj1, βj2), j = 1, 2 from (3, 0.1, 0.1) (3, 0.1, 0) and (3, 0, 0), which

corresponds to the cases when both annotations are effective, only the first annotation is effec-

tive and no annotation is effective. We evaluated the estimates of shared proportion of risk

genes π11 and the risk gene proportion for a single trait. There are in total 27 simulation set-

tings for estimation evaluation. To obtain an empirical distribution of our estimated
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parameters, we replicated the process for 50 times for each setting. We simulated the two traits

in a symmetrical way, so we only present the results of the first trait. The performance of esti-

mation under the scenario that both annotations are effective (βj1, βj2) = (0.1, 0.1), j = 1, 2) are

shown in Fig 1. The rest of scenarios are shown in Fig A in S1 Text.

Power evaluation

Given that the effective number of functional annotations for DNM data in real world is

unknown, we explored the power performance of single-trait and multi-trait models when

annotations are only partially observed. We varied the effect size of annotations (βj0, βj1, βj2,

βj3), j = 1, 2 from (3, 0.1, 0.1, 0.1) (3, 0.3, 0.3, 0.3) and (3, 0.5, 0.5, 0.5), which corresponds to

the cases when effect of annotations is weak, moderate, and strong. We assumed that only the

first two annotations can be observed. We first demonstrated Jlfdr (see Methods) can control

FDR (Fig B in S1 Text) under theses settings and then evaluated power (Fig 2), type I error

(Fig C in S1 Text), and AUC (Fig D in S1 Text) for our single-trait models and multi-trait

models. There are in total 45 simulation settings. Under each setting, the data were simulated

based on our multi-trait model with annotations (Methods).

With the increase of the sample size, the performance of all four models becomes better.

Under weak annotations, the power performance of models with annotations and without

annotations are comparable. However, when annotations are stronger, the power performance

of models with annotations are better than models without annotations (Figs E and F in S1

Text). With the increase of shared risk proportion, the power performance of multi-trait mod-

els become better than single-trait models.

Fig 1. Multi-trait analysis can accurately estimate the proportion of shared risk genes and single-trait risk genes. Top panels show the estimation of

shared risk proportion, and bottom panels show the estimation of a single trait. For each panel, each plot from left to right represents study sample size

of 2000, 5000, and 10000, respectively. Within each plot, boxes from left to right represent the proportion of shared risk genes being 0.01, 0.03, 0.05, 0.07

and 0.09, respectively. Each scenario is replicated for 50 times in our simulations. True values are shown in red dashed lines.

https://doi.org/10.1371/journal.pgen.1009849.g001
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Comparison with mTADA

Under the same settings in the previous section, we compared the power performance of

mTADA and M-DATA. In the simulation, we observed that both methods could control FDR,

while mTADA was more conservative than M-DATA for FDR control (Fig G in S1 Text).

M-DATA has higher power than mTADA when the effect size of annotations is larger (Fig 3).

The result is consistent with our observation in the real data (Application). In the time

Fig 2. Power performance under different strengths of annotations. The panels from top to bottom show the power performance under weak,

moderate and strong annotations, respectively. For each panel, each plot from left to right represents study sample size of 2000, 5000, and 10000,

respectively. Within each plot, boxes from left to right represent the proportion of shared risk genes being 0.01, 0.03, 0.05, 0.07 and 0.09, respectively.

Each scenario is replicated for 50 times in our simulations.

https://doi.org/10.1371/journal.pgen.1009849.g002
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comparison, we observed that our method converged faster than the MCMC method adopted

by mTADA (Table D in S1 Text).

Robustness to model misspecification

We also evaluated the power performance of M-DATA under misspecified models (Methods),

where we simulated two Bernoulli annotations that affect the latent variables Zil, l 2 {00, 01,

Fig 3. Comparisons of M-DATA and mTADA under different strengths of annotations. The panels from top to bottom show the power

performance under weak, moderate and strong annotations, respectively. For each panel, each plot from left to right represents study sample size of

2000, 5000, and 10000, respectively. Within each plot, boxes from left to right represent the proportion of shared risk genes being 0.01, 0.03, 0.05, 0.07

and 0.09, respectively. Each scenario is replicated for 50 times in our simulations.

https://doi.org/10.1371/journal.pgen.1009849.g003
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10, 11}, and set the parameter of the Bernoulli distributions to 0.5 for both traits. We varied

the effect sizes of annotations on the latent variables (βj0, βj1, βj2), j = 1, 2 at (-3, 0.5, 0.5), (-3, 1,

1) and (-3, 1.5, 1.5), which corresponds to the case when the effect of annotations is weak,

moderate, and strong, respectively. The relative risk parameters γi1 and γi2 were set at 25. We

simulated DNM counts under this misspecified model and evaluated the performance of

M-DATA multi-trait models for different sizes of DNM cohort (1000, 2000, and 4000). We

observed that M-DATA can control FDR under all settings and the multi-trait model with

annotations had better power than the multi-trait model without annotation with the increase

of the effect size of annotations (Fig 4).

Application

We applied M-DATA to real DNM data from 2,645 CHD probands reported in Jin et al. [5]

and 5,623 autism probands acquired from denovo-db [41]. We only considered damaging

mutations (LoF and Dmis) in our analysis as the number of non-deleterious mutations is not

Fig 4. Power and FDR of M-DATA under model misspecification. The top panel and bottom panel show the power and FDR under weak, moderate

and strong annotations on the latent variables Zil, l 2 {00, 01, 10, 11} respectively. For each panel, each plot from left to right represents study sample

size of 1000, 2000, and 4000, respectively. Each scenario is replicated for 50 times in our simulations.

https://doi.org/10.1371/journal.pgen.1009849.g004
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expected to provide information to differentiate cases from controls biologically [42]. Details

of functional annotation and feature selection are included in Methods and S1 Text. In total,

there were 18,856 genes tested by M-DATA.

We performed single-trait analysis on CHD and autism data separately, followed by joint

analysis both CHD and autism data with the multi-trait models. We compared the perfor-

mance of single-trait models and multi-trait models for CHD under different significance

thresholds. With a stringent significance threshold (i.e., FDR< 0.01), single-trait model with-

out annotation identified 8 significant genes, single-trait model with annotation identified 10

significant genes, multi-trait model without annotation identified 11 significant genes, and

multi-trait model with annotation identified 14 genes. With FDR < 0.05, single-trait model

without annotation identified 15 significant genes, single-trait model with annotation identi-

fied 19 significant genes, multi-trait model without annotation identified 18 significant genes,

and multi-trait model with annotation identified 23 significant genes (Table 1). It demon-

strates that M-DATA is able to identify more genes by jointly analyzing multiple traits and

incorporating information from functional annotations. We visualized the identified genes

with Venn diagrams (Fig 5 and Fig H in S1 Text).

Table 1. Results for M-DATA single-trait and multi-trait models.

Model FDR<0.05 FDR<0.01

Single no Anno: CHD/Autism 15/28 8/17

Single with Anno: CHD/Autism 19/35 10/22

Multi no Anno: CHD/Autism 18/28 11/19

Multi with Anno: CHD/Autism 23/37 14/23

https://doi.org/10.1371/journal.pgen.1009849.t001

Fig 5. Venn diagram of identified genes in different models. Compared to the single-trait model without

annotation, the single-trait model with annotations identified 4 additional genes. Compared to the multi-trait model

without annotation, the multi-trait model with annotations identified 5 additional genes. In total, the multi-trait

models identified 6 different genes compared to the single-trait models, including 4 novel human CHD genes (CDK13,

FRYL, LZTR1 and NAA15).

https://doi.org/10.1371/journal.pgen.1009849.g005
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We further demonstrate the results by taking CHD as an example. Compared with the sin-

gle-trait model without annotation, the multi-trait model without annotation identified 3 addi-

tional genes, which are FRYL, NAA15 and PTEN. Compared with the single-trait model with

annotations, the multi-trait model with annotations identified 6 additional genes, including

CDK13, FRYL, LZTR1, NAA15, PTEN and RPL5. There are two additional genes identified by

the single-trait model with annotations, but not the multi-trait models. Both of these two

genes did not have DNMs in autism and are around the margin of FDR threshold (0.05) for

the multi-trait model with annotations (AHNAK 0.056, MYH6 0.061).

To further illustrate the gain of power from multi-trait analysis, we visualized the posterior

probability of being shared risk gene for CHD and autism of identified genes in the multi-trait

model with annotations in Fig 6A (CHD) and Fig I in S1 Text (autism). In the main text, we

further illustrate the results with the 23 significant CHD genes. The 23 significant genes are

colored red, and the 6 additional genes identified by multi-trait analyses are annotated with

gene symbols. From this figure, we can see that most genes (5/6) have high posterior probabil-

ity of being shared. RPL5 is at the margin of FDR threshold in the single-trait models and may

be prioritized in the multi-trait models by chance (Fig 6B). In addition, we checked the corre-

lation between the FDR of top genes identified by the multi-trait model with annotations in

the single-trait model with annotations (Fig 6B). All 6 genes have low FDR (<0.2) in the sin-

gle-trait model with annotations, which indicates multi-trait analysis can prioritize marginal

signals in single-trait analysis.

We take the 5 CHD genes identified by the multi-trait models, but not the single-trait mod-

els as examples to demonstrate the pleiotropic effect. We selected the DNM counts of CHD

and autism, FDR of the single-trait model with annotations and FDR of the multi-trait model

with annotations model from the results (Table 2). From this table, we can see CDK13, FRYL,

LZTR1, NAA15 and PTEN have 2 DNM counts for CHD and at least 1 shared DNM count

Fig 6. Multi-trait analyses prioritized additional genes with high posterior probability of being shared risk genes for CHD. The 23 genes identified

by the multi-trait model with annotations are marked in red on the plot and the additional 6 genes that were identified by the multi-trait models are

annotated with gene symbols. (A) shows that the 6 additional genes identified by the multi-trait models had high posterior probability of being shared.

The x-axis represents the posterior probability of being shared calculated from the multi-trait model with annotations. The y-axis represents the FDR of

genes calculated from the multi-trait model with annotations. (B) shows that the top genes in the multi-trait model with annotations also had low FDR

(<0.2) in the single-trait model with annotations. The x-axis represents the FDR of genes calculated from the single-trait model with annotations. The

y-axis represents the FDR of genes calculated from the multi-trait model with annotations.

https://doi.org/10.1371/journal.pgen.1009849.g006
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with autism. For PTEN, it has 4 autism DNM counts, and we can see a substantial increase of

significance in terms of FDR. Thus, the insight is that genes with shared counts with autism

are more likely to be prioritized for CHD in multi-trait analyses by leveraging the pleiotropic

effect.

Among the 23 identified genes from joint model with annotations, 11 were well established

known CHD genes based on a previously compiled gene list with 253 known CHD genes [5].

They are involved in essential developmental pathways or biological processes, such as Notch

signaling (NOTCH1), RAS signaling (PTPN11, RAF1, SOS1), PI3K/AKT signaling (PTEN),

chromatin modeling (CHD7, KMT2D, NSD1), transcriptional regulations (GATA6), and cell

structural support (ACTB, RPL5) [43, 44].

Among the 12 novel genes, RBFOX2, SMAD2, CDK13 are three emerging CHD risk genes

that have been recently reported to cause hypoplastic left heart syndrome [4,45,46], laterality

defect [3,47], and septal defects and pulmonary valve abnormalities [48], respectively.

Additionally, 4 novel genes, POGZ, KDM5B, NAA15, and FRYL, harbored at least two de
novo mutations in both CHD and autism cohorts.

POGZ, encoding a heterochromatin protein 1 alpha-binding protein, participates in chro-

matin modeling and gene regulations. It binds to chromatin and facilitates the packaging of

DNA onto chromosomes. POGZ damaging de novo mutations were strongly linked with

autism spectrum disorders and other neurodevelopmental disorders [49,50]. Interestingly, one

of the reported mutation carriers also presented cardiac defect [51].

KDM5B is a lysine-specific histone demethylase. Studies have shown that it regulates H3K4

methylation near promoter and enhancer regions in embryonic stem cells and controls the cell

pluripotency [52,53]. The deletion of KDM5B in mice is neonatal lethal with respiratory failure

and neurodevelopmental defects [54]. Recessive mutations in the gene were associated with

mental retardation (OMIM: 618109) and one reported patient presented atrial septal defect.

NAA15 encodes the auxiliary subunit of N-Alpha-Acetyltransferase 15, which catalyzes one

of the most common post-translational modification essential for normal cell functions. Pro-

tein-truncating mutations in NAA15 were reported in intellectual disability and autism

patients, some of whom also presented a variety of cardiac abnormalities including ventricular

septal defect, heterotaxy, pulmonary stenosis and tetralogy of Fallot [55].

POGZ, KDM5B, and NAA15 are all highly expressed in developmental heart at mice embry-

onic day E14.5 [5]. POGZ and NAA15 are intolerant for both LoF and missense mutations,

given that they have a pLI score > 0.9 and a missense z-score > 3. KDM5B is intolerant for

missense mutations with a missense z-score of 1.78. Considering their intolerance of protein-

altering variants, the identification of damaging de novo mutations in them is highly unlikely.

Therefore, our analyses suggest that POGZ, KDM5B and NAA15 may be considered as new

candidate CHD genes.

Furthermore, among the 17 genes with at least one de novo mutation in CHD and autism

cohorts, 5 genes (KMT2D, NSD1, POGZ, SMAD2, KDM5B) play a role in chromatin modeling.

Table 2. Pleiotropic effect boosts power for M-DATA multi-trait models.

Gene CHD Counts Autism Counts FDR Single Anno FDR Multi Anno
CDK13 2 1 0.137 0.0354

FRYL 2 2 0.172 0.0461

LZTR1 2 1 0.0749 0.0257

NAA15 2 3 0.0609 0.00726

PTEN 2 4 0.151 0.00882

https://doi.org/10.1371/journal.pgen.1009849.t002

PLOS GENETICS Joint analysis method for de novo mutations

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009849 November 4, 2021 15 / 21

https://doi.org/10.1371/journal.pgen.1009849.t002
https://doi.org/10.1371/journal.pgen.1009849


Such high proportion is consistent with previous studies that chromatin modeling-related

transcriptional regulations are essential for both cardiac and neuro-development, and genes

with critical regulatory roles in the process may be pleotropic [4].

Further, we compared the performance of M-DATA with mTADA [23] using the same real

data of CHD and autism. We fitted both methods with damaging mutations (LoF and Dmis

mutations). mTADA identified all 18 genes identified by our no annotation model, and missed

3 genes (CDK13, SAMD11, and RPL5) identified by our annotation model for CHD (Table 3).

We visualized the results with Venn diagrams (Fig 7 and Fig J in S1 Text). We also compared

our results with the results of CHD-ASD pair reported by mTADA using CHD data [4],

autism data [11], and mutability data downloaded from the github webpage of mTADA

(Table E in S1 Text).

Discussion

In this paper, we have introduced M-DATA, a method to jointly analyze de novo mutations

from multiple traits by integrating shared genetic information across traits. The implemented

model is available at https://github.com/JustinaXie/MDATA. This approach can increase the

effective sample size for all traits, especially for those with small sample size. M-DATA also

provides a flexible framework to incorporate external functional annotations, either variant-

level or gene-level, which can further improve the statistical power. Through simulation study,

we demonstrated that our multi-trait model with annotations could not only gain accurate

estimates on the proportion of shared risk genes between two traits and the proportion of risk

genes for a single trait under various settings, but also gained statistical power compared to the

single-trait models. In addition, M-DATA adopts the Expectation-Maximization (EM) algo-

rithm in estimation, which does not require prior parameter specification or pre-estimation.

In our simulation study, we found that the algorithm converges faster than methods that use

MCMC for estimation (Table D in S1 Text).

Despite the success, there are some limitations in the current M-DATA model. In our real

data analysis, we used two different data sources for CHD and autism. Samples with both dis-

eases in our multi-trait analysis may bring bias because of the violation of independence

assumption in our multi-trait models. The autism DNM data in our analysis are from different

studies, and different filtering criteria across studies may also bring bias and dilute our signals.

In addition, we only considered two traits simultaneously. Though it is straightforward to

extend our model to more than two traits, the number of groups (i.e., the dimension of latent

variables Zi) increases exponentially with the number of traits (2N for N traits) [23]. This might

bring difficulty in estimation and have more computational cost. Model performance with

more than two traits need further exploration. Currently, we did not consider the influence of

admixed population in M-DATA. In a recent study, Kessler et al. studied DNM across 1,465

diverse genomes and discovered mutation rates may be affected by the environment more sig-

nificantly than previously known [56]. Confounding from the environment on mutation rates

could be further explored through cross-ancestry rare variant studies.

In conclusion, M-DATA is a novel and powerful approach to performing gene-based asso-

ciation analysis for DNMs across multiple traits. Not only does M-DATA have better statistical

Table 3. Comparison of M-DATA multi-trait models with mTADA.

M-DATA No M-DATA Anno mTADA

CHD 18 23 20

Autism 28 37 28

https://doi.org/10.1371/journal.pgen.1009849.t003
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power than single-trait methods, it also provides reasonable estimation of shared proportion

of risk genes between two traits, which gives novel insights in the understanding of disease

mechanism. We have successfully applied M-DATA to study CHD, which identified signifi-

cant 23 genes for our multi-trait model with annotations. Moreover, our method provides a

general framework in extending single-trait method to multi-trait method which can also

incorporate information from functional annotations. Recently, there are several advance-

ments in the association analysis for rare variants, such as jointly analyzing DNMs and trans-

mitted variants [29], analyzing DNMs from whole-genome sequencing (WGS) data [25], and

incorporating pathway information [57]. Extension of these methods to multi-trait analysis is

a potential future direction.
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Fig 7. Venn diagram of genes identified by M-DATA and mTADA for CHD. M-DATA multi-trait model with

annotations identified 3 additional genes (CDK13, SAMD11 and RPL5).

https://doi.org/10.1371/journal.pgen.1009849.g007
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