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Abstract

The function of dystrophin Dp71 in neuronal cells remains to be established. Previously, we revealed the involvement of this
protein in both nerve growth factor (NGF)-induced neuronal differentiation and cell adhesion by isolation and
characterization of PC12 neuronal cells with depleted levels of Dp71. In this work, a novel phenotype of Dp71-knockdown
cells was characterized, which is their delayed growth rate. Cell cycle analyses revealed an altered behavior of Dp71-
depleted cells, which consists of a delay in G0/G1 transition and an increase in apoptosis during nocodazole-induced mitotic
arrest. Dp71 associates with lamin B1 and b-dystroglycan, proteins involved in aspects of the cell division cycle; therefore,
we compared the distribution of Dp71 with that of lamin B1 and b-dystroglycan in PC12 cells at mitosis and cytokinesis by
means of immunofluorescence and confocal microscopy analysis. All of these three proteins exhibited a similar
immunostaining pattern, localized at mitotic spindle, cleavage furrow, and midbody. It is noteworthy that a drastic
decreased staining in mitotic spindle, cleavage furrow, and midbody was observed for both lamin B1 and b-dystroglycan in
Dp71-depleted cells. Furthermore, we demonstrated the interaction of Dp71 with lamin B1 in PC12 cells by
immunoprecipitation and pull-down assays, and importantly, we revealed that knockdown of Dp71 expression caused a
marked reduction in lamin B1 levels and altered localization of the nuclear envelope protein emerin. Our data indicate that
Dp71 is a component of the mitotic spindle and cytokinesis multi-protein apparatuses that might modulate the cell division
cycle by affecting lamin B1 and b-dystroglycan levels.
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Introduction

Duchenne muscular dystrophy (DMD) is a progressive, X-

linked, degenerative muscle disorder caused in the majority of

cases by large out-of-frame deletions or duplication in the DMD

gene that provoke the absence or dysfunction of the cytoskeletal

protein dystrophin [1,2]. The DMD gene exhibits complex

transcriptional regulation; it drives the synthesis of a variety of

dystrophin isoforms through utilization of different promoters.

Full-length dystrophin (427 kDa) is derived from three indepen-

dent promoters, located at the 59-end of the DMD gene, that

regulate its spatiotemporal expression in muscles, brain structures,

and cell types [3,4,5]. In addition, several N-terminally truncated

dystrophin variants, named according to their respective molec-

ular weights as Dp260, -116, -140, and -71, are produced from

different internal promoters [1,6].

While dystrophin Dp427 provides integrity to the sarcolemma

by connecting the extracellular matrix to the intracellular

cytoskeleton [7], Dp71 is thought to be involved in the mental

retardation present in one third of patients with DMD because

Dp71 is the most abundant DMD gene product in adult brain

[1,8,9], and, more importantly, because patients with mutations

located in the Dp71 coding region that significantly affect Dp71

expression exhibited severe mental retardation [10,11]. In support

of this hypothesis, functional examination of Dp71-null mice

revealed abnormal synaptic organization and maturation in vitro,

reduced synaptic plasticity in CA1 hippocampus, as well as

selective behavior disturbances [10]. Thus, it appears that

definition of Dp71 function in neuronal cells is a necessary step

toward understand the molecular basis underlying DMD-associ-

ated mental retardation. Following this direction, we have adopted

the PC12 cell line as the model for Dp71 study; these cells have

been broadly employed in differentiation studies [12,13,14]. In our

previous studies, we isolated PC12 cells with depleted Dp71 levels

by stable transfection with a vector that expresses an antisense

RNA against Dp71 mRNA [15]. Characterization of Dp71-

depleted clones provided compelling evidence that Dp71 is crucial

for both cell adhesion and nerve growth factor (NGF)-induced

neuronal differentiation [15,16,17]. Recently, we unveiled a new

phenotype in the Dp71-knockdown cells, a marked delay in cell
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growth, which indicates that Dp71 deficiency might alter the

PC12-cell division cycle. In this study, we report, to our knowledge

for the first time, the localization of Dp71 in mitotic spindle,

cleavage furrow, and midbody. Furthermore, we reveal that

Dp71-knockdown cells exhibit altered cell division cycle and

provide evidence that such alteration might be caused by the

negative effect that Dp71 deficiency exerts on lamin B1 and b-

dystroglycan levels.

Materials and Methods

Cell culturing
The PC12 cell line [12] was cultured in RPMI-1640 (Invitrogen,

Carlsbad, CA, USA) supplemented with 5% (v/v) Fetal bovine

serum (FBS), and 10% (v/v) horse serum inactivated at 56uC for

30 min, 100 U/ml penicillin, and 100 mg/ml streptomycin (In-

vitrogen) and maintained at 37uC in a humidified atmosphere

containing 5% CO2. Isolation of PC12-derivative clones, termed

Dp71-depleted cells and control cells, was described previously

[15,16].

Proliferation assays
Cells were seeded by triplicate at a density of 26105/well in six-

well plates (Corning 3506, Costar, NY, USA), and the number of

viable cells was counted at the indicated times by the trypan blue

exclusion method using a Neubauer hemocytometer (Marienfeld-

Superior, Germany). Cell viability was also evaluated by the 3-

(4,5-dimethylthiazole-2-5-diphenyl tetrazolium bromide (MTT)

assay. Cells were harvested during logarithmic growth phase and

seeded daily during a period of 6 days in 96-well plates (Corning,

Costar) at a density of 1 cell/mL, freshly prepared MTT (Sigma-

Aldrich, Inc.) was added to each well to a final concentration of

0.5 mg/ml and plates were further incubated for 4 h at 37uC.

Cells were centrifuged for 5 min at 1,500 rpm and the supernatant

was discarded; 180 ml of dimethylsulfoxide was then added and

plates were shaken until no particulate matter was visible.

Absorbance was measured on a Molecular Devices Spectra Max

Plus384 microplate reader (Molecular Devices, Sunnyvale, CA,

USA) with a test wavelength of 570 nm. The cell growth curve was

drawn by plotting the mean cell number of each point against the

cell culture time. DNA synthesis was determined by Bromode-

oxyuridine (BrdU) incorporation. Cells were seeded in 35610 mm

dishes (Corning, Costar) and cultured for 24 h, pulsed with

10 mM BrdU for 2 h, and fixed to stain with the BrdU flow kit

(BD Biosciences Pharmingen, San Diego, CA, USA), accordingly

to manufacturer’s instructions. Positive BrdU-labeled cells were

detected by cytometry in a Becton Dickinson (BD) FACScalibur

flow cytometer (BD Biosciences).

Flow cytometry
Cells were seeded in P-60 dishes (Costar, Corning, NY, U.S.A.)

at a density of 1.256105 cells/ml. After 48 or 72 h of culturing,

cells were harvested and cell suspensions were pelleted and washed

twice with Phosphate buffered saline (PBS) containing 20% trypsin

(Invitrogen) and 0.53 mM EDTA (Research Organics, Cleveland,

OH, USA). Cells were then fixed with 80% ethanol for at least

24 h, stained for DNA labeling with 100 mg/ml propidium iodide

solution containing 200 mg/ml RNase A, and transferred to flow

cytometry tubes for cell cycle analysis in a BD FACScalibur flow

cytometer (BD Biosciences). Cell cycle analysis was performed

using the ModFit LT software (Verity Software House, Topsham,

ME, USA).

Apoptosis assays
Cells were plated on 35610 mm dishes (Corning, Costar) at a

16104 cells/mL density for 48 h. After this time cells were harvested,

washed with PBS and stained with the commercial kit annexin-V-

FITC Vibrant Apoptosis 2 (Invitrogen, Ca, USA) and 0.5 mg/mL

propidium iodide to analyze early and late apoptosis by flow

cytometry.

Cell culture synchronization for cell cycle kinetics analysis
To block cell cycle progression at G0/G1, cells were plated on

P100 dishes (Corning, Costar) at a 26106 density and cultured for

24 h. After this time, the culture medium was replaced with RPMI

medium with a low dose of serum (0.05% FBS and 0.20% horse

serum) and cells were cultured for additional 12 h. Cells were

released from G0/G1 by reconstituting the culture medium with

normal sera concentrations. Then, cells were harvested at 0, 12,

16, 19, and 23 h for further analysis. To perform the double-block

of cells at S phase, cells were plated and incubated for 24 h in

normal conditions, afterward, thymidine was added to the culture

medium at a final concentration of 2 mM and cells were incubated

for additional 24 h, then collected, washed with PBS, and

incubated again for 12 h in fresh culture medium. After this time,

thymidine was again added to the culture medium and cells were

incubated for a final period of 16 h. To release cells from S phase

arrest, culture medium was replaced by fresh medium. To block

cell cycle progression at M phase, cells were cultured for 24 h in

35610 mm dishes, and then nocodazole was added to the culture

medium to final concentrations of 0.2, 0.4, and 0.7 mg/ml (Sigma-

Aldrich, Inc.). After 36 h of exposure, cells were collected, washed,

resuspended in PBS, and attached to glass coverslips by

centrifugation for 5 min at 350 rpm in a Cytospin 4 Cytocen-

trifuge (Thermo Fisher Scientific. Inc., Waltham, MA, USA) and

fixed to perform immunofluorescence analysis. In all cases, cell

cycle analysis was performed after cell fixation and PI-staining.

Cell culture synchronization for cytokinesis analysis
To analyze cytokinesis by immunofluorescence, we blocked cell

cycle progression at the S phase by incubating cells with 2 mM

thymidine (Sigma-Aldrich, Inc.) for 24 h. Cells were released from

arrest by washing with PBS and then incubated for 8–9 h in fresh

culture medium on glass coverslips.

Immunofluorescence and confocal microscopy analysis
Cells cultured on glass coverslips were washed with PBS,

fixed with 4% paraformaldehyde in PBS for 10 min at room

temperature, permeabilized with 0.2% triton X-100 in PBS for

5 min at 4uC, blocked with 0.5% gelatin and 1.5% FBS in PBS for

20 min at room temperature, and incubated overnight at 4uC with

the appropriate primary antibody. Next, coverslips were incubated

for 1 h with either fluoroisothiocyanate (FITC) labeled goat anti-

rabbit secondary antibody (Zymed Laboratories, Inc., South San

Francisco, CA, USA), tetramethylrhodamine isothiocyanate

(TRITC) labeled goat anti-mouse secondary antibody (Jackson

Immunoresearch Laboratories, West Grove, PA), or Alexa-

Fluor594-labeled chicken anti-goat secondary antibody (A21468,

from Invitrogen). For counterstaining, cells were incubated

for 10 min at 37uC with 1 mg/ml 49,6-diamidino-2-phenylindole

(DAPI) in PBS. After washing, coverslips were mounted on

microscope slides with VectaShield (Vector Laboratories, Inc.,

Burlingame, CA, USA) and analyzed in a confocal and mul-

tiphoton microscope (TCS-SP5, Leica Microsystems, Heidelberg,

Germany), using an oil immersion 636objective. Co-localization of

FITC, TRITC, and DAPI staining was analyzed in single optical

Knockdown of Dp71 Impairs PC12 Cells Cycle

PLoS ONE | www.plosone.org 2 August 2011 | Volume 6 | Issue 8 | e23504



sections obtained for two channels throughout the Z axis. To

analyze mitosis by immunofluorescence and confocal microcopy

analysis, cells were blocked at the S phase with thymidine, as

described previously, then released from arrest by washing with PBS

and platting in fresh culture medium on glass coverslips for 8–9 h

(metaphase-anaphase) or 10 h (cytokinesis), and stained with PI.

Antibodies
Three different rabbit polyclonal pan-dystrophins antibodies,

directed against the same epitope at the C-terminal domain of

Dp71, were used: +78 (Genemed Synthesis, Inc., San Francisco,

CA, USA) [18], 2166 [19], and H4 [20]. Based on the suitability of

these antibodies for an specific application: 2166 antibody was

used solely for western blotting, while +78 and H4 antibodies were

employed exclusively for immunofluorescence and immunopre-

cipitation, respectively. In addition, the following antibodies were

employed: a monoclonal anti-actin antibody [21]; rabbit poly-

clonal antibodies against lamin A/C (H-110), emerin (FL-254),

cycline B1 (H-433), and anti-actin (H-196); mouse monoclonal

anti-a-tubulin antibody (B-7), and a goat anti-b-dystroglycan

(DgC20) antibody (Santa Cruz Biotechnology, Inc., CA, USA); a

mouse monoclonal anti-lamin B1 antibody (Zymed Laboratories,

CA, USA); a rabbit polyclonal anti-lamin B1 antibody (ab16048,

Abcam, Cambridge, UK); a mouse monoclonal anti-dystrophin

antibody (Mandra 1, Sigma-Aldrich, St. Louis, MO, USA), and a

rabbit polyclonal anti-b-dystroglycan antibody (LG5) that recog-

nizes the last seven amino acids of the C-terminal of b-

dystroglycan [20].

Isolation of cell extracts
To obtain whole cell extracts, cultured cells were collected,

washed twice with PBS, and centrifuged at 1,200 rpm for 5 min.

Pellets were resuspended in a sonication buffer (16 protease

inhibitor cocktail -Complete, Roche Applied Science, Indianap-

olis, IN, USA- containing 10 mM dithiothreitol (DTT) and 1 mM

phenylmethylsulphonyl fluoride (PMSF) and sonicated four times

for 15 sec at 3.5 mm. To obtain nuclear extracts, pellets were

resuspended in cold buffer I (0.32 M sucrose, 3 mM calcium

chloride, 2 mM magnesium acetate, 0.1 mM ethylenediaminetet-

raacetic acid (EDTA), 10 mM Tris.HCl [pH 8.0], 1 mM DTT,

0.5 mM PMSF, and 0.5% Nonidet P-40) and then homogenized

with a glass Dounce homogenizer. Suspension was then

centrifuged at 1,200 rpm for 10 min to separate nuclei from

cytoplasmic fraction (supernatant). Nuclei were resuspended in

buffer II (1.2 M sucrose, 3.5 mM magnesium acetate, 0.1 mM

EDTA, 10 mM Tris.HCl [pH 8.0], 1 mM DTT, and 0.5 mM

PMSF) and subjected to ultracentrifugation at 16 rpm for 45 min

through a 2 M sucrose cushion. Purified nuclei were either stained

with Propidium iodide (PI) and fixed for cytometry analysis or

sonicated in sonication buffer for western blot analysis. To obtain

nuclear matrix extracts, purified nuclei were incubated for

15 minutes at 4uC in a 0.5% Triton X-100 solution (with

10 mM Tris-HCl pH 7.4 and 2.5 mM MgCl2), then centrifuged

at 5000 g for 10 minutes. Nuclear pellet was incubated for 2 hours

at 37uC in a 250 U/ml DNAse I solution (with 10 mM Tris-HCl

pH 7.4, 150 mM NaCl and 5 mM MgCl2) in constant rotation,

then an equal volume of a solution containing 10 mM Tris-HCl

pH 7.4 and 1.3 M (NH4)SO4 was added and nuclear suspension

was incubated for 15 minutes at 4uC. Afterward, this nuclear

suspension was centrifuged at 10000 g for 10 minutes and the

nuclear matrix pellet was sonicated as above. Protein concentra-

tions were determined by the Bradford method.

Western blot analysis
Equal amounts of whole cell protein extracts (60 mg) were mixed

with Tris-glycine sodium dodecyl sulphate (SDS) sample buffer

and proteins were denatured by boiling for 3 min. Lysates were

then separated by 10% SDS-PAGE and electrotransferred to

nitrocellulose membranes. Membranes were incubated for 1 h in

TBS-T (150 mM NaCl, 10 mM Tris-HCl, pH 8, 0.05% Tween

20) containing 6% low-fat dried milk and then incubated

overnight with the corresponding primary antibody. After three

washes with TBS-T, membranes were incubated with the

appropriate horseradish peroxidase-conjugated secondary anti-

body (Amersham-Pharmacia, GE Healthcare, Buckinghamshire,

UK) and developed using the ECL Western blotting analysis

system (Amersham-Pharmacia).

Immunoprecipitation
Total protein extracts in a final volume of 250 ml were incubated for

1 h at 4uC with 5 mg of anti-lamin B1 antibody, previously bound to

protein G-agarose (Invitrogen). As negative control, parallel incuba-

tion with an irrelevant rabbit polyclonal antibody bound to protein G-

agarose was performed. The immune complexes were precipitated by

centrifuging for 2 min at 2,500 rpm and washed twice in RIPA buffer

(160 mM NaCl, 10 mM Tris-HCl (pH 7.5), 1 mM EDTA, 1 mM

egtazic acid (EGTA), 20 mM Na3MoO4, 20 mM NaF, 2 mM

NaVO4, 1 mM PMSF) containing complete protease inhibitor

mixture (Roche Applied Science). Precipitated proteins were

separated by SDS-PAGE and analyzed by Western blotting.

Construction of the glutathione-S-transferase (GST)-Dp71
fusion protein

The human Dp71 cDNA was amplificated from pGFP-Dp71

and cloned in the EcoRI site in-frame to the 39-end of GST in the

bacterial expression vector pGex-4T1 (Amersham Biosciences Co.,

Piscataway, NJ, USA) to generate GST-Dp71 gene fusion. To

express and characterize GST and GST-Dp71 fusion protein, an

aliquot (40 ml) of transformed bacterial cells (strain JM109)

induced with 0.3 mM IPTG for 1 h at 25uC was centrifuged at

10,000 rpm for 10 min, resuspended in 1 ml of NETN buffer

[100 mM (w/v) NaCl, 20 mM (w/v) Tris-HCl (pH 7.5), 1 mM

(w/v) EDTA, 0.5% (v/v) NP40, 1 mM (w/v) PMSF, complete

protease inhibitor cocktail], and sonicated on ice with 4 pulses of

15 sec in a sonicator Soniprep 150-Sanyo. Afterward, 100 ml of

packed glutathione-Sepharose 4B beads (Amersham Biosciences

Co) were added to bacterial lysate and the mixture was incubated

overnight at 4uC with constant rotation. Beads, recovered by

centrifugation at 3,000 rpm for 5 min, were washed three times

with 1 ml of ice-cold NETN buffer and resuspended in 100 ml

buffer NETN. GST and GST-Dp71 proteins, bound to glutathi-

one-Sepharose, were eluted by adding an equal volume of 36
sample buffer and heating at 95uC and subsequently analyzed by

Coomassie brilliant blue staining and immunoblotting.

Pull-down assays
A similar amount of GST or GST-Dp71 fusion protein

immobilized onto 20 ml of glutathione-Sepharose beads was

incubated overnight at 4uC on a rotator with 1 mg of cell extract

prepared in RIPA buffer containing 1% (v/v) Triton X-100. Beads

were recovered by centrifugation at 3,000 rpm for 5 min and

washed three times with 1 ml ice-cold RIPA buffer containing 1%

(v/v) Triton X-100. Finally, glutathione-Sepharose-bound proteins

were eluted by adding an equal volume of 36 sample buffer,

heating at 95uC, and were subsequently analyzed by SDS-PAGE

and immunoblotting.
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Results

Dp71-depleted Cells Display Altered Proliferation
During routine culturing of Dp71-depleted cells, we observed a

marked delay in cell growth compared with PC12 cells

(untransfected) and control (PC12 cells stably transfected with

empty vector) clones. After numerous cell passages, Dp71-depleted

clones reverted their phenotype and recovered both typical

proliferation of PC12 cells and normal expression of Dp71 (data

not shown), which suggests a link between the presence of Dp71

and PC12 cell growth. To analyze this phenomenon in depth,

unfrozen fresh cultures of six different Dp71-knockdown clones

(AS1-AS6) were analyzed for Dp71 expression and cell prolifer-

ation. Figure 1A shows that AS1 exhibited maximal depletion of

Dp71 protein levels followed by AS5 and -2, compared with PC12

cells and control cells. Therefore, the effect of Dp71 depletion on

cell growth was determined in AS1, -5, and AS2 (the clones with

lowest Dp71 protein levels) by hemocytometer counting, MTT

assay, and BrDU incorporation. All Dp71-depeleted clones tested

exhibited a significant decrease in their growth rates from day 2 of

culture (p = 0.05), peaking at day 5 with reductions of 42–72% and

24–42% by hemocytometer counting (Figure 1B) and MTT assay

(Figure 1C), respectively. In concordance, these mutant clones

displayed a significant decrease of 80–90% in the percentage of

BrdU-positive cells (Figure 1D) compared with control cells. To

ascertain whether reduced rates of cell growth are a consequence

of cell death due to necrosis or apoptosis, AS1, -2, and -5 clones

were analyzed by both trypan blue exclusion and annexin V-

staining assays. Figure S1 shows that the percentage of cell death

and apoptosis was similar between control and AS1 clone (the

most affected Dp71-knockdown clone); thus, impaired prolifera-

tion of Dp71-knockdown cells suggested a possible alteration in the

cell cycle of PC12 cells due to depletion of Dp71.

Effect of Dp71-knockdown on Cell Cycle Progression
To determine whether decreased proliferation of Dp71-depleted

cells is caused by a primary defect in cell cycle, we analyzed cell

cycle progression in asynchronic cultures of control and Dp71-

knockdown clones (AS1, -2, and -5) by Flow cytometric assays

(FACS). Cell cycle profiles of all Dp71-depleted clones tested

exhibited a subtle but reproducible increase of ,10% in G0/G1

phase and concomitant decreases in S (4–6%) and G2/M (5%)

phases relative to control cells (Figure 2A). The absence of pro-

nounced steady-state changes in the cell cycle profile of mutant

cells would not preclude differences in the transition rate through

cell cycle checkpoints. Then, to analyze the effect of Dp71

depletion on G0/G1 phases specifically, control and AS1 cell

cultures were blocked at G0/G1 by serum starvation and then

released into the cell cycle by adding serum. At 12 h post-release,

both cell cultures initiated transition from GO/G1 to S; however,

while control cells continued to shift toward S phase at up to 19 h

post-release, Dp71-depleted cells stopped moving from G0/G1 to

S from 12 h post-release (Figure 2B). At 13 h post-release control

cells started to pass from S to G2/M as well as from G2/M to G0/

G1, while a small fraction of Dp71-knockdown cells seems to

transit from G0/G1 to S. This data suggests that Dp71-depleted

cells have a delayed transition from G0/G1 to S or alternatively, a

pool of this clone is unable to exit G0/G1. Experiments of S phase

arrest with double treatment with thymidine and further release

into cell cycle by thymidine withdrawal evidenced that S-G2/M

transition of Dp71-knockdown cells is not defective; in fact,

progress from S to G2/M appeared to occur faster in Dp71-

depleted cells than in control cells (8 vs. 12 h) (Figure S2).

Next, control and Dp71-knockdown cells were exposed to

different concentrations of nocodazole (0.2, 0.4, and 0.7 mg/ml)

for 36 h to induce mitotic arrest. Flow cytometric analysis showed

that control cells were arrested efficiently at G2/M with 0.7 mg/ml

of nocodazole, while Dp71-depleted cells exhibited a biphasic,

dose-response behavior, with mitotic arrest at low drug concen-

trations (0.2 mg/ml) and resistance to G2/M block at higher drug

concentrations (0.7 mg/ml) (Figure 3A). It is noteworthy that

Dp71-knockdown cells treated with 0.4 or 0.7 mg/ml of nocoda-

zole showed a prominent peak at sub-G0/G1 that might

correspond with cells undergoing apoptosis (Figure 3A). To

address this possibility, the morphology of control and Dp71-

depleted cells exposed to nocodazole was analyzed by confocal

microscopy. Control cells treated with the highest concentration of

nocodazole (0.7 mg/ml), as well as Dp71-depleted cells treated

with the lowest concentration of nocodazole (0.2 mg/ml), displayed

the classical morphology of cells at mitotic prophase, evidenced by

increased nuclear size and chromosome condensation (yellow

arrows), while the Dp71-depleted cells treated with higher drug

concentrations (0.4 and 0.7 mg/ml) exhibited morphological

alterations that are consistent with apoptosis, including cell

shrinkage, pyknosis, extensive plasma membrane blebbing, and

karyorrhesis (white arrows) (Figure 3B). The fate of cells arrested at

mitosis is decided by two opposite networks, one that involves

activation of the caspase-dependent cell death pathway, and

another that controls exit of mitosis through degradation of cyclin

B1 (mitotic slippage) [22,23,24], Therefore, the expression of

cycline B1 was evaluated in Dp71-depleted cells at 0, 12, 24, 36

and 48 hrs of nocodazole treatment (0.2 mg/ml). Figure 3C shows

that cycline B1 levels remained constant during nocodazole-

induced mitotic arrest in both control and Dp71-depleted cells,

which supports the hypothesis that Dp71-depleted cells undergo

mitotic death.

The abnormal behavior displayed by Dp71-knockdown cells in

response to nocodazole treatment precluded comparative analysis

of cell cycle progression from G2/M between control and mutant

cells, but evidenced that Dp71-depleted cells might have altered

mitosis.

Distribution of Dp71 in Control and Dp71-knockdown
Cells in Mitosis and Cytokinesis

As a first step to ascertain whether Dp71 might possess a

functional contribution to mitosis, immunofluorescence localization

of Dp71 was monitored in control and Dp71-depleted cells that

were previously released to cell division from a thymidine-induced S

phase arrest. Cell preparations were co-stained with either a-tubulin

to detect mitotic spindles and midbody in cells undergoing

metaphase-anaphase or cytokinesis, or actin, to decorate the

cleavage furrow in cells in cytokinesis. Because b-dystroglycan, a

well-characterized Dp71-associated protein, is thought to be

involved in cell cycle modulation and has been localized to cleavage

furrow and midbody in cytokinesis [25], its spatial distribution was

compared with that of Dp71. Confocal microscopy analysis showed

that Dp71 was localized throughout the cell body of control cells,

but with greatest intensity at metaphase mitotic spindle and poles,

where it co-localized with a-tubulin (Figure 4A, upper panels). As

expected, Dp71 immunostaining was virtually absent in mitotic

spindles of Dp71-depleted cells (Figure 4A, lower panels).

Immunolabeling of b-dystroglycan and a-tubulin co-localized to

mitotic spindle of control cells, accumulating to the greatest degree

at polar regions of mitotic spindle (Figure 4B, upper panels).

Interestingly, b-dystroglycan immunostaining exhibited a marked

reduction in whole body of Dp71-depleted cells, but continued to be

enriched to a certain extent in mitotic spindle poles, which suggests

Knockdown of Dp71 Impairs PC12 Cells Cycle
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that secondary interactions with mitotic spindle proteins may

partially stabilize b-dystroglycan in the absence of Dp71 (Figure 4B,

lower panels). With respect to cytokinesis of control cells, Dp71

labeling became enriched in cleavage furrow (Figure 5A, upper

panels) and with greatest intensity in midbody (Figure 5B, upper

panels) of dividing cells, co-localizing with actin and a-tubulin

respectively. In contrast, Dp71-knockdown cells displayed a faint or

almost undetectable signal for Dp71 in cleavage furrow (Figure 5A,

lower panels) and midbody (Figure 5B, lower panels). Likewise, b-

dystroglycan staining accumulated in cleavage furrow (Figure 5C,

upper panels) and midbody (Figure 5D, upper panels) of control

cells in division, but to a lesser extent in Dp71-depleted cells

(Figures 5C and D respectively, lower panels).

Knockdown of Dp71 Expression Decreases Lamin B1
Levels

As lamin B1 is critical for mitosis, functioning in spindle

assembly [26], chromosome segregation, and post-mitotic nuclear

assembly [27] and was previously found associated with Dp71 in

HeLa cell nuclei at our laboratory [28], we hypothesized that

participation of Dp71 in mitosis might take place via its interaction

with lamin B1. To approach this hypothesis, as a first step,

potential interaction between Dp71 and lamin B1 in PC12 cells

was evaluated. Total protein extracts from PC12 cells were

immunoprecipitated with an anti-lamin B1 antibody and precip-

itated proteins were analyzed by immunoblotting with antibodies

directed specifically to either lamin B1 or Dp71. Figure 6A shows

that lamin B1 was pull-down together with Dp71 by the anti-lamin

B1 antibody, whereas none of these two proteins was recovered

when an irrelevant antibody (IgG0) was used for immunoprecip-

itation, establishing the specificity of the assays. To test whether

Dp71 directly binds to lamin B1 in vitro, pull-down assays were

carried out employing GST-Dp71 fusion protein as affinity matrix

and PC12 nuclear extracts. GST (negative control) and GST-

Dp71 proteins, expressed and purified from JM109 bacterial

cultures, were immobilized on glutathione-Sepharose beads and

incubated with PC12 nuclear extracts. Nuclear proteins that

bound specifically to GST or GST-Dp71 were eluted and

analyzed by immunoblotting with anti-lamin B1 antibody. As

shown in Figure 6B, lamin B1 was found associated with GST-

Dp71, but not with GST alone.

To ascertain whether the interaction of Dp71 with lamin B1 is

functionally relevant, we analyzed whether or not the knockdown

of Dp71 alters lamin B1 protein levels. Hence, total protein

extracts from control cells and Dp71-knockdown cells (AS1, -2,

and -5 clones) were analyzed by Western blotting with antibodies

raised against lamin B1 and actin (loading control). It is

noteworthy that a drastic reduction in the lamin B1 protein band

was observed in all Dp71-depleted clones tested compared with

control cells (Figure 6C).

Given the negative effect of Dp71 depletion on lamin B1, we

were prompted to analyze the protein levels of lamin A/C and

emerin, (nuclear envelope proteins functionally related with lamin

B1) in Dp71-knockdown cells. Control and Dp71-depleted cells

were fractionated into total nuclear and cytoplasmic extracts for

Figure 1. Knockdown of Dp71 expression decreases the proliferation of PC12 cells. Dp71 protein levels were measured by western
blotting in different Dp71-depleted clones (AS1–AS6) with the anti-Dp71 antibody 2166 and compared with those of PC12 cells and control cells
(control). Membranes were stripped and reprobed with an anti-actin antibody for normalization. Migration of protein markers are denoted on the
right (A). Cell proliferation of control and AS1, -2, and -5 cells was monitored over a 5-day period by both direct counting of viable cells via tripan blue
exclusion (B) or MTT assay (C) and after 2 days of culturing, by BrdU incorporation using flow cytometry (D). Data are expressed as mean 6 standard
error of mean (SEM) of three independent experiments. Asterisks in Panel D denote significant differences (p,0.05).
doi:10.1371/journal.pone.0023504.g001
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Western blot analysis utilizing antibodies against lamin A/C,

emerin, and actin (loading control). It is noteworthy that while

lamin A/C exhibited exclusive nuclear distribution in both control

and Dp71-depleted cells, emerin displayed aberrant cytoplasmic

distribution in Dp71-knockdown cells compared with control cells

(Figure S3).

Decreased Lamin B1 Labeling in Dp71-depleted Cells in
Mitosis and Cytokinesis

The spatial distribution of lamin B1 during mitosis and

cytokinesis was investigated by immunofluorescence and confocal

microscopy analysis in control and Dp71-knockdown cells, which

were previously released from thymidine-induced S phase arrest.

Co-staining of a-tubulin was employed to observe mitotic spindle

and midbody in cytokinesis. As can be seen in Figure 7A (upper

panels), immunolabeling of lamin B1 decorated the nuclear

envelope in control cells at interphase, while in early mitosis

(metaphase), its staining becomes diffuse due to nuclear disinte-

gration, and co-localized with mitotic spindles at the chromosomes

periphery (arrow). In Dp71-depleted cells, immunolabeling of

lamin B1 was markedly reduced at the nuclear envelope in

interphase as well as mitotic spindle poles and peripheral region

surrounding the chromosomes in mitosis (arrow) (Figures 7A,

lower panels). At cytokinesis, control cells exhibited distribution of

lamin B1 at both the reforming nuclear envelope surrounding the

chromosomes, and midbody, where it co-localizes with a-tubulin

(arrow) (Figure 7B, upper panels), while Dp71-depleted cells

displayed a drastic reduction of lamin B1 staining in both of these

structures (Figure 7B, lower panels). Interesting, we routinely

observed a higher proportion of cells at cytokinesis in Dp71-

knockdown cell cultures (arrows) than in those of control cells

(,3:1 ratio), which might indicate a failure of mutant cells to

complete cytokinesis.

Discussion

Previously, by characterization of Dp71-depleted PC12 cells

obtained by antisense treatment, we established the participation

of dystrophin Dp71 in NGF-based neuronal differentiation and

adhesion [15,16,17]. In this study, we characterized in further

detail a novel phenotype of the Dp71-depleted cells, which is their

decreased growth rate. First, we confirmed the altered prolifera-

tion of Dp71-depleted cells by different techniques, including

standard hemocytometer counting, BrdU incorporation, and

MTT assays. Furthermore, we showed by Annexin V-staining

assay that the cell growth deficiency of these cells is not related

with apoptosis, indicating a cell cycle defect as a feasible cause.

Flow cytometry-based analysis of the cell cycle in asynchronic cell

cultures revealed a subtle but reproducible increase in the G0/G1

phase of Dp71-depleted cells compared with control cells.

Consistent with this, the cell cycle progress of cell cultures released

from serum starvation-induced G0/G1 block showed a signifi-

cantly increased accumulation of Dp71-depleted cells in G0/G1

compared with control cells. These findings suggest a delay in the

Figure 2. Dp71-depleted cells display altered cell cycle profile and delayed G1-S transition. Control and Dp71-knockdown cells (clones
AS1, -2, and -5), cultured for 48 h, were fixed and stained with propidium iodide. DNA content was analyzed by flow cytometry to obtain cell
percentages at each cell cycle phase with the use of ModFif software (A). Control and AS1 cell cultures were synchronized at G0/G1 cell cycle phase
by serum starvation for 48 h and then released into the cell cycle. At the indicated times, the cells were fixed and progress of the cell division cycle
was analyzed by flow cytometry (B). Cell content (%) at each cell cycle phase is shown. Data are expressed as mean 6 standard error of mean (SEM) of
three independent experiments. Asterisks denote significant differences (p,0.05) between the respective phases of AS1 and control cells.
doi:10.1371/journal.pone.0023504.g002
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transition of Dp71-depleted cells from G0/G1 to S, or that a fra-

ction of these cells is unable to exit G0/G1.

Unexpectedly attempts to arrest Dp71-depleted cells in G2/M

by nocodazole exposure caused an increased incidence of cells

with ,2n DNA content, presumably apoptotic, which was absent

in the control cells. Mitotic cell death occurs in response to anti-

mitotic drugs, and a mechanism that might underlie this

phenomenon has been recently proposed [22,23,24,29]. These

authors postulate that cell fate is determined by two competing

networks that function in opposite directions during mitotic arrest,

one that involves activation of the caspase-dependent cell death

pathway and another that controls degradation of cyclin B1, thus,

exit mitosis (mitotic slippage). Therefore, if cyclin B1 levels fall

below the mitotic-exit threshold first, slippage occurs. If the death

threshold is breached first, the cell dies in mitosis. Thus, it appears

that Dp71-deficient cells exposed to nocodazole are unable to

adapt to the spindle assembly checkpoint before dying by

apoptosis. Consistent with this, we found no substantial differences

in cyclin B1 levels between control and Dp71-depleted cells

released from nocodazole-induced G2/M block. During mitotic

arrest caused by microtubule-inhibiting drugs, transcription is

inhibited [30,31]; thus, it has been proposed that absence of

Figure 3. Induction of apoptosis by nocodazole exposure of Dp71-depleted cells. (A) Asynchronous cultures from control and Dp71-
knockdown cells (AS1) were incubated for 36 h in normal conditions (-) or with nocodazole at the indicated concentrations. Then, cells were fixed and
stained with propidium iodine for flow cytometry analysis. Sub-G0 cell population in AS1cells is denoted by an arrow. (B) Nocodazole-treated control
and AS1 cells were stained with propidium iodide, adhered to coverslips, and analyzed by fluorescence confocal microscopy. DIC, differential
interphase contrast. Merged images are shown on right panels. White arrows point to membrane protrusions of apoptotic cells and yellow arrows to
DNA arrangement in mitotic-arrested cells. Bar = 10 mm. (C) Total protein extracts obtained from control and Dp71-depleted cells treated with 0.2 mg/
mL nocodazole were analyzed by western blotting with an anti-cycline B1 antibody. Membranes were stripped and reprobed with an anti-actin
antibody for normalization. Migration of protein markers are denoted on the right. Relative protein levels of cycline B1 in untreated control cells were
set at 1. Results are expressed as mean 6 Standard deviation (SD) of three independent experiments. Asterisk denotes significant differences
(p,0.05). Data are expressed as mean 6 standard error of mean (SEM) of three independent experiments.
doi:10.1371/journal.pone.0023504.g003
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transcription in mitotic-arrested cells can trigger apoptosis by

depletion of short-lived, anti-apoptotic proteins such as cIAP-2,

Mcl-1, and FLIP [32,33,34].

Abnormal behavior of Dp71-depleted cells during nocodazole-

induced mitotic arrest prompted us to analyze the distribution of

Dp71 in cells undergoing mitosis and cytokinesis. Interestingly, we

found that Dp71 was targeted to mitotic spindle where it was

spatially associated with tubulin, as well as to cleavage furrow and

midbody in cytokinesis, where it co-localized with actin and

tubulin, respectively. The staining of Dp71 in these particular

structures appears to be specific because it was drastically reduced

in Dp71-depleted cells. As an attempt to sight into the function of

Dp71 in PC12 cell division, we analyzed the effect of Dp71

downregulation on lamin B1 expression; because this protein is an

structural component of the spindle matrix implicated in

microtubule assembly and organization in mitosis [26,27,35] and

was found associated with Dp71 in the nuclei of HeLa cells in our

previous work [28]. Thus, we envisaged that Dp71 may participate

in PC12 mitosis through its binding to lamin B1. Consistent with

this hypothesis, we revealed by immunoprecipitation and pull-

down assays that lamin B1 binds to Dp71 in PC12 cells.

Furthermore, lamin B1 localizes to mitotic spindle and midbody

in cells at cytokinesis, cell areas where Dp71 was also targeted. It is

noteworthy that Dp71-depleted cells exhibited decreased lamin B1

total protein levels and reduced immunostaining of this protein in

mitotic spindle and midbody, which implies that Dp71 and lamin

Figure 4. Dp71 and b-dystroglycan localization in control and Dp71-knockdown cells in mitosis. Control and Dp71-depleted (clone AS1)
cells were arrested with thymidine for 24 h and released by culturing for 10 h on glass coverslips with fresh culture medium. Cells were double
stained with antibodies against Dp71 (+78 antibody) and a-tubulin (A) or b-dystroglycan (b-Dg, LG5 antibody) and a-tubulin (B). The specific protein
signals were developed using the appropriate FITC- or TRITC-conjugated secondary antibodies. Cells were counterstained with DAPI (blue color) to
visualize nuclei. After labeling, cell preparations were subjected to confocal microscopy analysis, and single optical Z-sections were selected to show
the distribution of each protein. Merged images are shown in right panels. Arrows and arrow heads denote the presence of Dp71 and b-dystroglycan
in the mitotic spindle poles, respectively. Bar = 5 mm.
doi:10.1371/journal.pone.0023504.g004
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B1 could be functionally linked during cell division. It has been

recently revealed that HeLa cells with reduced expression of lamin

B1 exhibited complex phenotypes, including disorganized mitotic

spindles, presence of binucleated cells, altered chromatin structure,

deterioration in nuclear compartmentalization, and apoptosis [27],

which evidences that lamin B1, aside from its role supporting the

nuclear envelope and providing anchorage sites for chromatin

[36,37,38,39,40,41], it is involved in chromosome segregation and

post-mitotic nuclear assembly. Although we did not found visible

alterations in the mitotic spindle morphology of Dp71-depleted

cells, it is not precluded that decreased levels of lamin B1 due to

down regulation of Dp71 expression could provoke a subtle but

functionally important disruption in the mitosis of these cells; for

instance, a delay in chromosome alignment and segregation, as

reported for HeLa cells with lamin B1 deficit [26]. To test this

hypothesis, control and Dp71-depleted cells released from serum

starvation-mediated G0/G1 arrest would be subjected to time

lapse imaging by using a differential interference contrast

microscopy and a temperature-controlled stage, in order to

monitor progression of mitosis and quantified the time elapsed

from the first sign of chromosome alignment to chromosome

separation in individual cells.

On the other hand, it appears that reduced levels of lamin B1

are related with abnormal accumulation of Dp71-depleted cells in

G0/G1 cell cycle phases. At the onset of mitosis, lamins are

phosphorylated by Cdk1, which leads to the disassembly of

nuclear lamin [42,43,44], and during post-mitotic nuclear

assembly, the majority of the B-type lamin remain attached with

membrane vesicles and thus associate with the nuclear periphery

during membrane deposition, whereas the bulk of A-type lamin is

imported through nuclear pores into the new assembly nucleus

and is incorporated into the lamina [45]. As nuclear reassembly

begins during the late stages of mitosis and continues during the

early stages of G1 phase of the cell cycle [27], it is feasible to

propose that low levels of lamin B1 alter the nuclear assembly and

nuclear compartments organization of Dp71-depleted cells, which

in turn might result in delayed transition from G1 to S. Supporting

this idea, we observed abnormal cytoplasmic accumulation of

Figure 5. Targeting of Dp71 and b-dystroglycan to cleavage furrow and midbody in control and Dp71-depleted cells in cytokinesis.
Control and Dp71-antisense (AS1) cells seeded on coverslips were arrested at S phase with thymidine for 24 h and released by culturing for 10 h with
fresh culture medium. Cells were double stained for Dp71 (Mandra 1 antibody) and actin (H-196) (Panel A), Dp71 (+78) and a-tubulin (B-7) (Panel B), b-
dystroglycan (b-Dg, DgC20 antibody) and actin (H-196) (Panel C), or b-dystroglycan (DgC20) and a-tubulin (B-7) (Panel D). The specific signal was
developed using the appropriate FITC- or TRITC-conjugated secondary antibodies. Cells were counterstained with DAPI (blue color) to visualize nuclei
and subjected to confocal microscopy analysis. Single optical Z-sections were selected to show the distribution of each protein. Merged images are
shown in right panels Arrows point to co-localization of Dp71 or b-dystroglycan with actin at the cleavage furrow (Panels A and C respectively),
whereas arrow heads point to co-localization of Dp71 or b-dystroglycan with a-tubulin at the midbody (Panels B and D respectively). Bar = 5 mm.
doi:10.1371/journal.pone.0023504.g005
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emerin (nuclear envelope protein), which is indicative of defective

nuclear assembly.

In our previous work, we established that Dp71 is crucial for the

stability of dystrophin-associated proteins (DAPs) in PC12 cells, in

such a way that knockdown of Dp71 expression decreases in

consequence the protein levels of different DAPs, including b-

dystroglycan [18], it was recently reported that b-dystroglycan is

targeted to cleavage furrow and midbody of cells undergoing

cytokinesis, and that deficiency of this protein provokes cell cycle

alterations and apoptosis, probably by altering the extracellular-

related kinase (ERK) signaling pathway [25]. According to this, we

found that b-dystroglycan was localized to mitotic spindle,

cleavage furrow, and midbody of cells at cytokinesis. Interestingly,

distribution of b-dystroglycan in these particular zones was

drastically reduced in Dp71-depleted cells, suggesting the

participation of b-dystroglycan in the abnormal proliferation

phenotype of Dp71-depleted cells. If Dp71 and/or b-dystroglycan

were crucial for cytokinesis, then low levels of these proteins might

lead to a failure in cytokinesis. Although the lack of multinucleated

cells in Dp71-depleted cell cultures would appear to act against

this hypothesis, the fact that a higher proportion of cells

undergoing cytokinesis were observed in Dp71-depleted cell

cultures might indicate a delay in this process. To approach this

issue, lived cultures of control and Dp71-depleted cells stably

transfected with GFP-b-dystroglycan (marker of the cleavage

furrow and midbody) and released from G0/G1 arrest, would be

subjected to time-lapse fluorescent microscopy analysis, in order to

track individual cells undergoing mitosis and record the elapsed

time at cytokinesis.

In the light of our results and taking into consideration the well-

characterized function of Dp71 as the scaffolding protein involved

in the clustering of a number of protein-complexes at cell membrane

and cytoskeleton, we propose that Dp71 is a component of the

multi-protein apparatus of mitosis and cytokinesis that might

participate in their assembly and/or maintenance, conferring

stability to some of their components, such as lamin B1 and b-

dystroglycan. Furthermore, as nocodazole interferes with cell-cycle

checkpoints by intereacting with the spindle assembly machinery, it

is tempting to hypothesize that mitotic death underwent by Dp71-

depleted cells may have been due to deficiency of lamin B1, b-

dystroglycan and Dp71 levels, which might cause mitotic spindle

instability, and ultimately high sensitivity of these cells to nocodazole

exposure.

Supporting Information

Figure S1 Altered proliferation of Dp71-knockdown
cells is not related to apoptosis. Control and Dp71-

knockdown cells (AS1) were cultured in normal conditions for

48 h, then cells were harvested, washed, and stained with both

annexin-V-FITC and propidium iodide (PI) to measure early and

late apoptosis by flow cytometry.

(TIF)

Figure S2 S phase transition of control and Dp71-
depleted cells. Control and Dp71-depleted (AS1) cells were

synchronized at S phase by double thymidine treatment (time 0)

and then released into the cell cycle for the indicated time periods.

Cell cycle profiles of fixed cells were analyzed by flow cytometry,

and their graphical representation is shown. Data are the mean 6

standard deviation (SD) of three independent experiments.

(TIF)

Figure S3 Effect of Dp71-knockdown expression on the
subcellular distribution of emerin and lamin A/C.
Control and Dp71-antisense (AS1 clone) cell cultures were

fractionated into Total (T), Cytoplasmic (C), and Nuclear (N)

protein extracts, and equal amounts of each extract (50 mg) were

resolved by SDS-PAGE and subjected to western blotting analysis

using antibodies directed to lamin A/C and emerin. As loading

control, membranes were stripped and reproved with an anti-actin

Figure 6. Dp71 associates with lamin B1 in PC12 cells and Dp71-depleted cells display decrease lamin B1 levels. Nuclear extracts from
control cells were immunoprecipitated with an anti-lamin B1 antibody, or an irrelevant antibody (IgG0) as control. Immunoprecipitated proteins were
analyzed by western blotting with anti-lamin B1 and anti-Dp71 (H4) antibodies (A). GST and GST-Dp71 fusion proteins were expressed in a bacterial
system, purified by incubation of bacterial lysates with glutathione beads, and visualized by SDS-PAGE followed by Coomassie brilliant blue staining.
GST and GST-Dp71 proteins were immobilized on glutathione-Sepharose beads and incubated with PC12 nuclear extracts to perform affinity pull-
down assay (B). Total cell extracts from control and Dp71-depleted (AS1, -2, and -5 clones) cells were resolved by SDS-PAGE and subjected to western
blotting analysis with anti-lamin B1 antibody. Membranes were stripped and reproved with an anti-actin antibody for normalization (C). Migration of
protein standards are indicated on the left.
doi:10.1371/journal.pone.0023504.g006
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antibody. *Overexposed membrane. Position of protein markers is

shown on the left.

(TIF)
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