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Abstract

We introduce a novel three-dimensional (3D) traction force microscopy (TFM) method motivated by the recent discovery
that cells adhering on plane surfaces exert both in-plane and out-of-plane traction stresses. We measure the 3D deformation
of the substratum on a thin layer near its surface, and input this information into an exact analytical solution of the elastic
equilibrium equation. These operations are performed in the Fourier domain with high computational efficiency, allowing
to obtain the 3D traction stresses from raw microscopy images virtually in real time. We also characterize the error of
previous two-dimensional (2D) TFM methods that neglect the out-of-plane component of the traction stresses. This analysis
reveals that, under certain combinations of experimental parameters (cell size, substratums’ thickness and Poisson’s ratio),
the accuracy of 2D TFM methods is minimally affected by neglecting the out-of-plane component of the traction stresses.
Finally, we consider the cell’s mechanosensing of substratum thickness by 3D traction stresses, finding that, when cells
adhere on thin substrata, their out-of-plane traction stresses can reach four times deeper into the substratum than their in-
plane traction stresses. It is also found that the substratum stiffness sensed by applying out-of-plane traction stresses may
be up to 10 times larger than the stiffness sensed by applying in-plane traction stresses.
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Copyright: � 2013 del Álamo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by National Institutes of Health Grants USPHS 1R01GM084227. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jalamo@ucsd.edu

Introduction

Adherent cells exert mechanical forces on the extracellular

matrix (ECM) to regulate adhesions, propel their migration [1]

and to sense the ECM stiffness by a process generally referred as

mechanosensing [2,3]. In our organism, cells are often embedded

in three-dimensional (3D) ECMs, which they deform in all spatial

directions by generating three-dimensional forces in order to

migrate [4]. Even cells that form stable two-dimensional (2D)

monolayers, such as vascular endothelial cells, are known to exert

three-dimensional traction forces [5] both in isolation and

confluency [6]. The ability of cells to apply three-dimensional

forces on two-dimensional layers is also important for the

extravasation of leukocytes during the immune response [7] and

for cancer cell invasion [8,9].

The past few years have witnessed the development of several

2D traction force microscopy (TFM) methods, which allow

investigators to measure only the in-plane (tangential) components

of the traction stresses generated by cells adhering to plane

substrata [10–15]. More recently, 3D TFM methods have been

introduced allowing for the determination of the out-of-plane

(normal) component of the traction stresses [5,16]. However, these

3D TFM methods are based on numerical calculations performed

on large volumetric grids, which can limit their ability to deal with

large experimental sets containing many samples. Furthermore,

some of these techniques [16] rely on the acquisition of thick z-

stacks containing a large number of confocal images, which not

only subjects the cells to high levels of laser radiation, but also

constrains the temporal resolution of the measurements.

The realization that cells generate out-of-plane traction stresses

even when they adhere to plane surfaces [5] has prompted an

increasing demand for the characterization of the error that the

widely used 2D TFM methods may have incurred by neglecting

these stresses. This would require to quantify the error of 2D TFM

as a function of experimental parameters such as cell size, cell

shape, substratum thickness and substratum Poisson ratio (see } 3.2

for details). Because existing 3D TFM methods are not well suited

for parametric studies, the error of 2D TFM has not been

characterized yet.

The effect of the normal traction stresses on ECM mechan-

osensing is another aspect related to 3D traction stresses that

remains unexplored. Since normal stresses deform the substratum

axially while tangential ones shear it, and these two types of

deformation are different from each other, it is reasonable to

question if cells can sense different ECM mechanical properties by

imparting tangential or normal stresses. Thick isotropic gels have
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their shear elastic modulus proportional to their axial Young’s

modulus and, thus, they exhibit similar stiffness under both

tangential and normal traction stresses [17]. However, the same

cannot be expected to hold for thin substrata, where the contact

with a rigid surface (a glass coverslip in vitro or bone tissue in vivo)

breaks the macroscopic isotropy condition. of the system as a

whole, even if the microscopic material properties of the gel

remain isotropic. The elastic response to tangential traction

stresses in thin substrata has been previously studied using 2D

TFM approaches [18,19] but we still lack information about the

response to normal traction stresses. Harnessing the different

values of the elastic modulus sensed by the cell by tangential and

normal traction stresses could provide some control over the

cellular response to an ECM with given mechanical properties.

The aim of this paper is to address these open questions and to

improve existing 3D TFM approaches by introducing a new

traction cytometry method based on an exact analytical three-

dimensional solution to the elastic equilibrium equation for a

substratum of finite thickness. In this method, it is sufficient to

measure the 3D deformation of the substratum on a thin layer

near its surface. Therefore, the cells are exposed to lower levels of

laser radiation and a higher temporal resolution is obtained. The

analytical solution derived in this study is a general explicit

formula that can be recycled for different sets of deformation

measurements, resulting in an improved computational efficiency

compared to existing 3D TFM methods. The new methodology is

described in section and its performance is illustrated in section 3.1

for chemotaxing Dictyostelium cells. Section 3.2 compares the results

of 2D and 3D TFM methods for a synthetic 3D deformation field

that simulates the deformation patterns measured in the experi-

ments. Specifically, section 3.2.1 defines the error of 2D TFM

methods and analyzes its dependence on the experimental

parameters in order to obtain the combinations of these

parameters that minimize the error. A spectral comparison of

2D and 3D TFM methods that does not presume any synthetic

shape for the deformation field is given in section 3.2.4. This

spectral comparison is extended in section 3.3 to study mechan-

osensing of substratum stiffness and thickness by 3D traction

stresses.

Materials, Methods & Analysis

2.1 Dictyostelium Cell Culture
Dictyostelium cells were grown under axenic conditions in HL5

growth medium in tissue culture plates as described in [20]. We

used wild type (WT) cells (Ax3). Aggregation competent cells were

prepared by pulsing a 5|106 cells/ml suspension in Na/K

phosphate buffer (9.6 mM KH2PO4, 2.4 mM Na2HPO4, pH 6.3)

with cAMP to a concentration of 30 nM every 6 min for 6 h. Cells

were seeded onto the functionalized polyacrylamide substratum

and allowed to adhere. A drawn glass capillary mounted on a

micromanipulator served as the source of chemoattractant (150 m
M cAMP in an Eppendorf femtotip, Eppendorf, Germany).

2.2 Polyacrylamide Gel Preparation
12–mm diameter and 50–100 mm thick polyacrylamide gels

were fabricated on 22–mm square #1 glass coverslips using

essentially the procedure described by Beningo et al. [21]. To

improve the signal to noise ratio of the z-stacks, the polyacryl-

amide gel was fabricated as two sequential layers with the first

bottom one containing no beads and the second top one

containing 0.03% carboxylate modified yellow latex beads with

0.1 mm diameter (Fluospheres, Invitrogen, Carlsbad CA). The two

layers were verified to adhere well to each other by performing

supporting experiments using gels where the beads were contained

in the bottom layer. The square coverslips with the two layered

gels were then mounted in Petri dishes with a circular opening in

the bottom using silicon grease (Dow Corning, Midland,

Michigan). We crosslinked collagen I to the surface using Sulfo-

SANPAH (Thermo Sci, Rockford, Il) (1 mM in HEPES buffer

(pH 8.5). After UV activation and washing thoroughly, 0.25 mg/

ml collagen protein in HEPES were added and the gels were

incubated overnight at room temperature. After washing the gels

were stored with buffer (9.6 mM KH2PO4, 2.4 mM Na2HPO4,

pH 6.3, same buffer used in the experiments) and antibiotic

(40 mM Ampicillin) for use within a week. Substratum thickness

was measured by locating the top and bottom planes of the gel and

subtracting their z positions. The top plane was found by

maximizing the number of in-focus pixels of cell outlines as

described by del Álamo et al. [13] The bottom plane was found in

a similar manner by focusing on streaky patterns left on the surface

of the glass coverslip during treatment for gel attachment.

2.3 Microscopy
The 3D deformation of the polyacrylamide substratum was

determined from the displacements of embedded 0.1–mm fluores-

cent beads as described in section 2.5 (see Figure 1). Time-lapse

sequences of z-stacks of fluorescence images were acquired using a

Marinas Workstation, 3I, Denver CO. 3I Marianas spinning disk

confocal system. It consist of a Zeiss Observer Z1 body with a 636
oil immersion lens, a Yokogawa CSU-X1 spinning disk head and a

Roper Quant EM 512 SC camera for image capture. The pinholes

have a diameter of 50 mm. The measured full-width half

maximum of the point spread function of the system was

measured to be 1.4 mm. Each z-stack contained 8–12 images

separated a vertical distance Dz~0:5 mm. The images were

collected using an 63X=1:4 oil lens through a spinning disk

confocal head. The xy position and the shape of the cells was

recorded with an additional single differential interference contrast

(DIC) transmitted light image for each time point.

2.4 Identification of cell contours
Cell outlines were determined from the DIC images of the free

surface of the substratum captured as described in } 2.3. Image

processing was performed with MATLAB (Mathworks Inc,

Natick, MA) as described in previous works by our group

[13,22,23]. Static imperfections were removed from individual

images using the average of the image series. A threshold was

applied to the resulting images to extract the most intense features,

which were refined using two consecutive image dilations and

erosions with structuring elements of increasing size. The sets of

connected pixels were detected and their holes were filled.

2.5 Measurement of Three-dimensional Substrate
Deformation

The deformation of the substratum was measured in three

dimensions by cross-correlating each instantaneous fluorescence z-

stack obtained with the confocal microscope (see } 2.3) with a

reference z-stack in which the substratum is not deformed (see

Figure 1). In each experiment, the undeformed image was

obtained by waiting for the cell to move out of the field of view,

which takes approximately 10 minutes as Dictyostelium cells are

highly motile. The comparison between the deformed and

undeformed (reference) conditions was performed by dividing

each instantaneous and reference z-stacks into 3D interrogation

boxes and optimizing the 3D cross-correlation between each pair

of interrogation boxes. Sub-pixel resolution was attained by tri-

3D Traction Force Microscopy and Mechanosensing
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quadratic polynomial interpolation of the image correlation

function. The image correlation codes were validated against the

3D single-particle tracking codes developed by Hur et al. [5],

showing very good agreement. Figure S2 in file Supporting

Information (File S1) shows a representative example of the 3D

cross-correlation function between interrogation boxes from the

deformed and undeformed images. The signal-to-noise ratio of the

measurement is defined as the ratio between the maximum value

of the cross-correlation and the second highest local maximum.

The measurement floor estimates the lowest deformation that

could be accurately measured by our method. It was defined from

the standard deviation of the deformation measured far away from

the cell, where this deformation should be equal to zero. The

horizontal size of the interrogation boxes was chosen to balance

resolution, which decreased with box size, measurement floor,

which decreased with box size, and signal-to-noise ratio, which

increased with box size (see Table 1). We chose the smallest box

size that provided a signal-to-noise ratio greater than 2.5 which

resulted in a box with 24624 pixels in the x and y directions, and

led to a Nyquist spatial resolution of 2.1 mm. Further increases in

box size led to higher signal to noise ratios but did not decrease the

measurement floor appreciably. Typical values of deformations

exerted by the cells ranged between 30 and 50 times the

measurement floor. In addition to these considerations, phototoxic

effects need to be taken into account when choosing the vertical

size of the interrogation boxes, Dz, because the level of laser

radiation transmitted to the cells increases with the number of

slices per z-stack. In our experiments, Dz~8 was the minimum

box height that allowed for meaningful deformation measure-

ments. Thus, we acquired z-stacks having between 8 and 12 slices,

which enabled us to record time lapse sequences of stacks with a

time resolution of 4 seconds and durations of up to 30 minutes

with no apparent phototoxic effects.

2.6 Calculation of Three-dimensional Traction Stresses
We computed the three-dimensional deformation field in the

whole substratum by solving the elasticity equation of equilibrium

for a linear, homogeneous, isotropic three-dimensional body

characterized by its Poisson’s ratio, s,

(1{2s)+2uz+(+:u)~0, ð1Þ

where the inertial stresses have been neglected. This assumption is

justified by estimating that the ratio between the inertial and

elastic stresses is of order rl2=ET2*10{12, where r*103kgm{3

and E*103Pa are respectively the density and Young modulus of

the substratum, l*2|10{5m is the length of the cell and T*20s

is the characteristic timescale of pseudopod protrusion and

retraction [24]. We sought for solutions of this equation that are

periodic in both horizontal directions and expressed them using a

discrete Fourier series,

u(x,y,z)~
XM=2{1

m~{M=2

XN=2{1

n~{N=2

buumn(z)exp(iamx)exp(ibny), ð2Þ

where am~2pm=L, bn~2pn=W are respectively the wavenum-

bers in the x and y directions, while L and W are respectively and

the spatial periods of the domain. The numbers of Fourier

coefficients in each direction are determined from the PIV grid of

interrogation boxes using the Nyquist criterion, yielding

M~L=Dx and N~W=Dy. Figure 2 outlines the problem

Figure 1. Example of fluorescence confocal image used to determine substratum deformation. The three panels at the top of the figure
(a–c) show the first horizontal slice of a 512|512|12–pixel x{y{z stack, which is focused at the free surface of the substratum (z~h). (a), Tracer
beads fluorescence in undeformed conditions used as reference for traction force microscopy. The scale bar is 10 microns long. The axes indicate the
reference system for both the substratum deformation and the traction stresses. (b), Tracer beads fluorescence when the substratum is deformed by
a migrating cell, whose outline is indicated by the green contour. (c), Image obtained by merging the fluorescence from tracer beads in undeformed
(a) and deformed (b) conditions, which reveals the deformation of the substratum. White speckles indicate perfect match between undeformed and
deformed conditions and thus zero local deformation. Blue and orange speckles indicate mismatch between undeformed and deformed conditions
and thus non-zero local deformation. Regions of locally large deformation are indicated with yellow arrows. The dashed green line indicates the
location of the vertical section shown in panels d–g. (d), Three-dimensional illustration of the relative positions of the horizontal plane in panel (x–y,
yellow axes) and the vertical plane in panel (s–z, red axes). The black axes indicate the three-dimensional reference system used to express both the
substratum deformation and the traction stresses. The three panels at the bottom right corner of the figure (e–g) show vertical slices of the same
512|512|12–stack passing through the dashed green line in panel at z~h. (e), Image obtained by merging the fluorescence from tracer beads in
undeformed (f) and deformed (g) conditions. Speckle patterns with orange top and blue bottom are found in locations where the cell is pulling up on
the substratum. Conversely, speckle patterns with blue top and orange bottom are found the when cell is pushing down on the substratum. (f),
Tracer beads fluorescence in deformed condition. (g), Tracer beads fluorescence in underformed condition.
doi:10.1371/journal.pone.0069850.g001
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configuration. For the sake of brevity and without loss of

generality, we will drop the subindices m and n of a and b in

what follows (a~am and b~bn).

The boundary conditions to eq. 1 are partially set up by

imposing zero displacements at the base of the substratum, i.e.

u(x,y,0)~0 (see Fig. 2), since the glass coverslip is much stiffer

than the substratum gel, and the gel is firmly adhered to the

coverslip. A general solution to eq. 1 that is compatible with zero

displacements at the bottom of the gel was determined by del

Álamo et al. [13]. More recently, an elegantly simple solution to the

2D problem that only requires computing two scalar functions was

found by Trepat et al. [15]. However, here we follow the more

general formulation by del Álamo et al. [13], which we can easily

extend to three dimensions and which is also relatively simple. We

express the Fourier transform of the deformation vector as

buumn(z)~ Umn(z)j Vmn(z)jWmn(z)½ �:dzbuu0
mn~Umn(z):dzbuu0

mn, ð3Þ

where Umn, Vmn, Wmn are three fundamental solutions of the

problem (given in the Supporting Information, File S1). Thus,

Umn(z) is the resolvant matrix. The vector dzbuu0
mn contains the z-

derivatives of the displacements’ Fourier coefficients at z~0,

which are unknown a priori. The same solution was found

independently by three members of our team using Maple

(Maplesoft, Waterloo, ON, Canada).

2.6.1 Boundary Conditions on the displacements at

z = h. The three unknown elements of dzbuu0
mn can be determined

by imposing the three-dimensional displacements measured at

z = h as boundary conditions (see Fig. 2). For that purpose we

determine the Fourier coefficients of the measured displacements,buumn(h), and invert equation 3 particularized at z = h to arrive at

buumn(z)~Umn(z):U{1
mn (h):buumn(h): ð4Þ

Explicit analytical expressions for the nine elements in Umn(h){1

are given in the Supporting Information (File S1). As noted by

Butler et al. [12], working in the Fourier domain allows us to

perform this inversion exactly and without regularization, which

can be a delicate issue in methods that work in the physical

domain [10]. Analytical differentiation of the resolvant matrix

yields explicit formulae for the z-derivatives of the displacements,

dzbuumn(z)~dzUmn(z):U{1
mn (h):buumn(h): ð5Þ

2.6.2 Determination of the normal and tangential traction

stresses on the deformed surface of the substratum. This

section employs the solution to the elastostatic equation (1) to

determine the Green’s function bGGmn that relates the 3D traction

stress vector exerted by the cell on the surface of the gel, T , to the

measured displacements, u. In Fourier space, this relation is given

by

bTTmn(h)~ bGGmn
:buumn(h): ð6Þ

The stresses on the surface of the substratum are given by by

T~T :n, where n is the unit vector normal to the surface of the

substratum, and T is the three-dimensional stress tensor.

Assuming that the deformed surface of the gel is given by

z~hzw(x,y,h), the vector normal to the deformed surface is

n&
Lxw,Lyw,1
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Lxwð Þ2z Lyw
� �2

z1

q :

Table 1. Average signal-to-noise ratio of the three-dimensional displacement measurements obtained by image cross-correlation
as a function of the size of the interrogation box (in pixels).

Interrogation Box Size Nyquist resolution Signal-to-noise Ratio Displacement floor

(Dx6Dy, pixels) (mm) u–v (mm) w (mm)

868 0.7 1.8 0.014 0.015

16616 1.4 2.3 0.009 0.008

24624 2.1 2.6 0.007 0.006

32632 2.7 2.9 0.007 0.006

64664 5.6 3.5 0.007 0.005

Signal-to-noise ratio is defined as the ratio between the maximum value of the cross-correlation and the second local maximum. All data in this table have been
obtained for interrogation boxes with vertical size of Dz~8 pixels.
doi:10.1371/journal.pone.0069850.t001

Figure 2. Configuration of the 3D TFM mathematical problem.
The input data are the measured three-dimensional deformation
caused by the cell on the free surface of the substratum (z~h, red),
and it is assumed that the deformation of the substratum is zero at the
bottom surface in contact with the glass coverslip (z~0, blue). We
assume that the substratum has linear, homogeneous, isotropic
material properties, with Young modulus E and Poisson’s ratio s.
Fourier series with spatial periods L and W are used to express the
dependence of the variables in the horizontal directions.
doi:10.1371/journal.pone.0069850.g002
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The normal stresses on the deformed substratum are then given

respectively by

T n~ nT :T :nð Þn and T t~T :n{T n:

Consistent with the small-deformation approximation [17], the

values of Lxw and Lyw in our experiments are typically small, in

the range 0.05–0.1. Thus, n&(0,0,1), and the normal and

tangential stresses can be approximated by T n~(0,0,tzz) and

T t~(txz,tyz,0), similar to the undeformed conditions. Likewise,

the normal and tangential deformation can be expressed as

un~(0,0,w) and ut~(u,v,0).

The stress vector can be obtained from the calculated

displacements and their z-derivatives by applying Hooke’s law in

Fourier space,

bTTmn~

ctxztxzctyztyzctzztzz

264
375

mn

~Hmn(E,s):
buumn(h)

dzbuumn(h)

� �
, ð7Þ

where the 663 matrix Hmn, which only depends on the material

properties of the substratum (E and s) and the wavenumbers of

each Fourier mode (am, bn), is given in the Supporting Information

(File S1). Plugging the solution for dzbuumn(h) obtained by applying

the boundary conditions (equation 5 at z = h), we obtain the

Green’s function,

bGGmn~Hmn
: I

dzUmn(h):Umn(h){1

� �
: ð8Þ

2.6.3 Determination of the Strain Energy Exerted by the

Cells on the Substrate. The strain energy deposited by the cell

on the substratum is equal to the mechanical work exerted by the

cell and, thus, it can be easily determined using the principle of

virtual work [12,17]. In the 3D case, it is convenient to decompose

the strain energy in its normal (Un) and tangential (Ut)

components,

Ut~
1

2

ðL

0

ðW

0

T t(x,y,h):ut(x,y,h)dx dy&

1

2

ðL

0

ðW

0

½T xzuzT yzv�(x,y,h)dx dy,

ð9Þ

Un~
1

2

ðL

0

ðW

0

T n(x,y,h):un(x,y,h)dx dy&

1

2

ðL

0

ðW

0

½T zzw�(x,y,h)dx dy,

ð10Þ

so that Us~UtzUn is the total strain energy. These two

components can be interpreted as the mechanical work exerted

by the tangential and normal traction stresses.

Results

3.1 Application of 3D Fourier Traction Force Microscopy
to Migrating Amoeboid Cells

Consistent with previous 2D studies [13,22,23], we found that

cells contract the substratum from front and back towards the

center of the cell. However, the 3D measurements revealed that

the deformation and stresses in the direction perpendicular to the

substratum cannot be neglected, as they can be as large as the

tangential ones. These observations are illustrated in Figure 3,

which displays an example of the deformation and stress fields

caused by a migrating Dictyostelium cell on the surface of the

substratum. The cell in this figure is the same one represented in

Figure 1 and is migrating from left to right. As a matter of fact, for

the specific cell and instant of time depicted in Figure 3, the peak

normal deformation and stresses are even higher than the peak

tangential ones. The corresponding normal strain energy,

Un~4:7nN mm, is also greater than the tangential one,

Ut~1:6nN mm (note that 1nN mm~1fJ).

The 3D measurements also indicate that, during migration, the

cells not only tugged the substratum horizontally but also pulled

upwards (away from the substratum) along their front and back

while pushing downwards right under their center (see Fig. 3c, f).

These results are in good agreement with previous 3D traction

stress measurements [25].

3.2 Comparative analysis of 3D and 2D traction force
microscopy methods

This section compares the present 3D TFM method with

previous 2D TFM methods that assumed the substratum to be

infinitely thick and neglected the vertical displacements [10,12],

and with 2D TFM methods that accounted for the finite thickness

of the substratum but neglected either the vertical displacements

[15] or the vertical traction stresses at z = h [13]. The comparison

is simplified because, under the small deformation-approximation

(see 2.6.2), the vector normal to the free surface of the substratum

is the same in two and three dimensions. Thus, the x–y

components of the 2D traction stress vector, T 2D~(T 2D
xz ,T 2D

yz ,0),

are homologous to those obtained by 3D TFM, where

T 3D~(T 3D
xz ,T 3D

yz ,T 3D
zz ). We will thus reduce our analysis to a

direct comparison between t2D
iz and t3D

iz for i = x,y,z. Note that in

general t2D
iz =t3D

iz because of the different boundary conditions

employed in each case to solve equation 1.

3.2.1 Synthetic-field analysis of 3D and 2D traction force

microscopy methods. In order to systematically study the

errors in 2D TFM, we calculate the traction stresses generated by

a synthetic deformation field applied on the surface of the

substratum,

u(x,y,h)~{
U0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(x{D)2zy2

q z
U0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(xzD)2zy2

q , ð11Þ

v(x,y,h)~0, ð12Þ

w(x,y,h)~
W0=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(x{D)2zy2

q z
W0=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(xzD)2zy2

q {
W0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2zy2

p , ð13Þ

which is plotted in Figures 4(a)–(c). This synthetic field was chosen

because it resembles the deformation pattern caused by migrating

amoeboid cells in our experiments (see Figure 3). It consists of

three deformation poles whose positions are aligned in the

direction parallel to the cell’s longitudinal axis (the x-axis). The

front and back poles are placed at a distance 2D to each other.

They contract the substratum tangentially towards their midpoint,

and pull away from substratum in the direction normal to the free

3D Traction Force Microscopy and Mechanosensing
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surface. The central pole presses down the substratum in the

normal direction. The average deformation created by these three

poles is zero in all directions so that static equilibrium is fulfilled.

In order to characterize the dependence of the error on the ratio

of tangential to normal deformation, we let u and w be

proportional to two different lenghtscales, U0 and W0. Once we

set the value of the ratio W0/U0, the actual magnitude of U0 is

irrelevant for the purpose of comparing 2D and 3D TFM

equations because the elastostatic equation and the constitutive

equations of the substratum are linear. The same applies to the

magnitude of the substratum’s Young modulus. Therefore, we set

U0 = 1 (units length) and E = 1 (units force per unit area) for

simplicity. The deformation field caused by each pole was chosen

to decay as the inverse distance to each pole because this rate of

decay is known to result from applying a point force (i.e. a Dirac

delta traction stress) at the pole when h»D [17]. This particular

choice allowed us to verify the correctness of our calculations and

is immaterial to the comparison of 2D and 3D methods presented

below. Figure S1 in the Supporting Information (File S1) shows

that the same comparative results are obtained for other choices of

the deformation field. The only relevant non-dimensional param-

eters for this comparison are the ratio D/h, which can be

interpreted as a surrogate for cell length relative to substratum

thickness, the Poisson’s ratio of the gel, and the ratio of normal to

tangential deformation, W0/U0. Note that W0/U0 is somewhat

related to the vertical aspect ratio of the cell; flat cells are

geometrically constrained to generate low values of W0/U0 while

round cells may generate high values of W0/U0.

In order to quantify more precisely the accuracy of 2D TFM,

and its dependence on the Poisson’s ratio, W0=U0 and D=h, we

define the error in the tangential stresses as Et~(Et,xzEt,y)=2,

where

Et,x(s,W0=U0,D=h)~Ð Ð
T 2D

xz (x,y,z~h){T 3D
xz (x,y,z~h)

� �2
dx dyÐ Ð

T 3D
xz (x,y,z~h)2dx dy

( )1=2

,
ð14Þ

and Et,y is defined in a similar way. The relative error in the

normal stresses is defined as

En(s,W0=U0,D=h)~Ð Ð
T 2D

zz (x,y,z~h){T 3D
zz (x,y,z~h)

� �2
dx dyÐ Ð

T 3D
zz (x,y,z~h)2dx dy

( )1=2

:
ð15Þ

These errors are normalized so that they are equal to one when

t2D~0 and t3D
=0.

3.2.2 Influence of the Poisson ratio and cell length on the

error of 2D TFM. Based on the evidence that the level of

normal deformation is comparable to the level of tangential

deformation (see } 3.1), our analysis will focus first on the

dependence of the error on s and D=h for the case W0=U0~1.

For each pair of values of D=h and Poisson’s ratio, one can

calculate a traction stress map from the boundary conditions

specified by the synthetic deformation field in eqs. 11–13 (see

Figure 2). Figure 4(d)–(f) shows the traction stresses obtained by 3-

D Fourier TFM for s~0:3 and D=h~1=2, which are represen-

tative values of the experimental conditions in TFM experiments

[13,23,24] The lower panels in that figure display the stresses

obtained from the synthetic deformations by 2D TFM methods on

finite-thickness substrata [13,15]. These stresses are obtained by

Figure 3. Three-dimensional deformation field and stress field generated by the example cell in Figure 1 on the surface of the
substratum. The cell is moving from left to right. The level of deformation/stress is represented by a pseudo-color map according to the color bars
at the right hand side of the figure. The green contour indicates the cell outline. The data are overlaid on the DIC image used to identify the cell body
(see } 2.4). The black scale bars are 10mm long. (a), Tangential (horizontal) deformation in the direction parallel to cell speed, u(x,y,h). (b), Tangential
(horizontal) deformation in the direction perpendicular to cell speed, v(x,y,h). (c), Normal (vertical) deformation, w(x,y,h). (d), Tangential (horizontal)
stress in the direction parallel to cell speed, txz(x,y,h). (e), Tangential (horizontal) stress in the direction perpendicular to cell speed, tyz(x,y,h). (f),
Normal (vertical) stress, tzz(x,y,h). The arrows in panels , , and indicate the directions of positive (red) and negative (blue) deformation/stress. The 6

and 8 symbols in panels and indicate deformation/stress pointing respectively into the plane (blue, negative) and out of the plane (red, positive).
doi:10.1371/journal.pone.0069850.g003
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replacing the boundary condition (13) with either w(x,y,h)~0
(panels g–i, ref. [15]), or with tzz(x,y,h)~0 (panels j–l, ref. [13]).

A visual inspection of Figure 4 provides overall qualitative

information about the accuracy of 2D TFM in comparison to the

3D approach introduced in this work. Both 2D methods produce

similar results and are able to reproduce the tangential contractile

stresses along the x direction (txz) at the front and back poles

(Fig. 4d, g, j). However, the 2D methods miss the tangential

expansive stress caused by the central pole’s pushing down into the

substratum, which is due to the Poisson’s effect. The accuracy of

the 2D methods is somewhat worse for the tangential stresses in

the y direction (tzy, Figure 4e, h, k) because these stresses appear

exclusively due to the Poisson’s effect caused by the deformations

prescribed in the other two directions. Finally, and as expected,

2D TFM severely underpredicts the normal traction stresses (tzz,

Figure 4f, i, l). The 2D methods that impose w~0 on the surface of

the substratum [15] only capture the normal stresses caused by the

tangential deformation due to the Poisson’s effect. And obviously,

the tzz~0 condition [13] leads to zero normal stresses on the

surface of the substratum.

Figure 5(a) displays the tangential errors as a function of the

Poisson’s ratio for two extreme values in which D=h%1 (0.01) and

D=h&1 (100). It is worth studying these limits in detail because

they contain zones of low Et, which can be used to guide the

design of 2D TFM experiments that are accurate independent of

the normal stresses exerted by the cell. The typical range of

Poisson’s ratios of the gels employed in traction force microscopy,

0:3ƒsv0:49 [26–28], is indicated by the shaded regions in the

plot.

For low values of D=h (blue lines in Fig. 5a), the length of the cell

is much smaller than the thickness of the substratum. In this case,

Boussinesq’s elastostatic solution for infinitely thick substrata [12]

becomes equal to the two finite-thickness solutions [13,15], which

are also approximately equal to each other consistent with

Figure 4. Hence, the tangential errors of all three 2D TFM

methods are the same for D=h%1. In the range of interest of

Poisson’s ratios, Et from 2D TFM methods is up to &35% but this

error decreases sharply as the Poisson’s ratio approaches the

incompressible limit, s~0:5. This behavior is explained by

recalling that the tangential stresss/strain fields in the Boussinesq

solution decouple from the normal ones in that limit (ref. [17],

page 25, eq. 8.19). Ideally, it would not be necessary to measure

the normal displacements in order to accurately determine the

tangential stresses under these conditions (s~0:5, D%h). In

practice, however, the sharp decrease of Et means that this error

remains relatively high for values of the Poisson’s ratio close to

s~0:5. For instance, we obtain that Et~13% for s~0:45.

Figure 4. Side-by-side comparison of 3D Fourier TFM versus previous 2D methods [13,15] for a synthetic deformation field
representative of the deformation patterns exerted by migrating amoeboid cells (see Figure 3). The Poisson’s ratio is s~0:3 and the
substratum thickness, h~2D, is equal to the length of the ‘‘synthetic cell’’. The plots in the top row show the synthetic deformation field in the x
direction (eq. 11, panel a), y direction (zero, panel b) and z direction (eq. 13, panel c). The second row shows the traction stresses calculated from the
displacements in panels (a)–(c) by 3D Fourier TFM. (d), txz; (e), tyz ; (f), tzz. The third row shows the traction stresses calculated from the displacements
in panels (a)–(c) by 2D Fourier TFM under the assumption of zero normal displacements on the substratum’s surface (w(z~h)~0 as in ref. [15]). (g),
txz; (h), tyz ; (i), tzz . The last row shows the traction stresses calculated from the displacements in panels (a)–(c) by 2D Fourier TFM under the
assumption of zero normal stresses on the substratum’s surface (tzz(z~h)~0 as in ref. [13]). (j), txz; (k), tyz ; (l), tzz .
doi:10.1371/journal.pone.0069850.g004
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For high values of D=h (red lines in Fig. 5a), the length of the cell

is much larger than the thickness of the substratum. In

consequence, Boussinesq’s solution yields errors §50% for all

values of the Poisson’s ratio (Fig. 5). The finite-thickness 2D TFM

methods [13,15] yield relatively low tangential errors as long as the

substratum is far from incompressible but their Et increases

abruptly as the Poisson’s ratio approaches s~0:5. For reference,

this error is Et&2% for s~0:3 but it becomes Et&35% for

s~0:45. The reason for this behavior can be understood by

analyzing the elastostatic equations (1) for very thin substrata. In

this limit, the z-derivatives are much larger than the x,y-derivatives

and the equations are simplified to

(1{2s)LzzuzLxzw~0, ð16Þ

(1{2s)LzzvzLyzw~0, ð17Þ

Lzzw~0: ð18Þ

This simplification shows that, if s is far from 0.5, the second

terms in equations (16)–(17) are negligible as they contains x and y

derivatives. In that case, the normal displacements decouple from

the tangential ones and it is not necessary to measure the former in

order to determine the latter. However, as s approaches 0.5, the

factor (1{2s) that multiplies the first terms in equations (16)–(17)

also becomes small, the x and y derivatives in those equations

cannot be neglected anymore, and the tangential displacements

remain coupled to the normal ones.

Figure 6 is the dual of Figure 5. It illustrates the dependence of

Et and En on D=h for two values of the Poisson’s ratio typical of

TFM experiments, namely s~0:3 and s~0:45 [26–28]. For

Dvh, the tangential error of all 2D TFM methods is independent

of D=h and relatively high (Et&37% and 13% respectively for

s~0:3 and 0.45, Fig. 6). For Dwh, Et from Boussinesq’s 2D

method increases steeply with D=h, reaching values that exceed

100% for s~0:45. As mentioned above, this large error is due

again to the assumption of infinite-thickness substrate made in

Boussinesq’s solution to the elastostatic equation. The D=h-

dependence of the tangential error of the finite-thickness 2D

TFM methods varies strongly with s for Dwh, consistent with the

results in Figure 5(a). For s~0:3, the tangential error decreases

monotonically to zero with D=h, whereas for s~0:45, Et reaches a

maximum before decreasing.

Figure 7 summarizes the dependence of Et on the Poisson’s ratio

and D=h for both finite-thickness 2D methods (panel a) and the

Boussinesq method (panel b). For reference, note that the line plots

in Figures 5(a) and 6(a) are respectively horizontal and vertical 1D

cuts of the contour maps in Figure 7. The thick white contours in

this figure enclose the regions of the (s,D=h) domain where Et is

lower than 10%. Consistent with Figures 5(a) and 6(a), we find low

errors in two regions: one corresponding with small cell size

compared to substratum thickness (D%h) and incompressible gel

(s~0:5), and another region corresponding with large cell size

compared to substratum thickness (D&h) and relatively low

Poisson’s ratio (s = 0:35). The first low-error region (D%h,

s~0:5) is also obtained for Boussinesq’s method but this region

turns out to be narrow because Et is locally sensitive to small

changes in s. This sensitivity leads to significant error values

within the range of Poisson’s ratios typically encountered in TFM

experiments. The second low-error region (D&h, s = 0:35) seems

to be more robust for the design of TFM experiments because Et

shows a mild local dependence on both the substratum thickness

and Poisson’s ratio, particularly around s~0:3. This region is not

observed in Boussinesq’s method, in which the assumption of

infinitely thick substrate is incompatible with D being larger than h.

For the sake of completeness, the errors of all 2D TFM methods

in the normal direction are shown in Figures 5(b) and 6(b). These

errors are Et&100% regardless of the boundary condition applied

Figure 5. Relative error of 2D TFM methods represented as a
function of the Poisson’s ratio, s, for two values of the
ratio D=h. Red lines and symbols, D=h~100; blue lines and symbols,

D=h~0:01.–N–, 2D method with finite h and tzz~0 on the surface

(ref. [13]);–m–, 2D method with finite h and w~0 on the surface (ref.
[15]);–&–, Boussinesq solution with infinite h (refs. [10,12]). (a), Et; (b),
En . The shaded patch represents the range of values of Poisson’s ratio
reported for gels customarily employed in TFM [26–28].
doi:10.1371/journal.pone.0069850.g005

Figure 6. Relative error of 2D TFM represented as a function of
D=h for two values of the Poisson’s ratio representative of
polyacrylamide gels. Red lines and symbols, s~0:3; blue lines and

symbols, s~0:45.–N–, 2D method with finite h and tzz~0 on the

surface (ref. [13]);–m–, 2D method with finite h and w~0 on the surface
(ref. [15]);–&–, Boussinesq solution with infinite h (refs. [10,12]).
doi:10.1371/journal.pone.0069850.g006
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on the gel’s surface, and the Poisson’s ratio, reflecting the difficulty

of determining the normal traction stresses without measuring the

normal deformation of the substratum.

3.2.3 Influence of the ratio of normal to horizontal

deformation on the error of 2D TFM. Flattened or elongated

cells such as epithelial cells or neurons are geometrically

constrained and, thus, they are likely to generate predominantly

tangential deformations along significant portions of their basal

surface. On the other hand, rounder cells such as cancer cells

invading into 3D matrices exert predominantly normal deforma-

tions [9]. The aim of this section is to characterize the

performance of 2D TFM methods under these different scenarios

by quantifying their error as a function of the ratio of normal to

horizontal deformation (W0=U0 in eqs. 11–13). As noted above,

W0=U0 is loosely related to the vertical aspect ratio of the cell, as

one can argue that W0=U0%1 for flat cells and W0=U0 *> 1 for

rounder cells.

Figure 8(a) displays the tangential error of 2D TFM with

w(x,y,h)~0 as a function of D=h and W0=U0. As expected, Et

decreases to zero as W0=U0 tends to zero and consistent with

Figure 7(a), this decrease is more gradual in thin substrata. Similar

to Figure 7, the isoline Et~0:1 has been outlined with a thick

white contour, revealing that W0=U0 must be lower than 0.25 to

achieve a tangential error below 10% for s~0:45. Our analysis

suggests that Et can be relatively high for the values W0=U0 that

are often reported in experiments. For instance, the normal

deformations are approximately twice larger than the tangential

ones for the Dictyostelium cell reported in Figure 3, whereas Hur et

al.’s experiments on endothelial cells are consistent with

W0=U0&1=2 both for single cells and confluent monolayers

[5,6]. In all these cases the tangential error of 2D TFM exceeds

20% according to Figure 8(a).

Plotting Et as a function of s and W0=U0 for a fixed value of

D=h (Figure 8b) reveals that, when W0=U0%1, the error of 2D

TFM is low and relatively independent of the Poisson ratio.

However, this error increases and becomes very sensitive to the

Poisson ratio as W0=U0 is augmented. Interestingly, we find that

the isolines of Et in Figure 8(b) are well approximated by the

formula

W0

U0

				
Et

~
0:13Et

1{2sEt

ð19Þ

when the error is sufficiently small (Etƒ0:2). This approximation

is found to be uniformly valid for D=h *= 3, and provides a simple

formula to relate W0=U0 and s for a given level of error. For

instance, we establish that W0=U0 needs to be smaller than 0.26 to

keep the error below 10% when the Poisson ratio is s~0:45.

Alternatively, it can be seen that s needs to be higher than 0.487

to keep the error below 10% for W0=U0~1.

3.2.4 Spectral analysis of 2D and 3D traction force

microscopy methods. Fourier analysis of the elastostatic

equation (1) provides a general framework to compare different

TFM methods that does not rely on any assumption for the shape

of the deformation field, and which is complementary to the

synthetic-field approach followed in the previous section. This

analysis also allows for a general definition of thin substrata as we

show below. Figure 9 displays the Fröbenius norm of the Green’s

functions used in several TFM methods,

DD bGG(lx,ly)DD~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace bGGH (lx,ly): bGG(lx,ly)

h ir
, ð20Þ

where H denotes Hermitian transpose. This norm provides a

measure of how much a given TFM method amplifies or reduces a

harmonic displacement field consisting of wavelengths lx~2p=a
and ly~2p=b in the x and y directions. Different to the previous

section, where we separately analyze tangential and normal

displacements and stresses, the norm employed here provides an

overall conservative value that combines the tangential and

normal components of u and T . This property is common to

most tensorial norms and, therefore, the results from the analysis

are independent of the particular choice of norm for the Green’s

function. In fact, we obtain similar results when using other matrix

norms such as the 1-norm, the 2-norm and the ‘-norm.

The wavelengths in Figure 9 are normalized with the thickness

of the substratum, h, so that high values of l=h correspond to

spatial features of the displacement field that are long compared to

the substratum thickness, and vice versa. Overall, we find that 2D

TFM methods underestimate DD bGGDD, consistent with the results from

the previous section. The observed differences are small for low

l=h (thick gels). However, the Green’s functions of finite-thickness

and infinite-thickness TFM methods diverge significantly for

l=hw3, suggesting that the zero-deformation boundary condition

imposed at the base of the substratum is felt when the lateral extent

of the traction stresses becomes larger than &3h. This result

provides a natural definition of thin substratum for a given traction

Figure 7. Relative error of 2D TFM represented as a function of
the Poisson’s ratio, s, and the ratio D=h. (a), Et assuming zero
normal deformation on the surface of the substratum; (b), Et from
Boussinesq’s solution. The black6marks the combination of s and D=h
used to calculate the traction stress maps in Figure 4. The horizontal
lines mark the values of D=h used to plot Figure 5.–––, D=h~0:01;– – –,
D=h~10. The thick white contours correspond to Et~0:1. The vertical
lines mark the values of s used to plot Figure 6.– – –, s~0:3;––––,
s~0:45.
doi:10.1371/journal.pone.0069850.g007

Figure 8. Effect of the ratio of normal to horizontal deforma-
tion, W0=U0 on the error of 2D TFM. (a), contour map of Et for
s~0:45, represented as a function of D=h and W0=U0. The black circle
corresponds to the example cell in Figure 3. The thick white contour
corresponds to Et~0:1. (b), contour map of Et for D~h=2, represented
as a function of s and W0=U0 . The thick white (black) contours
correspond to Et~0:1 (0.2), and are well approximated by the magenta
squares (circles) coming the eq. 19.
doi:10.1371/journal.pone.0069850.g008
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stress field; a substratum can be considered as mechanically thin if

the dominant wavelength in the deformation field measured on its

surface, ld , is longer than 3h. Del Álamo et al. [13] showed that ld

is equal to the cell length in migrating amoeboid cells by

measuring the spectral energy density of the deformations exerted

by the cells. Although it is possible that ld varies with cell type and

from single cells to confluent monolayers, the present definition of

mechanically thin substratum can be applied to each condition

once the deformation field is measured.

This divergence appears to increase as the Poisson’s ratio

approaches the incompressible limit s~0:5, as confirmed by

Figure S3 in the Supporting Information (File S1). Note in

particular that the Green’s functions from finite-thickness 2D

TFM methods severely underestimate the 3D Green’s function for

l=hw3. A possible interpretation for this behavior is that normal

stresses applied at z~h penetrate deeper into the substratum than

tangential ones. This hypothesis is further analyzed and confirmed

in the next section.

3.3 Normal traction stresses reach deeper into the
substratum and mechano-sense larger elastic moduli
than tangential ones

Del Álamo et al. [13] reasoned that the finite-thickness Green’s

function diverges from Boussinesq’s when the u~0 boundary

condition imposed at the bottom of the substratum is felt at the

substratum’s surface. Inspection of Figure 9 reveals that divergence

occurs for lower values of h in the case of a normal force than for a

tangential force, suggesting that cells should be able to feel deeper

into the substratum by applying normal forces.

A possible way to quantify this effect is to calculate the apparent

elastic moduli of the substratum to tangential and normal traction

stresses, Ea,t and Ea,n respectively. We define these moduli as the

norms of the tangential and normal restrictions of bGG for harmonic

deformations of wavenumbers (a,b) in a substratum of thickness h

normalized with their value at h~?. These restricted operators

are given by

bGGt(ah,bh)~

bGGxu(ah,bh) bGGxv(ah,bh) bGGxw(ah,bh)bGGyu(ah,bh) bGGyv(ah,bh) bGGyw(ah,bh)

0 0 0

264
375,

and

bGGn(ah,bh)~

0 0 0

0 0 0bGGzu(ah,bh) bGGzv(ah,bh) bGGzw(ah,bh)

264
375

respectively. For simplicity and without loss of generality, we focus

Figure 9. Fröbenius norm of the Green’s function used by different TFM methods, DD bGGDD (eq. 20), for s~0:3. The four panels in the top row

(a–d) show surface plots of DD bGGDD as a function of the horizontal wavelengths of the strain/stress fields (lx,ly).(a), present 3D TFM method;(b), 2D TFM
under the assumption of zero normal stresses on the substratum’s surface (tzz(z~h)~0 as in ref. [13]);(c), 2D TFM under the assumption of zero
normal displacements on the substratum’s surface (w(z~h)~0 as in ref. [15]);(d), Boussinesq’s traction cytometry assuming an infinitely-thick

substratum (as in refs. [10,12]). The symbol curves in these plots indicate the sections of DD bGGDD represented in panel (e).(e), DD bGGDD along the line l~lx~ly

from different traction TFM methods, represented as a function of l=h.
doi:10.1371/journal.pone.0069850.g009
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on isotropic deformation fields with a~b~k=
ffiffiffi
2
p

where k is the

modulus of the wavenumber vector, obtaining

Ea,t(kh)~
Ejj bGGt(kh=

ffiffiffi
2
p

,kh=
ffiffiffi
2
p

)jj
jj bGGt(?,?)jj

and

Ea,n(kh)~
Ejj bGGn(kh=

ffiffiffi
2
p

,kh=
ffiffiffi
2
p

)jj
jj bGGn(?,?)jj

:

ð21Þ

Note that Ea,t and Ea,n are analogous to the shear and axial

elastic moduli of the substratum when measured by applying

traction stresses on its free surface. Figures 10(a)–(b) display two-

dimensional contour maps of Ea,t and Ea,n as a function of the

Poisson’s ratio and the substratum thickness normalized with k{1,

while Figure 11(a) shows one-dimensional cuts of these maps for

two constant representative values of the Poisson’s ratio, s~0:3
and 0.45. These data demonstrate that, as argued in the

introduction, both Ea,t and Ea,n are equal to the bulk Young’s

modulus of the substratum, E, for large values of kh. However, the

apparent elastic moduli increase steeply as kh decreases below

&2, indicating that the substratum becomes effectively stiffer as its

thickness decreases. More importantly, the observed increase is

significantly more pronounced in Ea,n than in Ea,t, which suggests

that the response of thin substrata to normal stresses is stiffer than

its response to tangential stresses. We also find that Ea,n increases

strongly with the Poisson’s ratio, especially near the incompressible

limit, where Ea,n can be .10 times higher than Ea,t. On the other

hand, the apparent shear modulus shows a mild decrease with s.

These different behaviors can be explained by noting that normal

deformations compress the substratum, so it is reasonable to

expect that normal forces disturb the substratum more globally

and are more affected by substratum compressibility than

tangential ones. An increased apparent shear elastic modulus that

qualitatively agrees with our predictions was previously found by

2D TFM methods [19]. However, the substantially larger increase

in axial apparent modulus predicted by our analysis could not be

determined in previous 2D studies.

Altogether, these results confirm that applying normal traction

forces at the surface of the substratum provides higher sensitivity to

the infinitely rigid bottom than applying tangential traction forces.

Or, in other words, that cells may feel deeper into the substratum

by normal traction forces. In order to provide a theoretical

measure of the sensing depth by tangential and normal forces, we

use hEa~2E which is the substratum thickness at which the elastic

modulus perceived by applying traction forces is twice the Young’s

modulus. Figure 11(a) explains how this sensing depth is calculated

and Figure 11(b) displays hEa~2E for both tangential and normal

forces as a function of the Poisson’s ratio. Consistent with the

results in Figure 9, we find that the sensing depth is up to

hEa~2E~2k{1&l=3, which is equal to 1/3 the lateral extent of

the traction stresses exerted by the cell. As expected, normal

traction forces lead to larger values of the sensing depth that

increase sharply with the Poisson’s ratio. On the other hand,

tangential forcing leads to lower values of the sensing depth which

depend little on the Poisson’s ratio. In particular, within the range

of values reported for the Poisson’s ratio of polyacrylamide gels

[26–28], s~0:3{0:49 (shaded region in Figure 11b), our

calculations suggest that normal forces can reach between 2 and

4 times deeper into the substratum than tangential ones.

Discussion and Conclusion

Adherent cells exert three-dimensional (3D) traction stresses on

the extracellular matrix even when cultured on plane surfaces.

Figure 10. Effect of finite substratum thickness on the
substratum stiffness mechanosensed by tangential or normal
traction stresses. Panels (a) and (b) display the apparent elastic
modulus of the substratum (eq. 21) in the directions tangential and
normal to the surface respectively. The data are plotted as a function of
the Poisson’s ratio, s, and the substratum thickness h normalized with

the wavenumber k~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2zb2

q
of the strain/stress fields. For simplicity,

the a~b case is represented but similar results are obtained for other
combinations of the wavenumbers. The isolines plotted in panels (a)
and (b) are respectively 1 . . . (|2) . . . 8, and 1 . . . (|2) . . . 128. Particu-
larly, the The thick black contour in each panel represents the isoline
Ea~2E corresponding to a two-fold increase in apparent stiffness. The
vertical dashed lines indicate the values of the Poisson’s ratio
represented in Figure 11, s~0:3,0:45.
doi:10.1371/journal.pone.0069850.g010

Figure 11. Sensing depth by tangential and normal traction
stresses. Panel (a) displays the ratio Ea=E as a function of the
substratum thickness h normalized with the inverse wavenumber

k~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2zb2

q
of the strain/stress fields. For simplicity, the a~b case is

represented but similar results are obtained for other combinations of
the wavenumbers.–––, normal direction and s~0:3;––––, tangential
direction and s~0:3;– – –, normal direction and s~0:45;– – –,
tangential direction and s~0:45. The black horizontal lines indicate the
levels Ea~E (no increase in apparent elastic modulus,– – –) and
Ea~2E (two-fold increase,–– – ––). Panel (b) displays the sensing depth
defined as the value of h that yields a two-fold increase in apparent
elastic modulus compared to h~?. The sensing depth is represented
as a function of the Poisson’s ratio for tangential and normal traction
stresses.–––, normal direction;–––, tangential direction. The shaded
patch represents the range of values of Poisson’s ratio measured for
polymer networks [26–28].
doi:10.1371/journal.pone.0069850.g011
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This study presents a novel traction force microscopy (TFM)

algorithm that provides the 3D traction stresses from measure-

ments of the 3D deformation of a thin layer below the surface of

the substratum. The new algorithm is based on an exact analytical

solution to the equation of mechanical equilibrium for a finite-

thickness substratum, using the measured displacements as

boundary conditions. The thus obtained solution provides all the

elements of the three-dimensional strain and stress tensors

everywhere in the substratum, not only the traction stresses in

the surface. We have used this new 3D solution to estimate the

error of previous two-dimensional (2D) TFM methods, which only

provide the in-plane (tangential) components of the traction stress

vector and neglect its out-of-plane (normal) component. We have

also used this solution to characterize the influence of the finite

thickness of the substratum and to evaluate the different apparent

elastic moduli that a cell can sense by applying either tangential or

normal traction stresses.

Hur et al. [5] developed the first TFM method to measure 3D

traction stresses generated by cells adhering on plane surfaces.

Similar to our study, Hur used the measured 3D deformations at

the top of the substratum as boundary conditions to solve the

equation of elastic equilibrium. However, instead of finding an

exact analytical solution that is compatible with the measured

displacements as is done in our study, they employed a finite

element solver to determine the 3D traction stresses from the

measured deformations. Subsequently, Hur et al. [6] extended

their method to estimate 3D cell-cell junction forces in cultured

cell monolayers. Maskarinec et al. [16] proposed an alternate 3D

TFM approach that discretizes the whole substratum into a

volumetric mesh on which the 3D deformations are measured. All

the elements of the 3D strain tensor are then computed on this

mesh from the measured deformations, and Hooke’s law is directly

applied to determine all the elements of the stress tensor on each

voxel of the mesh.

The 3D TFM method introduced in this paper has a number of

advantages with respect to previously existing methods. Similar to

Hur et al. [5], the present method only requires acquiring a thin

(,8 mm thickness) z-stack composed of few image planes (,10).

This imaging mode allows for a high temporal resolution as the

acquisition time of a confocal z-stack is roughly proportional to the

number of recorded planes. Imaging in a thin layer also reduces

the amount of laser radiation that is imparted on the cells, thereby

minimizing phototoxic effects. Furthermore, solving the elasto-

static equation (1) instead of directly applying Hooke’s law has the

advantage of not requiring z-derivatives, which can be relatively

inaccurate due to the stretch of the point-spread function of the

optics in the z-direction.

An additional advantage of the method presented here is that it

employs an exact analytical solution of the elastostatic equation (1),

which allows for computing the traction stresses in virtually zero

time from the deformation at z~h. This is made possible by

working in the Fourier domain and using Fourier Transform

(FFT) routines. The in-house 3D image correlation techniques

employed to determine the deformations from the microscopy

images also employ FFTs, which further improves the computa-

tional efficiency of the present algorithm. The combined features

of our method allow us to completeley calculate the traction stress

field from a raw microscopy image stack in &30 seconds on a

laptop computer. In comparison, Maskarinec et al. [16] report

overall computational times of 24{48h per experiment. Hur et al.

[5] report computational times of 5 mins for their finite element

calculation but this does not include the additional processing time

required to measure the deformation field, which is not reported.

Nevertheless, the most important feature of working with an

analytical solution is not that it saves us computational time. For

the size of the computational problem involved in a TFM

experiment, one could always resort to a faster computer, or

parallelize the software routines and run them in multiple

processors to speed up the computation. The most valuable aspect

of an analytical 3D TFM solution is that it offers us a

comprehensive tool to analyze the influence of all the parameters

involved in the problem. In this work, we have exploited this

important feature to characterize the error incurred by the 2D

TFM methods in calculating the in-plane traction stresses as a

function of cell size, substratum thickness and Poisson’s ratio. The

aim of this characterization is to establish the range of

experimental parameter values within which 2D TFM experi-

ments may still be used to accurately measure the in-plane stresses

regardless of the fact that the cell also generates normal traction

stresses. By analyzing the error of the 2D methods in a synthetic

3D deformation field that mimics the deformation caused by

migrating cells, we have shown that 2D TFM methods that

consider the finite thickness of the substratum [13,15] may

perform relatively well when the substratum is exactly incom-

pressible (s~0:5) and its thickness is larger than the cell’s length.

However, the error of 2D TFM is found to be very sensitive to

small variations of the Poisson’s ratio near the incompressible

limit, and to increase considerably when the Poisson’s ratio is

slightly smaller than 0.5. For instance, we estimate that a typical

experiment performed on a 20{mm-long cell seeded on a

100{mm-thick substrate of s~0:45 yields errors &15% in the

tangential traction stresses when the vertical deformations are

neglected, and this error is even larger if s is further decreased. We

also find a second parametric region resulting in low 2D TFM

errors when the cell length is much larger than the thickness of the

substratum and the Poisson’s ratio is lower than s&0:35. In this

second region, the error in the tangential traction stresses shows a

mild dependence on both the substratum thickness and Poisson’s

ratio, especially near s~0:3, thereby providing a more robust set

of experimental conditions than the first region discussed above. It

is important to note, nonetheless, that 2D TFM methods that

assume an infinitely thick substratum yield errors <50% when the

cell length is much larger than the substratum thickness.

Given that the traction stresses are proportional to the Young’s

modulus of the substratum, significant efforts are generally devoted

to the characterization of this parameter in TFM experiments. On

the other hand, the Poisson’s ratio usually receives less attention

under the general assumption that this parameter barely influences

the traction stresses. The results of this study call for a

reexamination of that assumption, as they reveal a strong s-

dependence of both the normal traction stresses and the error of

the tangential traction stresses. The observed sensitivity to the

Poisson’s ratio is especially significant for the nearly incompressible

gels that are typically used in TFM experiments [26–28]. For the

above example TFM experiment (a 20{mm-long cell seeded on a

100{mm-thick substrate of s~0:45), we estimate that a 10%

variation in E leads to a 10% variation in the traction stresses,

whereas a similar error in s (from 0.45 to 0.495) leads to a <38%

variation in the traction stresses.

It should be noted that, although this study focused on cells

adhered onto 2D surfaces, the 3D Green’s functions derived here

could be applied to determine the traction stresses created by

living cells in 3D matrices. In the past, this problem has been

tackled using finite element methods [29]. We speculate that

working with exact analytical solutions in Fourier space could be

advantegeous in terms of convergence and numerical efficiency, as
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this formulation renders the matrices involved in the problem

block-diagonal [12].

Adherent cells have been reported to sense the mechanical

properties (Young’s modulus) of the extracellular matrix by

applying traction stresses to it [2,3]. It is recognized that this

sensing process can be affected by the contact of rigid elements

with the extracellular matrix (glass at the bottom of substratum in

an in vitro culture or bone in vivo, [30]), leading the cell to sense

apparent stiffness values that exceed the bulk properties of the

ECM. We defined the apparent elastic modulus of a finite-

thickness gel by comparing the stresses generated by applying

displacements at its surface with those generated in a gel of infinite

thickness. We examined the response of the gel separately for

normal and tangential surface displacements, which allowed us to

obtain both normal and tangential apparent moduli. Previous 2D

studies had only studied the tangential response [18,19]. Our

analysis indicates that the apparent Young modulus of the

substratum is affected by the glass coverslip when the dominant

wavelength in the deformation field, ld , is longer than 3 h. This

result is in general agreement with the 2D results of Lin et al. [19].

However, our three-dimensional analysis indicates that cells can

feel between 2 and 4 times deeper into the substratum by

generating normal traction forces compared to when they only

generate tangential stresses. We have argued that this difference is

due to the axial deformation and stress generated by normal

traction stresses, which penetrate deeper into the substratum than

the shear deformation generated by tangential traction stresses. A

clear example of this effect is shown in Figure 12. Our analysis also

reveals that the apparent stiffness sensed by to normal traction

stresses deformations is considerably higher than the stiffness

sensed by to tangential ones. In particular, in the range of

Poisson’s ratios of the gels that are representative of the

extracellular matrix or that are employed to manufacture substrata

for in vitro TFM experiments [26–28], the normal apparent elastic

modulus can be .10 times higher than the tangential one. The

predicted large disparity is interesting because it could allow

investigators to modulate the cell’s response to the mechanical

properties of the extracellular matrix by altering the ratio between

tangential and normal traction stresses. The latter could in turn be

controlled via the cell’s aspect ratio by micropatterning the

substratum [31].

Existing theoretical and experimental studies have suggested

that cells mechanosense on length scales similar to that of focal

adhesions instead of on cell length [18,30]. It may be possible to

reconcile this evidence with our theoretical study and the

experimental data from Lin et al. [19] by considering that although

ld was found to be equal to cell length for Dictyostelium cells [13],

this dominant wavelength can in principle vary with cell type and

other parameters such as cell density (e.g. confluent versus non

confluent). Furthermore, our model tacitly assumes that cells

mechanosense by sampling substratum deformation but recent

data suggests that cells may sample stresses, especially on stiffer

substrata [32]. Note that, because stresses come from spatial

derivatives of deformations, their dominant wavelength and thus

their associated sensing lengthscale is smaller than ld .

A potential limitation of the present approach is that, similar to

most existing TFM methods, we assume homogeneous, isotropic,

linearly elastic mechanical properties for the substratum. While

these assumptions facilitate the calculation of an analytical solution

to the elastostatic equation, they are not representative of a

number of conditions that warrant experimental access to cellular

traction stresses, such as in durotactic cell migration on substrata

with prescribed stiffness gradients [33]. In those situations, the

present Fourier approach can be generalized using regular

perturbation expansions [34] to obtain new analytical solutions

for the traction stresses that are valid for substrata with slowly

varying properties [22]. In conclusion, the 3D TFM method

introduced in this paper enables the theoretical and experimental

study of new aspects of cell physiology in more realistic

microenvironments.

Supporting Information

File S1 Supporting Information. Figure S1. Side by side

comparison of 3D Fourier TFM versus previous 2D methods

[13,15] for a synthetic deformation field representative of the

deformation pattern exerted by migrating amoeboid cells. The

Figure 12. Penetration of tangential and normal deformations and stresses into the substratum. (a) Vertical contour map of u obtained
by applying a unit tangential synthetic deformation field at the free surface of the gel (eqs. 11–13 with U0~1 and W0~0), and solving the
elastostatic equation for different values of z. The deformation is plotted in the normal plane y~0 as a function of x=D and z=h. Thus, z~0 represents
the bottom of the gel in contact with the coverslip and z~h represents the free surface of the gel. (b) Same as (a) for the normal deformation w
obtained by applying a unit normal deformation at the gel surface (eqs. 11–13 with U0~0 and W0~1). (c) Same as (a) for txz. (d) Same as (b) for tzz .
In all panels, the data are normalized between 21 and 1, and the green contour represents the 10% iso-level.
doi:10.1371/journal.pone.0069850.g012
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Poisson’s ratio is s~0:3 and the substratum thickness, h~2D, is

equal to the length of the ‘‘synthetic cell’’. The plots in the top row

show the synthetic deformation field in the x direction (eq. 11,

panel a), y direction (zero, panel b) and z direction (eq. 13, panel c).

The second row shows the traction stresses calculated from the

displacements in panels (a)–(c) by 3D Fourier TFM. (d), txz; (e), tyz;

(f), tzz. The third row shows the traction stresses calculated from

the displacements in panels (a)–(c) by 2D Fourier TFM under the

assumption of zero normal displacements on the substratum’s

surface (w(z~h)~0 as in ref. [15]). (g), txz; (h), tyz; (i), tzz. The last

row shows the traction stresses calculated from the displacements

in panels (a)–(c) by 2D Fourier TFM under the assumption of zero

normal stresses on the substratum’s surface (tzz(z~h)~0 as in ref.

[13]). (j), txz; (k), tyz; (l), tzz. Figure S2. Example of the three-

dimensional cross-correlation of fluorescence intensity, R(u,v,w),
for a pair of interrogation boxes of size 24|24|12 in the x, y and

z directions. The three-dimensional location of the peak of the

cross-correlation yields the relative displacement between the two

interrogation boxes. The signal-to-noise ratio in this example,

s2n~2:22, is determined by the ratio of the maximum value of the

cross-correlation (R1~1) to the second highest local maximum

(R2~0:45). (a), Contour map of a two-dimensional section of the

cross-correlation for zero displacement in the z direction,

R(u,v,w~0). (b), Contour map of a two-dimensional section of

the cross-correlation for zero displacement in y direction,

R(u,v~0,w). The insets in both panels are height maps of each

two-dimensional section of R(u,v,w). Figure S3. Fröbenius norm

of the Green’s function used by different TFM methods, DD bGGDD (eq.

20), for a value of the Poisson’s ratio s~0:45. The four panels in

the top row (a–d) show surface plots of DD bGGDD as a function of the

horizontal wavelengths of the deformation field (lx,ly).(a), present

3D TFM method;(b), 2D TFM under the assumption of zero

normal stresses on the substratum’s surface (tzz(z~h)~0 as in ref.

[13]);(c), 2D TFM under the assumption of zero normal

displacements on the substratum’s surface (w(z~h)~0 as in ref.

[15]);(d), Boussinesq’s traction cytrometry assuming infinitely-

thick substratum (as in refs. [10,12]). The symbol curves in these

plots indicate the sections of DD bGGDD represented in panel (e).(e), DD bGGDD
along the line l~lx~ly from different TFM methods, repre-

sented as a function of l=h.

(PDF)
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