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A B S T R A C T

Path planning for multiple unmanned aerial vehicles (UAVs) is crucial in collaborative operations 
and is commonly regarded as a complicated, multi-objective optimization problem. However, 
traditional approaches have difficulty balancing convergence and diversity, as well as effectively 
handling constraints. In this study, a directional evolutionary non-dominated sorting dung beetle 
optimizer with adaptive stochastic ranking (DENSDBO-ASR) is developed to address these issues 
in collaborative multi-UAV path planning. Two objectives are initially formulated: the first one 
represents the total cost of length and altitude, while the second represents the total cost of threat 
and time. Additionally, an improved multi-objective dung beetle optimizer is introduced, which 
integrates a directional evolutionary strategy including directional mutation and crossover, 
thereby accelerating convergence and enhancing global search capability. Furthermore, an 
adaptive stochastic ranking mechanism is proposed to successfully handle different constraints by 
dynamically adjusting the comparison probability. The effectiveness and superiority of 
DENSDBO-ASR are demonstrated by the constrained problem functions (CF) test, the Wilcoxon 
rank sum test, and the Friedman test. Finally, three sets of simulated tests are carried out, each 
including different numbers of UAVs. In the most challenging scenario, DENSDBO-ASR success
fully identifies feasible paths with average values of the two objective functions as low as 637.26 
and 0. The comparative results demonstrate that DENSDBO-ASR outperforms the other five al
gorithms in terms of convergence accuracy and population diversity, making it an exceptional 
optimization approach to path planning challenges.

1. Introduction

Unmanned aerial vehicles (UAVs) have been widely used in various fields, such as aerial photography, inspection, and emergency 
rescue, owing to their real-time performance, flexible deployment, and cost-effective maintenance. However, for complex tasks, the 
limitations of the payload capacity and energy storage of a single UAV highlight the benefits of collaborative efforts among multiple 
UAVs. Path planning is a crucial part of planning missions for multiple UAVs, which involves finding the best routes between specified 
starting and ending sites to decrease the length of the path and reduce the chances of collisions [1]. The trajectory optimization 
problem has evolved into a large-scale combinatorial optimization challenge due to the increasing number of UAV swarms [2]. It is 
essential to optimize the trajectory of each UAV at the same time to achieve the overall mission objectives. Additionally, environmental 
factors and interactions among UAVs should be taken into account. Therefore, it is of great interest to investigate efficient techniques 
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for determining the optimal routes in collaborative path planning for multiple UAVs.
In recent years, extensive research has been carried out on cooperative path-planning methods. Path optimization is typically 

addressed using classical approaches and metaheuristic algorithms (MA) [3]. Classical approaches such as artificial potential field [4] 
and rapidly exploring random tree (RRT) [5] have been widely used. Rao et al. [4] introduced a hybrid artificial potential field-A* 
algorithm (APF-A*), which utilizes repulsive force to optimize the A* algorithm’s heuristic function. The results show that the al
gorithm can minimize flight collisions while enhancing safety. Guo et al. [5] considered the limitations of multiple UAVs in terms of 
both spatial and temporal constraints and proposed the RRT* algorithm based on heuristic decentralized prioritized planning 
(HDP-TSRRT*). This method designs the cooperative paths of all UAVs in a hierarchical manner, which enhances the efficiency of 
collaborative path planning. However, these techniques can be time-consuming and may not adequately adjust to uncertainty in 
complex environments. Metaheuristic algorithms have gained attention and have proven to be effective in addressing these drawbacks 
in the last two decades [6]. Inspired by real biological communities, metaheuristic algorithms (MA) with self-learning and adaptive 
properties, such as particle swarm optimization (PSO) [7] and genetic algorithm (GA) [8], can develop practical solutions in difficult 
contexts. Shao et al. [9] proposed a hierarchical optimization approach that combines improved particle swarm optimization and the 
Gaussian pseudo-spectral method (GPM), taking into account the flight time and the dynamic model of the UAV during the evolu
tionary process. The results indicate that the suggested method has better obstacle avoidance and a faster runtime. Yan et al. [10] 
utilized an improved genetic algorithm to solve the path planning problem for multiple UAVs. They also presented an unlocking 
technique to avoid deadlocks. Karthik et al. [11] proposed an improved green anaconda optimization system (IGAOS) to address the 
issue of coverage path planning for UAVs. The results demonstrate that the algorithm expedites the cooperative searching process. 
Despite the approved benefits of MAs, their drawbacks, such as slow convergence and local optima vulnerability, should be considered 
[12,13]. As an increasingly common optimization approach, these issues can be addressed by adopting effective strategies, resulting in 
satisfactory results [14,15].

The dung beetle optimizer (DBO) [16] is a recently developed swarm intelligence algorithm that imitates the behaviors of dung 
beetles, including ball-rolling, dancing, foraging, stealing, and breeding. Although the method is efficient and easy to implement, it has 
specific obstacles. For example, the performance of the system depends on how its parameters are set and adjusted, yet there are no 
clear criteria for identifying the best parameter values. Furthermore, the DBO does not typically guarantee the identification of the 
global optimal solutions, particularly in situations with several objectives and various local optima [17]. Moreover, since DBO was 
originally designed for single-objective optimization, it requires modifications to be applicable to multi-objective optimization situ
ations. The improvement works of DBO have been the subject of extensive systematic research [18,19].

Collaborative multi-UAV path planning plays a crucial role in improving mission execution and reducing costs and energy con
sumption in aviation. An ideal model should give priority to safety and cost considerations, ensuring smooth operation of the system by 
minimizing risks and efficiently managing task allocation. Over the past decades, researchers have successfully developed various path 
planners using metaheuristic algorithms to address trajectory planning problems for UAVs. Ren and Zhang [20] proposed an adaptive 
evolutionary multi-objective estimation distribution algorithm (AEMO-EDA) for high-dimensional multi-objective path planning. Path 
length, threat level, flight height, and spatial coordination cost are the four goals that this method optimizes. However, simultaneously 
optimizing these functions greatly increases the complexity of the model. Ge et al. [21] enhanced the NSGA-III algorithm by incor
porating the local fruit fly optimization algorithm to tackle path planning for multiple UAVs with various constraints. Nevertheless, 
there is potential to reduce the time complexity of the approach. Xu et al. [22] improved the PSO algorithm by using dynamic 
multi-swarm and deep learning strategies to address path planning in the presence of communication limitations. While this approach 
is practical as a single UAV solver for cooperative trajectory planning, it reduces the solution’s complexity at the expense of global 
optimization. Ghambari et al. [23] designed an enhanced non-dominated sorting genetic algorithm-II (ENSGA-II) for multi-objective 
path planning of UAVs. The tests with real data showed that the algorithm has faster convergence speed and better scalability in 
finding solutions. However, the limited path model may reduce flying safety and effectiveness. Wan et al. [24] focused on path 
planning in disaster emergency response and proposed a precise three-dimensional path planning method that reduces both the 
trajectory length and terrain threat level. However, the model should take into account the time cost, which is essential for the ef
ficiency of mission rescue.

In previous research, multi-UAV cooperative path planning problems have typically been modeled as multi-objective optimization 
problems. These problems involve balancing different objectives, such as path length, energy consumption, and threat cost, which are 
in competition with each other. However, these models often overlook the extensive effects of temporal and spatial constraints on 
collaboration, resulting in a disadvantage in practical applications. Moreover, path-planning algorithms based on swarm intelligence 
tend to converge on local optimal solutions, thus reducing their robustness. The objective of this study is to develop a comprehensive 
model that can consider both temporal and spatial synergy constraints to generate more reliable and efficient path-planning solutions. 
In addition, improved multi-objective optimization techniques are utilized to enhance the ability to identify global optimal solutions 
within complex constraints.

However, since multiple conflicting objectives with different constraints need to be optimized simultaneously, dealing with con
strained multi-objective optimization problems is extremely challenging. To effectively solve these problems, it is crucial to use the 
constrained handling technique (CHT). One of the most popular approaches in the present research is the penalty function method 
[25]. This method transforms constrained optimization problems into unconstrained ones by incorporating penalty terms into the 
objective function. However, the efficiency of the algorithm is greatly influenced by the selection of penalty coefficients. Finding an 
appropriate parameter setting is challenging. To avoid adjusting the penalty coefficients, scholars have suggested a novel approach 
that involves separating and comparing objectives and constraints, including the constrained dominance principle (CDP) [26], the ε 
constrained method [27], and stochastic ranking (SR) [28]. The SR method is a widely used approach in constrained optimization that 
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effectively balances feasible solutions with multiple objectives. For example, Balanda et al. [29] proposed a hybrid algorithm called 
SRIFA, which combines the improved firefly algorithm with stochastic ranking. Gu et al. [30] developed an enhanced stochastic 
ranking technique that introduced a fitness mechanism and a dynamic probability operator to achieve a balance between solution 
convergence and diversity. Due to its simplicity and efficiency, stochastic ranking is suitable to be combined with multi-objective 
algorithms for collaborative constrained path planning optimization. It can significantly enhance computing speed while maintain
ing the quality of candidate solutions. However, when facing intricate challenges like multi-UAV cooperative path planning, it in
creases selection pressure and reduces diversity, leading to poor candidate solutions and path generation.

Motivated by the above considerations, a directional evolutionary non-dominated sorting dung beetle optimizer combined with 
adaptive stochastic ranking (DENSDBO-ASR) is presented for solving multi-UAV path planning. The main contributions are summa
rized as follows:

● A directional evolutionary multi-objective dung beetle optimizer based on non-dominated sorting (DENSDBO) is developed. A 
directional evolutionary strategy is introduced, including directional crossover and mutation operators, in which directional 
crossover helps to improve convergence speed and accuracy and directional mutation helps to enhance global search capability.

● An adaptive stochastic ranking mechanism is proposed to handle the multiple constraints, which dynamically adjusts the com
parison probability according to the current evolutionary stage and constraint violation degree. By utilizing information from 
infeasible solutions, this mechanism can improve the quality of the candidate solutions, thus obtaining effective paths for UAVs.

● The DENSDBO algorithm is incorporated with the adaptive stochastic ranking mechanism to guide the search toward optimal 
solutions, thereby generating safe and feasible flight paths for multi-UAV path planning. The evaluation of DENSDBO-ASR through 
benchmark functions and UAV simulation experiments demonstrates its effectiveness.

The rest of this paper is organized as follows: Section 2 illustrates the related research background. In Section 3, the multi-UAV path 
planning model is described in detail. Section 4 presents the novel DENSDBO-ASR algorithm. In Section 5, the experimental results of 
DENSDBO-ASR are analyzed. Section 4.8 describes the implementation of DENSDBO-ASR in UAV path planning. Section 6 conducts 
the UAV planning simulation experiments. Section 7 gives the documented discussion. Finally, Section 8 provides a summary of the 
paper.

2. Related research background

2.1. Constrained multi-objective optimization problem

Generally, the multi-objective optimization problem with constraints can be formulated by equation (1). 

min F(x) = (f1(x), f2(x),…, fm(x))T

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

gj(x) ≤ 0, j = 1,…, p

hj(x) = 0, j = p + 1,…, q

x = (x1, x2,…, xD)
T
∈ S

(1) 

where S is decision space, x is the D-dimensional decision vector, lbk ≤ xk ≤ ubk; m is the dimension of the objectives; lbk and ubk are 
the lower and upper bounds of the kth dimensional decision variable. gj(x) and hj(x) represent the jth inequality and equality con
straints, respectively. p and (q-p) denote the number of inequality and equality constraints, respectively.

For equality constraints, the following operations can be performed according to equation (2). 

|h(x)| − δ ≤ 0 (2) 

where, δ is a positive tolerance value to relax the equality constraints.
In general, the constraint violation degree of a decision vector x on the jth constraint can be expressed by equation (3). 

cvj(x)=
{

max
(

0, gj(x)
)
,1 ≤ j ≤ p

max
(
0,
⃒
⃒hj(x)

⃒
⃒ − δ

)
, p + 1 ≤ j ≤ q

(3) 

Then, the total constraint violation degree can be calculated by equation (4). 

CV(x)=
∑k

j=1
cvj(x) (4) 

The CV reflects the infeasibility of individual x in the population. If the CV of a solution is 0, then it is a feasible solution; otherwise, 
it is an infeasible solution.

When two feasible solutions x1 and x2 satisfy equation (5), the solution individual x1 Pareto dominates x2. 

∀i = 1, 2,…,m, fi(x1) ≤ fi(x2)

∧∃j = 1, 2,…,m, fj(x1) ≤ fj(x2)
(5) 
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If there is no other solution that can Pareto dominate x, then solution x is called a non-dominated solution. The set composed of 
non-dominated solutions is the Pareto set (PS), and the mapping of PS in objective space is the Pareto front (PF).

2.2. Multi-UAV path planning algorithms

In the existing research, multi-UAV path planning methods are divided into three categories: 1) deterministic algorithms, such as 
the A-star (A*) algorithm and the Dijkstra algorithm [31]; 2) stochastic algorithms, such as particle swarm optimization (PSO) and the 
ant colony algorithm (ACO) [7,32]; 3) learning-based algorithms, such as the neural networks and deep learning [33]. Deterministic 
algorithms, based on mathematical principles, provide UAVs with precise routes and are suitable for static environments. Zhang et al. 
[31] proposed an improved A-star algorithm that includes bidirectional sector extension and variable step-size search techniques to 
avoid static radar threats, thereby increasing the efficiency of multi-UAV path planning. Mandloi et al. [34] presented two variants of 
the A* algorithm: Theta* (Theta-star) and Lazy Theta* (Lazy Theta-star), which effectively address the constraints of the A* algorithm 
in practical scenarios. However, when dealing with extensive settings and a significant number of UAVs, the computational cost of 
deterministic methods can be extremely high. For tasks that demand real-time response, such as military surveillance or disaster 
management, deterministic algorithms may face difficulties in meeting the specified time constraints.

Stochastic algorithms exhibit flexibility and adaptability when it comes to path planning in complex or dynamic environments. The 
ACO algorithm emulates the foraging behavior of ants to find the optimal path through pheromone transmission. For the static path 
planning problem, Wu et al. [32] proposed an adaptive ant colony optimization algorithm. A heuristic factor with directional infor
mation is introduced to accelerate the convergence speed, while the state transfer rule is improved to enhance the efficiency of path 
search. The PSO algorithm optimizes paths by modeling the social behavior of bird swarms. Yu et al. [7] employed the simulated 
annealing algorithm to improve the updating strategy of the particle and used the quantum learning approach to accelerate the 
convergence of the process. The results indicate that the improved particle swarm optimization algorithm has superior robustness in 
complex situations. However, stochastic algorithms sometimes tend to converge in the local search area rather than finding a globally 
optimal solution. These algorithms often require significant parameter adjustment to achieve a balance between exploration and 
exploitation.

Learning-based algorithms use machine learning techniques to predict and plan paths with adaptivity and flexibility. Neural 
networks create a model to predict paths by learning a large amount of data. Sanna et al. [35] used artificial neural networks to 
establish the relationship between the UAV’s current states and its subsequent actions for the path planning problem in complex urban 
networks. The multi-UAV path search is accomplished by first learning the search strategy of a single UAV and then replicating it to 
multiple UAVs. Chen et al. [36] proposed an architecture that simplifies the path planning of multi-UAVs in unknown environments. 
The proposed architecture involves centralized training and decentralized execution. However, learning-based algorithms typically 
require substantial quantities of data to effectively train the model, which can be challenging to get in real-world applications. 
Moreover, the process of training complex neural networks or deep learning models sometimes needs significant computational 
resources.

Inspired by real biological communities, metaheuristic algorithms have been extensively used in collaborative multi-UAV path 
planning because of their capacity to handle environmental uncertainties and their low computational cost [37]. Recent studies have 
shown that bio-inspired methods are a primary way for achieving high-quality solutions in complex and dynamic environments with 
multiple constraints [6]. Jiaqi et al. [38] presented an adaptive grey wolf optimization algorithm for multi-UAV path planning. The 
enhancement incorporates the spiral update position method and an adaptive mechanism to adjust the number of leaders. The results 
demonstrate that the proposed method can effectively improve the convergence speed of the algorithm and shorten the UAV flight 
time. Kumar et al. [39] developed two variants of the grey wolf optimization algorithm: the improved grey wolf optimizer and the 
variable-weighted grey wolf optimizer. By integrating these two variants, an enhanced variable weight grey wolf optimization al
gorithm based on reinforcement learning (RLV-GWO) is proposed to solve the multi-UAV path planning problem. Duan et al. [40] 
proposed a dynamic discrete pigeon-inspired optimization to address the path planning problem in a multi-UAV cooperative mission. 
The original pigeon-inspired optimization is enhanced by incorporating a sigmoid model with response thresholds, and a probabilistic 
graph is established to guide the UAV navigation. Yu et al. [41] combined the simulated annealing algorithm and whale optimization 
algorithm to propose a hybrid approach called SA-WOA for the multi-UAV cooperative detection problem. The method includes 
adaptive weights with Levy flight characteristics to optimize the Metropolis criterion and integrates an adaptive tempering mechanism 
into the optimization process. The results confirm the effectiveness of SA-WOA in realizing multi-UAV cooperative path planning with 
strong stability and search accuracy.

Previous research has focused on improving specific algorithms, ignoring the diversity and complexity of multi-UAV cooperative 
scenarios. It is impossible to develop an algorithm that can be applied to any scenario. Furthermore, according to the “No Free Lunch” 
theorem [42], a determined metaheuristic cannot perform well in all types of optimization problems. This fact motivates researchers to 
improve current algorithms or develop new ones, which is the primary motivation for this study.

2.3. Dung beetle optimize

As a typical swarm intelligence algorithm, DBO simulates the ball-rolling, dancing, foraging, stealing, and reproduction behaviors 
of dung beetles. The DBO classifies the population into four search agents: ball-rolling dung beetle, brood ball, small dung beetle, and 
thief. Here is a brief introduction.

Ball-rolling dung beetles rely on celestial cues to roll their dung balls in a straight line. The position of the beetle can be expressed by 
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equations (6) and (7). When encountering obstacles, the beetle uses a tangent function to determine a new rolling direction, as shown 
in equation (8). 

xi(t+1)= xi(t) + α × k × xi(t − 1) + b × Δx (6) 

Δx= |xi(t) − Xw| (7) 

xi(t+1)= xi(t) + tan(θ)|xi(t) − xi(t − 1)| (8) 

where t is the current iteration, xi(t) represents the position of the ith dung beetle after the tth iteration, k∈ (0, 0.2] represents the 
deflection coefficient, b is a constant value, α is a natural coefficient assigned to 1 or -1, Δx simulates changes in light intensity, Xw is 
the global worst position, θ is the deflection angle.

To choose a suitable spawning site, female dung beetles use a boundary selection strategy defined in equation (9). The position of 
the egg ball changes dynamically during the iteration process, as shown in equation (10). 

Lb∗ = max(X∗ × (1 − R), Lb)
Ub∗ = min(X∗ × (1 − R),Ub) (9) 

Bi(t+ 1)=X∗ + b1 ×(Bi(t) − Lb∗)+ b2 × (Bi(t) − Ub∗) (10) 

where Lb and Ub are the lower and upper bounds of the search space, Lb∗ and Ub∗ represent the lower and upper bounds of the 
spawning area, R = 1 − t/Tmax, and Tmax denotes the maximum number of iterations. Bi(t) is the position of the ith egg at the tth 
iteration, b1 and b2 are two random vectors with a size of 1× D, and D is the dimension of the search space.

Small dung beetles burrow out of the ground to search for food within optimal foraging areas, as defined in equation (11). The 
position of the small dung beetle is updated using equation (12). 

Lbb = max
(
Xb × (1 − R), Lb

)

Ubb = min
(
Xb × (1 − R),Ub

) (11) 

xi(t+1)= xi(t)+C1 ×
(

xi(t) − Lbb
)
+C2 ×

(
xi(t) − Ubb

)
(12) 

where Xb represents the global optimal position, Lbb and Ubb are the lower and upper bounds of the optimal foraging area, respectively. 
xi(t) represents the position of the ith dung beetle at the tth iteration, C1 is a random number subject to a normal distribution, and C2 is 
a random vector within the range of (0,1).

Thieves steal dung balls from other beetles, and their location is updated using equation (13). 

xi(t+1)=Xb + S× g ×
(
|xi(t) − X∗| +

⃒
⃒xi(t) − Xb

⃒
⃒
)

(13) 

where g is a random vector with the size of 1× D, and S is a constant value.

3. UAV path planning model

A brief introduction to the collaborative multi-UAV path planning problem is given in Section 3.1. In Section 3.2, we define the path 
in three-dimensional space. Finally, the detailed objective functions and constraints are depicted in Section 3.3.

3.1. Problem description

In the scenario of collaborative path planning, multiple UAVs work together to accomplish specific tasks in a complex environment. 
Multi-UAV path planning involves determining optimal paths for UAVs to minimize the overall flight path and avoid any collisions. 
Several factors need to be considered, such as cooperative constraints among UAVs (temporal and spatial synergy constraints) and UAV 
maneuvering constraints (flight speed, distance, altitude, and turning angle). Therefore, this paper proposes a multi-UAV path 
planning model in a three-dimensional task space to realize optimal path planning for multiple UAVs.

3.2. Path representation

In this paper, the rasterized map is used to represent the flight space. The rasterization method divides the x-axis, y-axis, and z-axis 
into a series of sub-areas with a certain step. Then, the flight space of the UAV can be expressed by equation (14). 

Ω=
{(

xi, yj, zk

)⃒
⃒
⃒ i=1,2,…, nx +1, j=1, 2,…,my +1, k=1,2,…, lz +1

}
(14) 

where, nx, my, lz represent the total number of sub-regions divided by the x-axis, y-axis, and z-axis, respectively.
Assuming that the UAV’s starting point is S =

(
x0, y0, z0

)
and the endpoint is E =

(
xn+1,yn+1,zn+1

)
. The flight path of the UAV can 

be represented as a combination of a series of discrete points, where the two adjacent points are linked by a straight-line segment. For 
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convenience, we use P to denote the flight path of the UAV, then the discrete path can be described by equation (15). 

P={p0, p1,…, pk,…pn+1} (15) 

where, pk =
(
xk,yk, zk

)
, n is the number of path points.

In order to ensure the smoothness of the UAV, B-spline curves are adopted to define the UAV’s desired path, which guarantees the 
curvature continuity of the whole path curve. The UAV path includes a start point, N waypoints, and a target point as Path = {p0,…,pi,

pi+1, pi+2,…,pn+1}, which is the solid black line in Fig. 1. The path can be determined by n control points wi =
(
xi, yi, zi

)
and a pre

defined path smooth strategy. The control points can be any point in space, enabling the UAV to avoid danger zones by moving 
backwards. The B-spline curve requires several control points to define complex path curves. It allows the UAV to move flexibly and 
avoid obstacles, which is essential for the stable flight of the UAV.

3.3. Cost function and performance constraints

3.3.1. Length cost
The path length is a significant factor in determining the optimal path. Generally speaking, the shorter the path length, the less the 

flight time and fuel consumption. The function fL is the length cost of the UAV, which can be calculated by equations (16) and (17). 

fL =
∑M

i=1

∑N

k=1
li,k (16) 

li,k =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
xi,k+1 − xi,k

)2
+
(

yi,k+1 − yi,k

)2
+
(
zi,k+1 − zi,k

)2
√

(17) 

where, li,k represents the distance cost of the ith UAV on the kth path segment, 
(

xi,k, yi,k, zi,k

)
is the coordinate of the kth UAV at the kth 

point.

3.3.2. Altitude cost
A reasonable flight altitude can avoid ground obstacles and guarantee flight safety. The flight altitude cost fH can be expressed by 

equations (18) and (19). 

fH =
∑M

i=1

∑N

k=1
ui,k (18) 

ui,k =

⎧
⎨

⎩

zi,k − hmax, if zi,k > hmax
hmin − zi,k, if zi,k < hmin
0, otherwise

(19) 

where, u is the penalty function for the flight altitude, hmax and hmin are the maximum and minimum altitude for UAV flight, 
respectively.

3.3.3. Threat cost
This paper mainly considers the threat cost from the terrain and the environmental obstacles, which is calculated by equations 

(20)–(22). 

Fig. 1. Examples of the B-spline curve for smoothing paths.
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fO =
∑M

i=1

∑N

k=1

sterrain
i,k +

∑M

i=1

∑N

k=1

∑O

m=1
sobstacle
i,k,m (20) 

with 

sterrain
i,k =

{

0, if zi,k − zinterp

(
xi,k, yi,k

)
< hsafe

1, otherwise
(21) 

sobstacle
i,k,m =

{
0, if di,k > ds + Rm⃒
⃒dsafe + Rm − di,k,m

⃒
⃒, otherwise (22) 

where, sterrain
i,k and sobstacle

i,k,m are the penalty functions for the terrain and obstacle threat, zi,k is the fight height of the UAV to the ground, 

zinterp

(
xi,k, yi,k

)
is the height of the ground at 

(
xi,k,yi,k

)
, hsafe is the minimum safe fight height, di,k,m is the distance from the ith UAV to 

the center of the mth obstacle, ds is the danger zone radius, Rm is the radius of the mth obstacle.

3.3.4. Time cost
In multi-UAV path planning, the flight speeds and mission execution times of different UAVs need to be synchronized, which can 

ensure that each UAV successfully completes tasks within the corresponding time, hence improving overall efficiency. Assume that all 
UAVs start from different starting points at the same time. By setting a commanded arrival time tC, the multiple UAVs can work 
together to complete the tasks on time. Based on the speed and flight length of the UAV, the actual time range tr for the UAV to reach 
the endpoint can be determined, which is defined by equation (23). 

tr =
[
ti
min, t

i
max
]
,

ti
min =

Li

vi
max

,

ti
max =

Li

vi
min

(23) 

where, Li represents the total length of the trajectory of the ith UAV, vi
max and vi

min are the maximum and minimum flight speeds of the 
UAV, respectively.

Then, the time cost fT is expressed by equation (24). 

fT =

{
0, if ti

min ≤ tC ≤ ti
max

|ti − tC|, otherwise
(24) 

where, ti is the actual time for the ith UAV to reach the endpoint.

3.3.5. Turning angle constraint
The turning angle φi,k of the ith UAV is the angle between two adjacent path segments, given by equation (25). 

φi,k = arctan
(

yi,k+2 − yi,k+1

xi,k+2 − xi,k+1

)

− arctan
(

yi,k+1 − yi,k

xi,k+1 − xi,k

)

(25) 

The maximum turning angle φmax
i,k is applied to obtain feasible flight paths. Then, the turning angle constraint C1 is calculated by 

equations (26) and (27). 

C1 =
∑M

i=1

∑N

k=1
qi,k (26) 

with 

qi,k =

{
0, if

⃒
⃒φi,k

⃒
⃒ > φmax

i,k

1, otherwise
(27) 

where, qi,k is the penalty function for the turning angle φi,k.

3.3.6. Climbing slope constraint
The climbing angle θi,k of the ith UAV refers to the angle between two adjacent path segments onto the horizontal plane, which is 

calculated by equations (28) and (29). 
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θi,k = arctan
(

zi,k+2 − zi,k+1

li,k+2,k+1

)

− arctan
(

zi,k+1 − zi,k

li,k+1,k

)

(28) 

with 

li,k+1,k =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
xi,k+1 − xi,k

)2
+
(

yi,k+1 − yi,k

)2
√

(29) 

The climbing slope constraint C2 is expressed by equations (30) and (31). 

C2 =
∑M

i=1

∑N

k=1
qi,k (30) 

with 

qi,k =

{
0, if

⃒
⃒θi,k
⃒
⃒ > θmax

i,k

1, otherwise
(31) 

where, qi,k is the penalty function for the climbing angle θi,k, θmax
i,k is the defined maximum climbing angle.

3.3.7. Flight distance constraint
There is a minimum straight-line distance limit for UAVs, which means that the UAV cannot change direction and turn frequently in 

the course. Setting the minimum straight-line flight distance constraint can reduce the UAV’s flight time and fuel consumption. The 
flight distance constraint C3 is calculated by equations (32) and (33). 

C3 =
∑M

i=1

∑N

k=1
qi,k (32) 

with 

qi,k =

{
0, if li,k > lmin
1, otherwise (33) 

where, qi,k is the penalty function for the flight distance, li,k represents the distance of the ith UAV on the kth path segment, lmin is the 
minimum straight flight distance.

3.3.8. Spatial collision constraint
The spatial collision constraint C4 is to prevent airborne collisions between multiple UAVs and is defined by equations (34) and 

(35). 

C4 =
∑M

i=1

∑N

k=1

qi,k (34) 

with 

qi,k =

{
0, if di− j,k > dus
1, otherwise (35) 

where, qi,k is the penalty function for the spatial collision, di− j,k is the minimum distance between the trajectory points of the ith UAV 
and the jth UAV during flight, dus is the minimum safe flight distance between UAVs.

In summary, the overall objective optimization model can be expressed by equations (36) and (37). 

min F(x) = (f1(x), f2(x))T

s.t. CV(x) =
∑4

k=1
Ck = 0

(36) 

with 

f1(x) = fL + fH
f2(x) = fO + fT

(37) 

where, f1 and f2 are the two objective functions of the optimization, CV represents the constraint violation degree.
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4. The proposed method

In this part, we first introduce the basic idea of the DENSDBO-ASR algorithm in Section 4.1 and then propose a novel non- 
dominated sorting dung beetle optimizer in Section 4.2. Then, in Section 4.3, a directional evolutionary strategy is introduced to 
improve the search performance of the algorithm. In Section 4.4, an adaptive stochastic ranking mechanism is designed to handle 
multiple constraints. Then we analyze the settings and influence of the parameters of DENSDBO-ASR in Section 4.5. Section 4.6
provides the steps for DENSDBO-ASR. The time complexity is analyzed in Section 4.7. Finally, the UAV path planning based on 
DENSDBO-ASR is introduced in Section 4.8.

4.1. Basic idea of DENSDBO-ASR

The objective functions of multi-objective optimization problems are frequently incompatible or not directly connected. Due to 
inherent conflicts between objectives, optimizing one objective is at the expense of the others. As a result, finding a unique optimal 
solution becomes difficult, necessitating a compromise between numerous solutions to achieve the overall optimization. In order to 
improve reliability and robustness, multi-objective algorithms seek a set of Pareto-optimal solutions compared to single-objective 
algorithms. In general, an algorithm’s global and local search capabilities are two fundamental elements. The algorithm is expected 
to exhibit faster convergence in the early iterations and maintain diversity in the subsequent ones. In addition, path planning problems 
in the real world are often subject to various constraints, including spatial limitations, environmental constraints, and energy con
sumption constraints, making the problem of path planning for multi-UAVs even more challenging. Therefore, a directional evolu
tionary non-dominated sorting dung beetle optimizer combined with adaptive stochastic ranking (DENSDBO-ASR) is proposed to 
address these challenges in practical multi-UAV path planning scenarios.

4.2. Non-dominated sorting dung beetle optimizer (NSDBO)

The standard dung beetle optimizer (DBO) is originally designed for single-objective optimization tasks. Thus, it lacks the ability to 
handle multi-objective optimization problems, where the goal is to achieve a balance between multiple objective functions when 
searching for Pareto-optimal solutions. Therefore, we need to modify the DBO algorithm for multi-objective optimization. Non- 
dominated sorting is a highly popular and effective technique in the field of multi-objective optimization, as demonstrated by the 
success of NSGA-II. Inspired by this, we designed a non-dominated sorting dung beetle optimizer (NSDBO) using this powerful 
technique. The non-dominated sorting technique classifies solutions into different domination levels based on the comparison of their 
Pareto dominance relationship, ensuring that solutions within each level do not dominate each other. An illustration of non-dominated 
sorting is given in Fig. 2. Firstly, each individual p has two parameters, np and sp, where np is the number of solutions that dominate p, 
and sp is the set of solutions that are dominated by p. Secondly, find all individuals in the population with np = 0, give them a 
domination level of 1, and store them in Pareto rank 1. Thirdly, for the individuals in the Pareto rank 1, visit the solutions in the sp of 
each individual and decrease the np value of each solution by one. Then, store the solutions with np = 0 into Pareto rank 2. Finally, 
repeat until all individuals have been assigned a rank.

Basic working of NSDBO is as follows:

Step 1: Initialize the population. Randomly generate dung beetles’ positions and calculate the fitness of each dung beetle. Assuming 
that the population size is N.
Step 2: Sort out the initial population. Each dung beetle is filled in ascending order of the dominance level by using the non- 
dominated sorting method. The crowding distance can be used to distinguish the optimal degree of solutions in the same rank. 
The larger the crowding distance, the better the solution. The crowding distance is calculated by equation (38).

Fig. 2. Illustration of non-dominated sorting.
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CDi =
∑m

k=1

(⃒
⃒f i+1

k − f i− 1
k

⃒
⃒
)

(38) 

where, f i+1
k and f i− 1

k are the neighbors of individual i on the kth objective function.
Then, the best solution is selected and stored in a collection set. Note that the size of the collection set is equal to the population size.

Step 3: Update the position of each dung beetle, and then calculate the new fitness.
Step 4: The initial population generated in Step 1 is merged with the offspring generated in Step 3 to generate a new population 
with a population size of 2N, and then non-dominated sorting is performed again.
Step 5: Then, select the best solutions and store them in the collection set until it reaches the predefined size. Lower-ranked in
dividuals and those with higher crowding distances in the same rank are preferred to enter the next generation.
Step 6: Repeat Steps 3 to 5 until the maximum number of iterations is reached, and output the Pareto-optimal set once the 
termination condition is met.

4.3. Directional evolutionary strategy

The NSDBO algorithm is an enhanced version of the original DBO algorithm. It is capable of addressing multi-objective optimi
zation problems, but it also inherits the drawbacks of being susceptible to local optimums and having slow convergence speed. To 
address these issues and enhance the algorithm’s search performance, a directional evolutionary technique is implemented. Specif
ically, the directional information of parents is used to guide the search, which can help maintain population diversity and improve 
convergence accuracy. Das et al. [43] proposed an improved real-coded genetic algorithm (IRGA) that primarily used directional 
mutation (DM) and directional crossover (DX) to enhance the search performance. The experimental results have shown that the 
algorithm outperforms the other five RGAs in terms of convergence speed and solution accuracy. Inspired by this, this paper introduces 
DX and DM into NSDBO to enhance its search and exploitation capabilities.

4.3.1. Directional crossover (DX)
The DX operator plays a crucial role in the DE strategy by utilizing the prior knowledge about the problem region that produces 

better results in space. This differs from traditional crossover operators, which ignore any prior information about the features of the 
search space. DX determines the crossover site by comparing the parent’s position to the current optimal solution’s position. During the 
search, the DX operator can adaptively adjust the crossover direction to explore the superior regions, thus avoiding the algorithm from 
converging to a local optimum. DX produces two new solutions by crossing the dimensions of two different individuals. The principle 
of DX is as follows:

The four key parameters in the DX are crossover probability (pc), variable-wise crossover probability (pcv), multiplying factor (α), 
and directional probability (pd). Assuming that the jth dimensions of the parents p1 and p2 perform DX. pj

mean is the mean value of the 
two parents, pj

best is the value of the current optimal solution in the jth dimension. Then, the crossover update formula can be defined by 
equations (39) and (40). 

val=
1 − (0.5)e

⎡

⎣ |pj
1 − pj

2|
(Ubj − Lbj)

⎤

⎦

, if pj
1 ∕= pj

2

1 − (0.5)e

⎡

⎣|p
j
best − pj

mean|
(Ubj − Lbj)

⎤

⎦

, if pj
1 = pj

2 and pj
best ∕= pj

mean

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(39) 

β=
r

α2 (40) 

where, val and β are two intermediate parameters. Ubj and Lbj represent the upper and lower bounds of the variable in the jth 
dimension, r is a random number between (0,1).

In the first case, the values of the two mating parents (pj
1 and pj

2) are different. The children (cj
1 and cj

2) can be determined by 
equations (41) and (42). 

cj
1 = val×

(
pj

1 + pj
2

)
±αr1 × e(1− β) × (1 − val) ×

⃒
⃒
⃒pj

1 − pj
2

⃒
⃒
⃒ (41) 

cj
2 =(1 − val)×

(
pj

1 + pj
2

)
± α(1− r1) × e(− β) × val ×

⃒
⃒
⃒pj

1 − pj
2

⃒
⃒
⃒ (42) 

In the second case, the values of the two parent individuals (pj
1 and pj

2) are found to be the same and pj
mean is not equal to pj

best . The 
updated formula for the offspring is expressed by equations (43) and (44). 
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cj
1 = val×

(
pj

best + pj
mean

)
±αr1 × e(1− β) × (1 − val) ×

(
pj

best − pj
mean

)
(43) 

cj
2 =(1 − val)×

(
pj

best + pj
mean

)
±α(1− r1) × e(− β) × val ×

(
pj

best − pj
mean

)
(44) 

where, the symbol ± in equations (41)–(44) is determined by pd and r1 ∈ (0,1).

4.3.2. Directional mutation (DM)
The DM operator uses the optimization problem’s directional information to guide the search to the optimal region. The DM 

achieves a balance between population diversity and selection pressure by adjusting the directional parameter. The mutation strength 
of the DM operator is determined by a random number, enabling it to efficiently balance the search performance and diversity in 
various conditions. This enhances the probability of finding the global optimal solution. DM randomly mutates the positions of in
dividuals in any direction. Specifically, the DM adjusts the direction of the mutation according to the fitness of the parent solution and 
the current optimal solution. The description of DM is as follows:

Assuming that the nth dimension of the parent xi performs DM. xn
best is the value of the current best solution in the nth dimension. 

When xn
best ≥ xn

i , the mutated solution (cn
i ) can be created by equations (45)–(47). 

β1 = e

(

2r− 2
r

)

(45) 

β2 = e

(

r− 2
r

)

(46) 

cn
i =

{
xn

i + β1 ×
(
Ubn − xn

i
)
, if r2 ≤ pd

xn
i − β2 ×

(
xn

i − Lbn), otherwise
(47) 

When xn
best < xn

i , then the formula for the DM is as shown in equation (48). 

cn
i =

{
xn

i − β1 ×
(
xn

i − Lbn), if r2 ≤ pd

xn
i + β2 ×

(
Ubn − xn

i
)
, otherwise

(48) 

where, r and r2 are two different random numbers between 0 and 1. Ubj and Lbj represent the upper and lower limits of the variable in 
the nth dimension, respectively. pd is the directional probability between 0.5 and 1.

4.4. Adaptive stochastic ranking mechanism

To effectively handle the numerous constraints in the UAV path planning model, an adaptive stochastic ranking approach is 
incorporated into the NSDBO algorithm. The strategy is integrated into the non-dominated sorting mechanism to adaptively adjust the 
sorting process based on the constraint violation degree and objective function value. The stochastic ranking method (SR) proposed by 
Runarsson is based on the probability Pf and a random number r. When comparing two individuals, the probability represented by Pf 
only compares their objective function values, while the probability represented by (1-Pf) compares the degree of constraint violation. 
As shown in Fig. 3, the SR is illustrated. x represents an individual, and f and CV are the objective value and constraint violation degree, 
respectively. When other individuals are compared with x, if they are located in the shaded region, it means they are superior to x. 

Fig. 3. Illustration of SR. (a) Compared by f; (b) Compared by CV.
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Fig. 3 (a) represents the comparison using only the objective function values, while Fig. 3 (b) shows the comparison using the 
constraint violation degree.

Runarsson’s experiment results indicated that Pf, taken as 0.475, had better optimization effects on most test functions. However, it 
is worth noting that a fixed Pf needs to be predetermined and may not always ensure optimal optimization results. For instance, Fig. 4
illustrates the number of infeasible solutions in the population after 300 iterations using the CF1 test function. It can be seen from Fig. 4
that there are still infeasible solutions in the final optimized population, which is because the stochastic ranking algorithm cannot 
adaptively adjust during iteration.

Therefore, this paper designs a Pf that can adaptively adjust according to the current iteration and the degree of constraint 
violation. In order to improve the efficiency of the search process, a large number of infeasible solutions are permitted during the early 
iterations. However, as the number of iterations increases, the algorithm needs to prioritize minimizing the violation of constraints to 
ensure the feasibility of the final solution. If too many infeasible solutions exist in the population, Pf is reduced to retain more feasible 
solutions. Based on the above consideration, the adaptive Pf is as shown in equation (49). 

Pf =0.475 ∗

⎛

⎜
⎝

0.5 ∗ cos
(

0.5 ∗
(

t
T

)
∗ 2 ∗ π

)
+ 0.5

1 + γ ∗ Pifea

⎞

⎟
⎠ (49) 

where, 0.475 is the optimal initial value determined by the SR method, t is the current number of iterations, T is the maximum number 
of iterations, γ is an influence factor between (0,1), and Pifea is the proportion of infeasible solutions. The parameter settings for γ are 
detailed in Section 4.5.

Additionally, the CF1 test function is employed to evaluate the adaptive Pf. The maximum number of iterations is 300. The results 
are shown in Fig. 5. From Fig. 5, it can be seen that as the number of iterations increases, the number of infeasible solutions decreases. 
After about 220 iterations, the number of infeasible solutions in the population is 0, which indicates that the adaptive stochastic 
ranking has a good optimization performance.

4.5. Settings and influence of the parameters of DENSDBO-ASR

There are six user-defined parameters in the proposed algorithm: crossover probability (pc), variable-wise crossover probability 
(pcv), mutation probability (pm), multiplying factor (α), directional probability (pd), and influence factor (γ).

Crossover probability (pc): Theoretically, the value of pc varies from 0 to 1. Generally, the selection of the value is based on the 
nature of the problem. In this paper, pc takes the same value presented in Reference [44]. DAS has demonstrated that the performance 
of DX is robust when pc = 0.9.

Variable-wise crossover probability (pcv): pcv is used to determine whether a crossover occurs at a variable location. Similarly to 
pc, the range of values varies between 0 and 1. The value of pcv is kept the same with pc.

Mutation probability (pm): Theoretically, pm varies from 0 to 1. However, the value of pm is usually set to a minimal value (close to 
0.1) to ensure an efficient search.

Multiplying factor (α): α affects the distance between offspring and parents. As the value of α increases, offspring are created far 
away from their parents, thus increasing the diversity of the algorithm. On the contrary, a smaller value of α will enhance the searching 
ability of the algorithm. Literature [43] suggests an optimal range of 0.5–2.5. Here, α = 0.95 yields stable optimization results, as 
evidenced by Qi [45] in image segmentation.

Directional probability (pd): pd decides children’s search direction. Theoretically, the value ranges from 0 to 1, but is usually set 

Fig. 4. The curve of the number of infeasible solutions with fixed Pf.
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between 0.5 and 1. When pd takes a higher value (close to 1), the algorithm will be guided toward the optimal solutions, increasing 
exploitation capability. On the contrary, when pd takes a lower value (close to 0.5), the children will be generated in a random di
rection, enhancing their exploration abilities. The empirical determination of pd is detailed in Section 5.2.

Influence factor (γ): γ controls infeasible solutions’ impact on the population. A smaller γ implies lighter penalties for infeasible 
solutions, potentially retaining more infeasible solutions. And a larger γ eliminates infeasible solutions, preserving more ideal 

Fig. 5. The curve of the number of infeasible solutions with adaptive Pf.

Fig. 6. Flowchart of DENSDBO-ASR
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solutions. Usually, it takes a value between 0 and 1. The exact value of γ is set in Section 5.2.

4.6. Steps of DENSDBO-ASR

The DENSDBO-ASR algorithm combines the directional evolutionary strategy (DE) and adaptive stochastic ranking mechanism 
(ASR) with the NSDBO algorithm. The following are the detailed steps:

Step 1: Initialize the positions of the dung beetles.
Step 2: Calculate the fitness and constraint violation degree of the population, then perform the adaptive stochastic ranking 
mechanism and select the Pareto-optimal solutions.
Step 3: Implement the directional evolutionary strategy and update the dung beetles’ positions.
Step 4: Update the positions of the dung beetles using the DBO algorithm.
Step 5: Calculate the new fitness and constraint violation degrees and record them.
Step 6: Perform the adaptive stochastic ranking on the population and update the Pareto-optimal solutions.
Step 7: If the maximum number of iterations is reached, then output the Pareto-optimal solution; otherwise, skip to Step 3 and 
continue to the next iteration.

The pseudo-code of DENSDBO-ASR is given below in Algorithm 1.

Algorithm 1: The pseudo-code of DENSDBO-ASR

Input: The number of the particle’s population N, the maximum iterations T, and the dimensions of each particle D 
Output: The Pareto-optimal set P.

1: Initialize the population P and calculate the fitness values 
2: Perform the adaptive stochastic ranking on each individual 
3: Select the Pareto-optimal solutions 
4: while t < T do 
5: Calculate Pf based on the current iterations and the proportion of infeasible solutions using Equation (49)
6: for i = 1 to N do 
7: Perform DX on the ith individual using Equations (39)–(44)
8: Perform DM on the ith individual using Equations (45)–(48)
9: Update the position of ith dung beetle 
10: Calculate the fitness and the constraint violation degree of each individual 
11: end for 
12: Perform the adaptive stochastic ranking on the population 
13: Select N optimal solutions from the population as the next generation 
14: end while

The flowchart of DENSDBO-ASR is in Fig. 6

4.7. Computing complexity

This section analyzes the computing complexity of the proposed DENSDBO-ASR, including the initialization, directional evolu
tionary strategy, adaptive stochastic ranking, and updating the position of dung beetles. For convenience, we assume that the N in
dividuals and T iterations are involved in the search process of a D-variable problem. M is the number of objectives. First, the time 
complexity of the initialization phase is O(N). Then, the time complexity of the directional evolutionary strategy is O(T*(N*D)). The 
time complexity of adaptive stochastic ranking is O(M*(N*N)). The time complexity of updating the dung beetles’ position is O(T*N). 
The overall time complexity is O(DENSDBO-ASR) = O(N + T*N*(1+D) + M*N*N). The time complexity of the proposed algorithm is 
within acceptable performance improvements.

Fig. 7. Collaborative path chromosome encoding.
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4.8. UAV path planning based on DENSDBO-ASR

In this section, the UAV path planning method based on the DENSDBO-ASR algorithm is introduced. The solutions need to be 
encoded into individuals for the population-based evolutionary algorithms. This paper uses a real-valued chromosome with variable- 
length coding to represent the cooperative trajectory of multiple UAVs. Assuming M UAVs on the mission, a chromosome consists of 
(M + 1) segments of genes. As presented in Fig. 7, an individual represents a planning path, including the starting point S, the trajectory 
points Pi− 1Pi− 2...Pi− N, and the target endpoint E. The first M genes indicate the flight paths of M UAVs, while the M+1st genes indicate 
the flight speed of M UAVs. Therefore, the dimension of a particle is (3*M*N + M), where N is the number of track points for each UAV. 
The algorithm aims to find optimal candidates that satisfy the constraints during evolution, and then a decision-maker selects an 
optimal solution for UAVs. The specific path-planning steps are summarized as follows:

Step 1: Initialize the parameters of the multi-UAV collaborative path planning, including the number of UAVs, the starting and end 
points of each UAV, the number of way points, and the flight speeds of the UAVs.
Step 2: Initialize the algorithm’s parameters, including the population size, the maximum number of iterations, and the dimension 
of each particle. Then, randomly generate N individuals within the defined search space range.
Step 3: Calculate the objective function values and constraint values for each individual. Then, implement the DENSDBO-ASR 
algorithm to obtain feasible solutions.
Step 4: Select the best candidate solution to generate UAV flight paths. A weighted linear approach is used, where an evaluation 
function determines the optimal solution. The smaller the function value, the better the path performance. Thus, the evaluation 
function fval is calculated by fval = w1f1 + w2f2, where w1 and w2 are the weights of the two objective functions, respectively. The 
final optimal solution for collaborative UAV path planning can be selected by min(fval). Based on the previous descriptions, the 
theoretical optimal value of f2 is 0, while f1 varies based on the start and end points of the flight. We prioritize the safety and 
effectiveness of performing tasks (hence, w2 is higher at 0.9, while w1 is 0.1).

5. Analysis of simulation experiments

5.1. Experimental design

To verify the effectiveness of DENSDBO-ASR, this paper conducted tests on the CF benchmark problems [46]. The comparison 
algorithms include three variations of the NSDBO algorithm: NSDBO with the adaptive stochastic ranking mechanism (NSDBO-ASR), 
NSDBO with the constrained dominance principle (NSDBO-CDP), NSDBO with the stochastic ranking (NSDBO-SR), and three varia
tions of the NSGA-II algorithm: NSGAII with the constrained dominance principle (NSGAII-CDP) [47], NSGAII with the stochastic 
ranking (NSGAII-SR) [47], and NSGAII with a new fitness function with two rankings (NSGAII-ToR) [48].The population size is 100, 
and the maximum function evaluation is 300. For fairness, each benchmark function is run independently 30 times. Furthermore, the 
parameter settings of all algorithms are specified in Table 2. The inverse generation distance (IGD) is the statistical metric to assess the 
performance of algorithms.

5.2. Sensitivity analysis of parameters

This section analyzes the sensitivity of the control parameters (pd, γ) used in the DENSDBO-ASR algorithm. For comparison, we 
separately evaluate the optimal values of γ and pd. We choose nine different values of γ (0.1, 0.2, …, 0.9) and select CF1, CF2, CF4, and 
CF6 as our test cases. The IGD results are shown in Fig. 8. It can be seen that the best performance is achieved for CF2 and CF4 in Fig. 8 
(b) and (c) when the value of γ is set to 0.3. Meanwhile, for CF1 and CF6 in Fig. 8 (a) and (d), γ = 0.3 obtains the second and third 
positions, respectively. Thus, γ = 0.3 is selected as the suggested option.

Subsequently, with a fixed value of γ = 0.3, six different parameters (pd = 0.5, 0.6, …, 1) are chosen for testing. The sensitivity 
analysis is shown in Fig. 9. Notably, a value of 0.5 for pd yields the optimal results for CF1 in Fig. 9 (a). For CF4 and CF6 in Fig. 9 (c) and 
(d), pd = 0.5 obtains second place after pd = 0.6. For CF2 in Fig. 9 (b), pd = 0.6 significantly deteriorates the performance, while pd = 0.5 
showcases robustness. Therefore, the optimal parameter for pd in this paper is 0.5.

Table 1 
The IGD results obtained by different improvement methods.

Prob. Indexes DENSDBO-ASR NSDBO DXNSDBO DMNSDBO DENSDBO NSDBO-ASR

CF2 Avg 
(±Std)

6.59E-02 (±1.54E- 
02)

1.13E-01 (±2.21E- 
02)

6.88E-02 
(±1.49E-02)

9.51E-02 (±1.56E- 
02)

7.43E-02 
(±1.35E-02)

1.04E-01 (±1.42E- 
02)

CF5 Avg 
(±Std)

6.02E-01 (±2.72E- 
01)

2.45E+00 
(±1.01E+00)

6.08E-01 
(±2.29E-01)

2.29E+00 
(±7.76E-01)

6.15E-01 
(±2.26E-01)

2.31E+00 (±8.60E- 
01)

CF7 Avg 
(±Std)

5.15E-01 
(±2.55E-01)

2.99E+00 
(±1.03E+00)

5.94E-01 
(±3.24E-01)

2.42E+00 
(±8.78E-01)

6.20E-01 (±2.92E- 
01)

2.90E+00 
(±1.08E+00)
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5.3. Ablation experiments analysis

To verify the effectiveness of the improved method, the ablation experiments were conducted. The comparison algorithms consist 
of the basic NSDBO and several variations of the NSDBO algorithm, including NSDBO with the directional crossover (DXNSDBO), 
NSDBO with the directional mutation (DMNSDBO), NSDBO with the directional crossover and mutation (DENSDBO), NSDBO with the 
adaptive stochastic ranking (NSDBO-ASR), and the proposed DENSDBO-ASR. The test functions are selected as CF2, CF5, and CF6. The 
average value (Avg) and standard deviation (Std) are the statistical metrics for comparison. To ensure fairness, all algorithms are run 
independently 30 times. The results obtained by different improvement methods are shown in Table 1.

From Table 1, it can be seen that DENSDBO-ASR achieves the first rank on all functions. Then, the methods using different 

Table 2 
Parameter settings of all algorithms.

Algorithm Parameters

DENSDBO-ASR pc = pcv = 0.9, pm = 0.1, pd = 0.5, α = 0.95, γ = 0.3
NSDBO-ASR γ = 0.3
NSDBO-CDP /
NSDBO-SR Pf = 0.475
NSGAII-CDP pc = 0.9, pm = 0.1, mu = 20, mum = 20
NSGAII-SR pc = 0.9, pm = 0.1, mu = 20, mum = 20, Pf = 0.475
NSGAII-ToR pc = 0.9, pm = 0.1, mu = 20, mum = 20

Fig. 8. Sensitivity analysis of the parameter γ on CF1, CF2, CF4, and CF6. (a) CF1; (b) CF2; (c) CF4; (d) CF6.
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enhancement strategies have improved performance compared to NSDBO. From the comparison of DXNSDBO, DMNSDBO, and 
DENSDBO, it is evident that the DXNSDBO obtains the lowest average value and demonstrates superior optimization. On the other 
hand, DENSDBO has the lowest standard deviation and demonstrates stability. The reason for this is that the DX tends to preserve the 
beneficial features of the parents during the crossover process, allowing the algorithm to perform a refined search in the area that 
yields the optimal solution. The DM randomly introduces new features to enhance the diversity of the population. DENSDBO combines 
the DX and DM strategies, leveraging the benefits of both exploration and exploitation to improve stability. The comparison between 
NSDBO and NSDBO-ASR reveals that the adaptive stochastic ranking mechanism enhances the accuracy of NSDBO, thereby proving its 
effectiveness. To summarize, all the improvement methods have proven to be effective. However, the DENSDBO-ASR algorithm, 
improved by hybrid strategies, has the most superior performance.

5.4. Benchmark problem test analysis

5.4.1. Description of the benchmark suite
To comprehensively evaluate the performance of DENSDBO-ASR, the CF test set [46] was employed. The CF test set has two 

objective functions, CF1-5 with one constraint and CF6-7 with two constraints, each of which includes ten variables. The Pareto front 
of CF1 in the objective space comprises N point sets. These point sets represent all possible solutions, where each solution achieves a 
balance between the two objective functions. CF1 is mainly used to evaluate the algorithm’s exploration and exploitation capabilities. 
Unlike CF1, the Pareto fronts of CF2 and CF3 have separate N parts in the objective space, which means that there are more than one set 
of separate Pareto optimal solutions. This presents a significant challenge for multi-objective optimization algorithms, which must 
locate optimal solutions within these discontinuous regions. CF2 and CF3 are typically used to evaluate the algorithms’ robustness. The 
Pareto fronts of CF4 and CF5 exhibit continuously varying linear behavior and are primarily used to assess the algorithms’ convergence 

Fig. 9. Sensitivity analysis of the parameter pd on CF1, CF2, CF4, and CF6. (a) CF1; (b) CF2; (c) CF4; (d) CF6.
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speed. The CF6 and CF7 test functions are more complex because they narrow down the decision space and increase the number of 
constraints. The CF6 and CF7 have nonlinear PFs and are mainly used to assess the algorithm’s ability to solve complicated problems. 
Overall, the CF test function set is designed to evaluate the performance of multi-objective optimization methods over an extensive 
variety of problems. The CF test set enables a complete evaluation and comparison of the algorithms in terms of convergence speed, 
solution quality, and search capabilities, thereby improving the algorithms’ applicability and efficiency in handling real-world issues.

5.4.2. Benchmark suite test result analysis
This subsection provides the statistical test results of the comparison algorithms in the CF test suite. Table 3 presents the average 

value (Avg) and standard deviation (Std) of the IGD results of seven algorithms on seven benchmark problems. The best results of each 
benchmark function are marked in bold. From the comparison of NSDBO-ASR, NSDBO-CDP, and NSDBO-SR, it can be seen that 
NSDBO-ASR performs the best on CF1, CF2, CF5, and CF6, and obtains second place on CF3 and CF4. This proves that the adaptive 
stochastic ranking strategy can effectively enhance global search capability and improve convergence accuracy. In addition, it can be 
observed that the DENSDBO-ASR algorithm achieves the best results on all optimized functions. It is worth noting that the accuracy of 
DENSDBO-ASR on CF3, CF5, CF6, and CF7 is an order of magnitude higher than other algorithms. This suggests that the DE strategy 
further enhances the ability to jump out of the local optimum and improves the quality of the solutions. Overall, DENSDBO-ASR 
demonstrates effectiveness and superiority on the test problems.

5.4.3. Convergence curve analysis
In this subsection, the convergence curves of all the algorithms are plotted to compare their efficiency in the search process. Fig. 10

shows the convergence curves of IGD values for all algorithms on CF2, CF3, CF5, and CF7. It is evident that the IGD values of all the 
algorithms decrease with the increase in iterations, indicating their effective search capabilities during the optimization process. Since 
the problems are minimization problems, smaller IGD values signify superior performance. From Fig. 10(a–d), it is evident that the 
DENSDBO-ASR algorithm exhibits the most rapid convergence speed and the best convergence accuracy compared to other optimi
zation algorithms. This demonstrates that the improvement strategies can significantly enhance the convergence performance of the 
algorithm, particularly the DE strategy, which greatly boosts the algorithm’s ability to escape local optima. In general, DENSDBO-ASR 
stands out as the strongest performer among all the methods, consistently achieving the global optimum at a faster rate than its 
counterparts.

5.4.4. Box plot analysis
In this subsection, the box line charts of 30 independent runs are used to compare the distribution characteristics of the solutions, as 

shown in Fig. 11. From Fig. 11(a–d), it is evident that DENSDBO-ASR ranks first in the median metric when compared to its com
petitors. This suggests that the DENSDBO-ASR algorithm displays the capability to identify a solution set that is in proximity to the 
optimal solution and exhibits robustness and stability in iterations. It can also be seen that the DENSDBO-ASR algorithm wins in both 
maximum and lowest metrics, demonstrating its impressive search capability. Furthermore, the height of the box shows the level of 
data discretization, which is used to evaluate the algorithm’s exploration and exploitation capabilities. As shown in Fig. 11(a–d), it is 
evident that the box height of the DENSDBO-ASR algorithm is the smallest of all the functions. The data distribution of DENSDBO-ASR 
is highly concentrated, suggesting that the algorithm has strong exploration and development capability and superior optimization 
results. In summary, DENSDBO-ASR outperforms other algorithms in terms of optimization ability and stability when solving global 
optimization issues.

5.4.5. Wilcoxon rank sum test
To further test the effectiveness of the DENSDBO-ASR, the Wilcoxon rank sum test [49] is used to evaluate and discover statistical 

differences between the DENSDBO-ASR and other algorithms. Table 4 shows the p-values of the Wilcoxon rank sum test at the α = 5 % 

Table 3 
The IGD results obtained by seven methods on CF test sets with two objectives.

Prob. Indexes DENSDBO- 
ASR

NSDBO-ASR NSDBO-CDP NSDBO-SR NSGAII-CDP NSGAII-SR NSGAII-ToR

CF1 Avg 
(±Std)

3.35E-02 
(±8.95E-03)

5.09E-02 
(±1.09E-02)

5.60E-02 
(±7.45E-03)

5.19E-02 
(±1.85E-02)

4.69E-02 
(±6.83E-03)

4.18E-02 
(±2.26E-02)

7.43E-02 
(±6.23E-03)

CF2 Avg 
(±Std)

6.42E-02 
(±1.34E-02)

9.52E-02 
(±1.34E-02)

9.83E-02 
(±1.88E-02)

1.01E-01 
(±2.48E-02)

1.30E-01 
(±2.41E-02)

1.34E-01 
(±1.81E-02)

1.57E-01 
(±3.08E-02)

CF3 Avg 
(±Std)

4.58E-01 
(±1.88E-01)

1.22E+00 
(±2.75E-01)

1.17E+00 
(±2.77E-01)

1.28E+00 
(±3.34E-01)

1.26E+00 
(±3.82E-01)

1.38E+00 
(±2.89E-01)

1.54E+00 
(±3.49E-01)

CF4 Avg 
(±Std)

1.19E-01 
(±1.73E-02)

2.45E-01 
(±8.01E-02)

2.51E-01 
(±1.01E-01)

2.42E-01 
(±6.88E-02)

3.71E-01 
(±1.58E-01)

3.06E-01 
(±1.58E-01)

2.75E-01 
(±9.88E-02)

CF5 Avg 
(±Std)

5.01E-01 
(±1.99E-01)

2.01E+00 
(±8.64E-01)

2.11E+00 
(±6.20E-01)

2.07E+00 
(±7.16E-01)

3.19E+00 
(±7.58E-01)

3.12E+00 
(±6.36E-01)

3.73E+00 
(±9.05E-01)

CF6 Avg 
(±Std)

8.97E-02 
(±1.73E-02)

1.51E-01 
(±5.14E-02)

1.62E-01 
(±3.86E-02)

1.70E-01 
(±5.20E-02)

1.73E-01 
(±4.89E-02)

1.64E-01 
(±4.02E-02)

2.50E-01 
(±5.58E-02)

CF7 Avg 
(±Std)

6.02E-01 
(±2.50E-01)

3.02E+00 
(±1.30E+00)

2.68E+00 
(±1.26E+00)

2.85E+00 
(±8.86E-01)

3.67E+00 
(±1.24E+00)

3.91E+00 
(±1.25E+00)

3.43E+00 
(±1.03E+00)
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significance level. If p < 0.05, the original hypothesis is rejected and the alternative hypothesis is accepted. In Table 3, “+/− / = ” 
indicates the number of DENSDBO-ASR with better/worse/comparable performance compared with other algorithms, respectively. 
From Table 4, it can be seen that almost all the p-values are less than 0.05, which indicates that there is a significant difference between 
DENSDBO-ASR and other optimization algorithms. Therefore, DENSDBO-ASR has remarkable performance compared to other 
algorithms.

5.4.6. Friedman test
To see the overall rank of each algorithm, the Friedman mean rank test [50] was performed. Table 5 illustrates the results of 

Friedman’s test. From Table 5, it is clear that DENSDBO-ASR ranks first in evaluating all algorithms. It can also be seen that the al
gorithms based on NSDBO are ranked at the front, while the algorithms based on NSGA-II are ranked at the back. This demonstrates the 
effectiveness and superiority of the developed NSDBO algorithm.

Fig. 12 presents a comparison of the statistical results of the selected algorithms on all test functions. From Fig. 12, it is evident that 
the DENSDBO-ASR algorithm is ranked first on all test functions. It can also be seen that NSDBO-ASR ranks second after DENSDBO- 
ASR. It demonstrates that the DE and ASR strategies can effectively enhance the quality of solutions. Overall, it can be confirmed that 
DENSDBO-ASR is statistically superior to all the comparison algorithms.

6. UAV path planning results and analysis

A series of experiments are conducted to evaluate the performance of the DENSDBO-ASR algorithm for collaborative multi-UAV 
path planning. Five representative state-of-art methods (the NSGAII-CDP [47], NSGAII-ToR [48], SPEA2-CDP [51], MOGWO [52], 

Fig. 10. The convergence curves of IGD values on CF2, 3, 5, and 7. (a) CF2; (b) CF3; (c) CF5; (d) CF7.
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Fig. 11. Box plots of IGD values for CF1, 3, 4, and 7. (a) CF1; (b) CF3; (c) CF4; (d) CF7.

Table 4 
Wilcoxon rank sum test results.

Fun No. NSDBO-ASR NSDBO-CDP NSDBO-SR NSGAII-CDP NSGAII-SR NSGAII-ToR

p Value R p Value R p Value R p Value R p Value R p Value R

CF1 1.89E-04 9.79E-05 4.42E-06 3.82E-09 4.29E-01 3.02E-11
CF2 5.53E-08 2.44E-09 9.26E-09 6.70E-11 2.87E-10 6.07E-11
CF3 3.02E-11 3.69E-11 4.50E-11 3.02E-11 3.69E-11 9.92E-11
CF4 3.02E-11 3.02E-11 3.02E-11 5.57E-10 1.29E-09 3.02E-11
CF5 2.37E-10 7.39E-11 1.09E-10 3.02E-11 3.02E-11 3.02E-11
CF6 7.39E-11 3.16E-10 4.50E-11 4.98E-11 3.02E-11 3.02E-11
CF7 3.69E-11 3.69E-11 1.21E-10 3.02E-11 3.02E-11 3.02E-11

+/− / = 7/0/0 7/0/0 7/0/0 7/0/0 6/1/0 7/0/0

Table 5 
Friedman test results.

DENSDBO-ASR NSDBO-ASR NSDBO-CDP NSDBO-SR NSGAII-CDP NSGAII-SR NSGAII-ToR

Avg 1 2.8571 3.4286 3.8571 5.2857 5.1429 6.4286
Rank 1 2 3 4 6 5 7
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and MAOA [53]) are used for the comparison. These algorithms cover both recently proposed algorithms, such as MAOA, MOGWO, 
and NSGAII-ToR, and the most utilized optimizers in the field, such as NSGAII-CDP and SPEA2-CDP. For fairness, all algorithms have 
the same population size and the maximum number of iterations. Each algorithm runs five times independently, and the results are 
compared using the mean value.

6.1. Scenario settings

This paper uses simulated digital terrain to model the UAV flight environment. The original digital terrain is modeled as shown in 
equation (50). 

z1(x, y)= sin(y+ a)+ b ⋅ sin(x)+ c ⋅ cos
(

d ⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + y2

√ )

+e ⋅ cos(y)+ f ⋅ sin
(

g ⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + y2

√ ) (50) 

where, x and y are the coordinates of the points projected on the horizontal plane, and z is the corresponding terrain height; a, b, c, d, e, 
f, g are the constant coefficients, which control the undulation of the terrain in the digital map.

For higher natural mountains in the flight environment, the exponential function is used to describe the mathematical model, 
which can be expressed by equation (51). 

z2(x, y)=
∑n

i=1
hi exp

[

−

(
x − xi

xsi

)2

−

(
y − yi

ysi

)2
]

(51) 

where, z2(x, y) is the corresponding terrain height in the map, 
(
xi, yi

)
is the center coordinate of the ith peak, hi is the terrain parameter 

to control the height, xsi and ysi are the attenuation along the x-axis and y-axis direction of the ith peak to control the slope, respec
tively; n denotes the total number of peaks.

Then, the environment map is obtained by merging the original digital terrain with the peak terrain as shown in equation (52). 

z(x, y)=max(z1(x, y), z2(x, y)) (52) 

The terrain coefficients are set to a = 10, b = 0.2, c = 0.1, d = 0.6, e = 1, f = 0.1, and g = 0.1. The other main parameters in the 
environment model are given in Table 6.

In addition, threats such as radar and forbidden flying areas can affect the UAV’s flight. In our work, the number and position of the 
threats are represented by red cylinders, with the specific parameters shown in Table 7.

In the simulation, the planned environment region is set to 200 km*200 km*6 km. Suppose there are three sets of mission scenarios, 
and the number of cooperative UAVs in different mission scenarios is 2, 3, or 4. The UAV parameter settings are presented in Table 8. 
The corresponding starting point and endpoint in the three cases for different numbers of UAVs are given in Table 9.

Fig. 12. The statistic results of the seven algorithms for all test functions.

Table 6 
Parameter settings for the peak dataset.

No. of peaks (xi,yi) (km) (xsi,ysi) (km) H (km)

1 (40,70) (9,7) 2.4
2 (70,100) (18,15) 3.5
3 (160,90) (11,15) 3.3
4 (110,160) (15,13) 4.9
5 (150,40) (14,7) 5.4
6 (110,180) (15,7) 3.9
7 (160,150) (12,10) 2.9
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6.2. Evaluation metrics

When comparing the effectiveness of three-dimensional path planning methods for multiple UAVs, various metrics can be used to 
evaluate the resulting Pareto front. Two such metrics are the pure diversity (PD) [54] and the spacing (SP) [55], as represented by 
equations (53) and (54). The PD metric measures the diversity among solutions in the Pareto front, indicating whether the distribution 
of solutions is uniform and covers the entire front. In UAV path planning, diversity ensures that the algorithm’s solutions cover 
different path choices, thereby increasing the flexibility and adaptability of path planning. The SP measures the distance among so
lutions, ensuring that the distance between solutions is sufficient to avoid excessive concentration. In UAV path planning, spacing 
ensures that generated paths are independent of each other, avoiding conflicts and collisions and enhancing the overall safety and 
reliability of path planning. It is expected that PD is larger while S is smaller. 

PD(S) = max
xi∈S

(
PD
(
S − xi)+ d

(
xi, S − xi))

d(x, S) = min
xi∈S

(
dissimilarity

(
x, xi)) (53) 

SP(S) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑|S|

i=1

(di − d)
|S| − 1

√

di = min
xj∈S,xi∕=xj

(
∑m

k=1

⃒
⃒PFk

(
xi) − PFk

(
xj)⃒⃒

) (54) 

where, d(x, S) denotes the dissimilarity from x to a community S. PFk is the Pareto front obtained by the algorithm, and di is the 
Euclidean distance between the ith individual and the nearest individual to individual i in PF.

6.3. Simulated experimental results

Three experimental scenarios are considered with 2, 3, and 4 UAVs. The search space increases according to the number of UAVs. 
To fully explore the search space, it is necessary to set different population sizes and maximum iterations [20]. Considering the 
computational cost, for all the multi-objective methods, the population size is set to 80 for 2 UAVs, 120 for 3 UAVs, and 160 for 4 UAVs. 
The maximum number of iterations is 300, and the commanded arrival time tC = 1200s. The 3-D and top-view results of the paths 
planned by all algorithms are shown in Figs. 13–15. It can be seen from Fig. 13(a–f) that the paths in regions Cu2_1, Cu2_2, Cu2_3, Cu2_4, 
and Cu2_5 for SPEA2-CDP, NSGAII-ToR, and NSGAII-CDP collided with obstacles. The paths in regions Ru2_2 and Ru2_3 for MAOA and 
MOGWO are worse than the paths in Ru2_1 for DENSDBO-ASR, and there is a risk of collision. Fig. 14(a–f) shows the paths of three UAVs 
for collaborative planning. It can be found that there are apparent collisions in regions Cu3_1, Cu3_2, Cu3_3, Cu3_4, Cu3_5, Cu3_6, Cu3_7, and 
Cu3_8 with the SPEA2-CDP, NSGAII-ToR, NSGAII-CDP, MAOA, and MOGWO algorithms. In addition, from the comparison of the re
gions of Ru3_1, Ru3_2, and Ru3_3, the DENSDBO-ASR algorithm obtains better paths than MAOA and MOGWO, with the lowest risk.

Fig. 15(a–f) gives the results of four UAVs collaborating on the mission. It can be observed that the SPEA2-CDP, NSGAII-ToR, and 
MAOA algorithms have obvious collisions in regions Cu4_1, Cu4_2, Cu4_3, Cu4_4, Cu4_5, Cu4_6, and Cu4_7. In addition, from the comparison of 
the areas of Ru4_1, Ru4_2, Ru4_3, and Ru4_4, it is apparent that DENSDBO-ASR obtains preferable paths with the shortest path length and 
lowest risk. Therefore, the DENSDBO-ASR algorithm exhibits its superiority by generating better-performing paths in all scenarios. In 
addition, the Pareto fronts obtained by the DENSDBO-ASR and the SPEA2-CDP, NSGAII-ToR, NSGAII-CDP, MAOA, and MOGWO are 
presented in Fig. 16(a–c). It can be seen that the two methods of MOGWO and MAOA are comparable, while DENSDBO-ASR achieves a 
balance in optimizing the two objective functions and obtains a higher quality Pareto front.

Table 10 lists the statistical results, including HV, SP, the optimal value of objective function 1 (OFV1), and the optimal value of 
objective function 2 (OFV2). It can be found that the DENSDBO-ASR algorithm shows superior performance in all metrics in the 
scenario of two UAVs. In addition, in the collaborative scenarios of three and four UAVs, the DENSDBO-ASR algorithm achieves the 
first rank in PD, OFV1, and OFV2 metrics. For the SP index, the DENSDBO-ASR algorithm achieves second and third place in three and 
four UAV scenarios. The proposed method comprehensively considers various practical constraints, utilizes exploration and devel
opment capabilities, and effectively improves the optimization ability of DENSDBO-ASR in multimodal objective space. Therefore, 
better PD, S, OFV1, and OFV2 values can be obtained in three-dimensional multi-UAV collaborative path planning. In summary, all the 
results above prove the superiority of the DENSDBO-ASR algorithm.

Fig. 17(a–f) exhibits the convergence curves of the AOFV1 and AOFV2, where the horizontal axis represents the iterations and the 
vertical axis represents the optimal function value among all feasible solutions in the population. It can be seen that the DENSDBO-ASR 

Table 7 
Parameter settings for the obstacle datasets.

No. of obstacles (xm,ym) (km) Rm (km) H (km)

1 (50,100) 10 2.5
2 (120,120) 10 2.5
3 (120,20) 15 2.5
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algorithm consistently exhibits rapid convergence speed and ultimately obtains the lowest cost among all algorithms, showcasing its 
outstanding performance. This robust and reliable behavior makes DENSDBO-ASR the most prominent optimization method for 
dealing with cooperative path planning challenges.

To further demonstrate the robustness of the DENSDBO-ASR algorithm, the number of UAVs is increased to 6, 8, and 10. The 
SPEA2-CDP, NSGAII-ToR, and MOGWO are selected as comparison algorithms. The population size is set to 150. The maximum 
number of iterations is set to 200 for 6 UAVs, 300 for 8 UAVs, and 500 for 10 UAVs. All algorithms are run independently five times. In 
large-scale scenarios, finding a feasible path is the most important. Therefore, feasible rate, OFV1 and OFV2, are selected as the final 
evaluation metrics. Where, feasible rate is the percentage of feasible solutions in the Pareto set.

Table 11 presents the results of experiments with the number of UAVs of 6, 8, and 10. From Table 11, it is evident that DENSD
BOASR has a feasible rate of 100 % in all scenarios, and both OFV1 and OFV2 are optimal. When the number of UAVs is 6, the feasible 
rates of SPEA2-CDP, NSGAII-ToR, and DENSDBO-ASR are all 100 %. However, MOGWO only achieves a feasible rate of 5.20 %. When 
comparing OFV1 and OFV2, DENSDBO-ASR ranks first, followed by MOGWO. When the UAV number reaches 8, the feasible rates of 
SPEA2-CDP, NSGAII-ToR, and DENSDBO-ASR remain at 100 %, while MOGWO decreases to 0. This suggests that MOGWO is prone to 
falling into local optimal solutions when dealing with large-scale issues. To address this, it is necessary to improve the updating 
strategy, modify the population size, or increase the parallel processing capacity. When the number of UAVs is 10, the feasible rates of 
SPEA2-CDP and NSGAII-ToR decline to 66.67 %, while DENSDBO-ASR maintains a feasible rate of 100 %. Furthermore, DENSDBO- 
ASR still demonstrates superior performance in terms of OFV1 and OFV2 metrics. To summarize, DENSDBO-ASR is robust and pro
ficient in managing collaborative path planning with an increased number of UAVs.

7. Discussion

7.1. Implication

Metaheuristics are emerging as attractive vehicles for multi-UAV cooperative path planning due to their adaptability, flexibility, 
and global search capabilities. Although several improved metaheuristic algorithms have been successful in collaborative multi-UAV 
path planning [56–58], existing studies suggest that there are limitations in balancing different optimization objectives and consid
ering practical constraints [20,59]. Namely, Ren et al. [20] designed a path-planning model that optimizes multiple objectives 
simultaneously by using the improved AEMO-EDA algorithm. However, optimizing multiple objectives simultaneously can signifi
cantly complicate the optimization problem, leading to a difficult trade-off between convergence speed and solution quality. Li et al. 
[59] used the reference point technique and a distance cost matrix for path planning. However, the model ignores the collaborative 
limitations among multiple UAVs. This increases the risk of collisions and reduces the overall path planning efficiency. Therefore, it is 
crucial to enhance safety while minimizing cost and risk of collision in order to improve efficiency in mission execution.

The benchmark function tests, the Wilcoxon rank sum test, and the Friedman test confirm that the proposed improvement strategies 
effectively enhance the performance of the algorithm and expand its range of applications. This finding was not unexpected since it has 
been shown that the improved strategies significantly enhance the performance of the original algorithms [14,15]. Abbaszadeh Shahri 

Table 8 
The parameters of UAV.

Indicators Parameters

Maximum flight altitude hmax = 3000m
Minimum flight altitude hmin = 2000m
Minimum safe flight height hsafe = 200m
Maximum turning angle φmax = 60∘

Maximum climbing angle θmax = 45∘

Minimum straight flight distance lmin = 2000m
Minimum safe flight distance between UAVs dus = 5000m
Maximum flight speed vmax = 238.00 m/s
Minimum flight speed vmin = 102.00 m/s

Table 9 
The starting and target point of UAVs for the three cases.

No. Start point (km) Target Point (km)

2 UAVs 1 (20, 25, 2) (100, 170, 3)
2 (25, 25, 2) (170, 180, 3)

3 UAVs 1 (25, 25, 2) (100, 175, 3)
2 (25, 20, 2) (170, 175, 3)
3 (20, 20, 2) (150, 20, 3)

4 UAVs 1 (25, 20, 2) (170, 180, 3)
2 (20, 25, 2) (100, 175, 3)
3 (25, 25, 2) (150, 20, 3)
4 (20, 20, 2) (125, 90, 3)
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Fig. 13. Results of the collaborative path planning with two UAVs. (a) SPEA2-CDP; (b) NSGAII-ToR; (c) NSGAII-CDP; (d) DENSDBO-ASR; (e) 
MAOA; (f) MOGWO.
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Fig. 13. (continued).
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Fig. 14. Results of the collaborative path planning with three UAVs. (a) SPEA2-CDP; (b) NSGAII-ToR; (c) NSGAII-CDP; (d) DENSDBO-ASR; (e) 
MAOA; (f) MOGWO.
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Fig. 14. (continued).
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Fig. 15. Results of the collaborative path planning with four UAVs. (a) SPEA2-CDP; (b) NSGAII-ToR; (c) NSGAII-CDP; (d) DENSDBO-ASR; (e) 
MAOA; (f) MOGWO.
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Fig. 15. (continued).
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Fig. 16. Comparisons of the Pareto fronts. (a) Two UAVs; (b) Three UAVs; (c) Four UAVs.
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et al. [15] employed an adaptive parameter adjustment technique to improve the firefly algorithm that strikes a balance between 
exploration and exploitation. Chaharmahali et al. [14] proposed a restart mechanism to enhance the algorithm’s capability to escape 
local optima. The results of path planning experiments indicate that DENSDBO-ASR outperforms other comparative algorithms, 
highlighting the effectiveness of metaheuristic algorithms in handling multi-objective path planning issues. Surprisingly, 
DENSDBO-ASR exhibits robustness in managing multi-objective functions. Previous research has shown that the theoretical optima 
values of the multi-objective functions have similar magnitudes [24,60,61]. While there is no conclusive data indicating that this 
resemblance has an impact on the algorithm’s measured performance, we cannot entirely dismiss this possibility. Researchers have 
demonstrated that the algorithms exhibit strong performance when dealing with two objective functions that have close theoretical 
optima [24]. Our examination reveals a disparity in the magnitude of the theoretical optimal values of the two objective functions. The 
data results indicate that the values of OFV1 and OFV2 for DENSDBO-ASR are optimal in all scenarios, with OFV2 being able to 
converge to the ideal value of 0. This highlights the robustness of DENSDBO-ASR in addressing objective functions that have un
balanced magnitudes.

7.2. Limitation

Despite taking into account several constraints, including flying distance, threat, time, and spatial collisions, our study found that 
the algorithm still has certain limitations. First, the algorithm may struggle to adapt to changes in a dynamic environment. The real 
world is always changing, with unexpected barriers, fluctuating wind speeds, and so on, which requires algorithms to be able to 
recognize and adjust in real time. However, the algorithm was not developed with this dynamism in mind, resulting in real-world 
applications that may not perform optimally. Second, the model’s assumptions may not appropriately account for all real-world 
complications. It happens to be essential to make assumptions about the real world to simplify the problem. However, these as
sumptions may not fully capture all complexities, limiting the algorithm’s utility. Additionally, the constraints of UAV test datasets and 
the issue of time complexity must be considered. Existing UAV test datasets are limited, thus affecting the algorithm’s ability to 
generalize across different scenarios. Furthermore, when dealing with large-scale problems, the algorithm’s time complexity can 
become an obstacle.

To address these limitations, further research efforts can be conducted using the following methods: Firstly, develop a dynamic path 
updating approach that can enable the algorithm to adjust to real-time changes in the environment. This can be achieved by enhancing 
the algorithm’s feedback mechanism, enabling it to automatically adjust the trajectory in response to environmental changes. 
Furthermore, add certain restriction assumptions, such as communication restrictions, to make the model more realistic. In addition, it 
is necessary to improve the UAV test dataset by incorporating a wider range of conditions and mission scenarios. Moreover, the 
implementation of parallel computing can reduce the time complexity.

In real-world scenarios, the hardware limits and communication constraints between UAVs should also be considered. Both dis
tance and interference can have an impact on UAV communication. Efficient communication protocols can be employed to improve 
the anti-interference capability of UAVs [62]. In addition, it is essential to take into account hardware constraints such as compute 
power, energy consumption, and sensor performance. The algorithm needs to reduce computational complexity so that it can be 
executed faster on limited computer resources.

Table 10 
Comparisons of multi-objective indicators for the simulated experiments.

Method Indexes Metric

PD↑ SP↓ OFV1↓ OFV2↓

Two UAVs SPEA2-CDP [51] Avg (±Std) 3.71E+03 (±4.97E+03) 6.40E-03 (±3.59E-03) 3.84E+02 (±6.28E+00) 7.20E+00 (±6.52E+00)
NSGAII-ToR [48] Avg (±Std) 7.54E+03 (±2.79E+03) 7.39E-03 (±4.06E-03) 3.83E+02 (±5.27E+00) 5.80E+00 (±7.78E+00)
NSGAII-CDP [47] Avg (±Std) 8.64E+03 (±5.79E+03) 8.27E-03 (±4.97E-03) 3.80E+02 (±2.59E+00) 4.00E+00 (±4.98E+00)
DENSDBO-ASR Avg (±Std) 1.41Eþ04 (±2.19E+03) 6.06E-03 (±8.25E-04) 3.78Eþ02 (±1.06E-03) 0.00Eþ00 (±0.00E+00)
MAOA [53] Avg (±Std) 1.25E+04 (±4.44E+02) 1.76E-02 (±1.73E-02) 3.78Eþ02 (±6.08E-02) 0.00Eþ00 (±0.00E+00)
MOGWO [52] Avg (±Std) 1.18E+04 (±9.77E+02) 9.40E-03 (±2.90E-03) 3.78Eþ02 (±9.99E-02) 6.51E-02 (±1.45E-01)

Three UAVs SPEA2-CDP Avg (±Std) 1.19E+04 (±1.13E+04) 2.37E-03 (±2.96E-03) 5.14E+02 (±2.87E+00) 4.08E+01 (±2.80E+01)
NSGAII-ToR Avg (±Std) 2.99E+04 (±1.36E+04) 6.15E-03 (±3.19E-03) 5.24E+02 (±9.38E+00) 9.40E-01 (±5.77E-01)
NSGAII-CDP Avg (±Std) 3.54E+04 (±1.14E+04) 9.95E-03 (±8.14E-03) 5.23E+02 (±8.98E+00) 7.74E+00 (±1.23E+01)
DENSDBO-ASR Avg (±Std) 5.87Eþ04 (±1.02E+04) 4.50E-03 (±6.22E-04) 5.10Eþ02 (±3.83E-03) 0.00Eþ00 (±0.00E+00)
MAOA Avg (±Std) 5.81E+04 (±1.27E+04) 1.69E-02 (±2.73E-03) 5.11E+02 (±4.98E-01) 0.00Eþ00 (±0.00E+00)
MOGWO Avg (±Std) 5.78E+04 (±1.21E+04) 6.26E-03 (±2.29E-03) 5.10Eþ02 (±1.36E-01) 7.51E-02 (±1.05E-01)

Four UAVs SPEA2-CDP Avg (±Std) 3.03E+04 (±1.57E+04) 4.18E-03 (±2.58E-03) 6.64E+02 (±3.43E+01) 7.35E+00 (±7.35E+00)
NSGAII-ToR Avg (±Std) 4.06E+04 (±1.61E+04) 7.16E-03 (±3.47E-03) 6.56E+02 (±1.95E+01) 2.21E+00 (±3.16E+00)
NSGAII-CDP Avg (±Std) 3.88E+04 (±1.47E+04) 3.97E-03 (±7.76E-04) 6.48E+02 (±4.35E+00) 2.67E+00 (±4.65E+00)
DENSDBO-ASR Avg (±Std) 5.52Eþ04 (±1.89E+04) 4.55E-03 (±9.95E-04) 6.37Eþ02 (±1.77E-02) 0.00Eþ00 (±0.00E+00)
MAOA Avg (±Std) 5.23E+04 (±1.70E+04) 3.31E-02 (±1.88E-02) 6.39E+02 (±2.84E+00) 0.00Eþ00 (±0.00E+00)
MOGWO Avg (±Std) 5.29E+04 (±7.26E+03) 5.15E-03 (±1.77E-03) 6.37Eþ02 (±9.29E-02) 1.43E-01 (±3.20E-01)
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7.3. Ethical issues of deploying UAVs

The deployment of UAVs on collaborative missions raises significant ethical issues that must be considered [63,64]. One of the 
primary concerns is the infringement on personal privacy and the abuse of surveillance capabilities [65]. It is crucial to establish clear 
guidelines to safeguard individual rights and privacy. Van Wynsberghe [63] investigated the physiological and behavioral impacts of 
UAVs on humans to ensure that drones are used responsibly. Ntizikira [66] proposed the SP-IoUAV model, which focuses on enhancing 
the security and privacy of UAVs. The main objective of this model is to secure the integrity and confidentiality of data with the 
Internet of UAV ecosystems. Privacy and civil liberties can be effectively protected by utilizing privacy-preserving technologies, such 
as anonymized data processing and encrypted communications.

Ensuring safety is of great importance in UAV operations, particularly in multi-UAV-coordinated missions. To reduce the risk of 

Fig. 17. Convergence curves of the AOFV. (a) AOFV1 with two UAVs; (b) AOFV2 with two UAVs; (c) AOFV1 with three UAVs; (d) AOFV2 with three 
UAVs; (e) AOFV1 with four UAVs; (f) AOFV2 with four UAVs.
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accidents and ensure the safety of the public, it is imperative to implement powerful safety measures such as precise flight planning, 
secure operations, and advanced collision avoidance systems [67]. Prioritizing these safety procedures allows us to minimize potential 
risks and enhance the general reliability of UAV operations.

Furthermore, UAV technology has had both advantageous and adverse effects on society. It offers substantial advantages in diverse 
domains, such as disaster management, agricultural monitoring, and infrastructure inspection. However, it is important to 
acknowledge the potential environmental impacts associated with their use, such as noise pollution and habitat destruction [68]. 
Effective regulations are critical for ensuring that UAVs are employed appropriately and minimizing potential risks. This includes 
promptly updating airspace regulations, setting clear guidelines for the use of UAVs in various areas, and implementing appropriate 
penalties for violations of safety and privacy standards. The development of UAV technology can be further facilitated by maintaining a 
robust regulatory framework.

In summary, our studies demonstrate the effectiveness of DENSDBO-ASR in cooperative path planning, and these findings provide 
theoretical support for practical navigation. Furthermore, the algorithm is expected to be applied to more complex, constrained multi- 
objective optimization situations.

8. Conclusion

This paper focuses on multi-UAV cooperative path planning and regards it as a constrained, multi-objective problem. A multi- 
objective optimization model is presented, which considers the limitations regulating UAV maneuverability and cooperative con
straints among different UAVs. Four main cost functions are considered: the UAV path length cost, altitude cost, threat cost, and time 
cost. The sum of the length cost and altitude cost is one objective function, while the sum of the threat cost and time cost is another 
objective function. Subsequently, a novel DENSDBO-ASR algorithm is proposed to solve the multi-UAV cooperative path planning 
problem.

First, a multi-objective dung beetle optimizer is developed to solve the multi-objective optimization problem. Moreover, a 
directional evolutionary strategy is adopted to improve the diversity of the algorithm and enhance its search capability. Then, we 
propose an adaptive stochastic ranking mechanism to handle multiple constraints effectively. The experimental results on benchmark 
functions indicate that the DENSDBO-ASR algorithm has higher efficiency and superior performance than other methods. In addition, a 
detailed implementation of a cooperative multi-UAV path planning method using the DENSDBO-ASR algorithm is provided. Finally, 
the simulation experiments show that DENSDBO-ASR can obtain optimal paths for multiple UAVs in various scenarios. The comparison 
results also confirm that the DENSDBO-ASR algorithm has a significant advantage in solving the multi-UAV path planning problem.

In future work, we hope to develop more effective strategies to optimize the DENSDBO-ASR algorithm to reduce time complexity 
and broaden the algorithm’s application scope. The use of realistic and diverse experimental datasets will be essential for improving 
the path-planning model. Furthermore, we will concentrate on the real-time adaptation of dynamic path planning, establishing moving 
obstacles for path planning, and increasing UAV planning efficiency. These efforts are crucial to enhancing our models and progressing 
UAVs to address the ever-changing safety challenges in dynamic scenarios.
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