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The endothelial glycocalyx (GCX) plays a key role in the development of organ

failure following sepsis. Researchers have investigated GCX degradation caused by

pathological conditions. Nonetheless, the GCX restoration process remains poorly

understood. Herein, we developed a model in which GCX restoration could be

reproduced in mice using in vivo imaging and a dorsal skinfold chamber (DSC). The

severity of sepsis was controlled by adjusting the dose of lipopolysaccharide (LPS) used

to trigger GCX degradation in BALB/c mice. We evaluated the GCX thickness, leukocyte-

endothelial interactions, and vascular permeability using in vivo imaging through DSC

under intravital microscopy. The plasma concentration of syndecan-1(Sdc-1), a GCX

structural component, was also determined as a marker of GCX degradation. Thus, we

developed a reproducible spontaneous GCX recovery model in mice. Degraded GCX

was restored within 24 h by the direct visualization of the endothelial GCX thickness, and

leukocyte-endothelial interactions. In contrast, indirectly related indicators of recovery

from sepsis, such as body weight and blood pressure, required a longer recovery time.

This model can be used to study intractable angiopathy following sepsis.

Keywords: endothelial glycocalyx, lipopolysaccharide, dorsal skinfold chamber, bio-imaging, leukocytes-

endothelium interaction

INTRODUCTION

The endothelial glycocalyx (GCX) is important for endothelial function because it is involved in
microvascular reactivity andmodulates the interactions of the endotheliumwith blood constituents
(1–7). GCX is composed of proteoglycans and glycosaminoglycans, produced by endothelial cell
bodies. Its components must be periodically renewed, resulting in a turnover. However, the steps
involved in the recovery of GCX remain unclear.
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Several studies have reported that GCX gets degraded under
pathological conditions, including sepsis and other diseases
(8–13). Therefore, researchers have widely investigated the
pharmacological interventions to preserve GCX, including the
use of albumin (14), fresh frozen plasma (15, 16) and sevoflurane
(17, 18) to establish therapeutic strategies for its restoration
or protection. Unlike these biomaterials and chemicals, an
additional approach to the restoration of GCX integrity relies
on the intravascular treatment of GCX core components. The
intravascular infusion of exogenous hyaluronan can partially
prevent or completely reverse GCX damage induced by
ischemia/reperfusion (I/R) (19). In vivo, the oral administration
of sulodexide, a mixture of natural porcine heparan and
dermatan sulfates, yield beneficial effects (20, 21). However,
elucidating the natural GCX turnover and the theoretical
protection and restoration of the GCX remains challenging. This
can be attributed to the difficulties in observing the fragile and
water-rich GCX structure.

Few studies have reported on the time required for GCX
restoration after degradation. Giantsos-Adams et al. reported
that GCX recovers in 12 h after enzymatic heparin sulfate
degradation, upon stimulating endothelial cells by shear stress
in vivo (22). In contrast, Potter et al. reported that 5–7 days are
required for a restoration to its native hydrodynamically relevant
thickness in vivo. Potter et al. used a digestive enzyme or cytokine
for GCX degradation, and used fluorescent microparticle image
velocimetry to quantify the GCX thickness (23). Two recent
studies (24, 25) have focused on GCX restoration in the
lung tissue. Yang et al. mentioned that fibroblast growth
factor receptor 1/exostosin 1 signaling is necessary for GCX
reconstitution, and that these homeostatic processes are impaired
during sepsis. The reconstitution of the pulmonary endothelial
surface layer (ESL), including the GCX, began 48 h after insult,
and had nearly returned to the original thickness at 72 h
following sepsis induction (24). Elucidating the mechanism of
GCX reconstruction after its damage is extremely informative.

From a clinical perspective, the maintenance of GCX
is important to avoid fluid overload, which contributes to
postoperative fluid retention (26, 27). Endothelial damage
because of GCX depletion causes hyperpermeability (28,
29). Leukocyte rolling on the surface of the endothelial
lumen is an associated phenomenon that supposedly leads to
hyperpermeability (30). However, the background mechanisms
and temporal relationships responsible for the aforementioned
phenomena remain unclear.

Herein, we aimed to develop an animalmodel for spontaneous
GCX recovery, and to demonstrate the relationship betweenGCX
recovery and various physiological parameters, including vitals
and leukocyte adhesion.

MATERIALS AND METHODS

Animal and Ethical Statement
All experiments were performed using 10- to 12-week-old male
BALB/cCrSlc mice (Japan SLC Inc., Shizuoka, Japan), weighing
21 to 24 g. The mice were kept in an isolator rack (Super Mouse
1400TM Micro-Isolator Rack; Lab Products, Inc, Seaford, DE)

in a 12 h light-dark cycle and under controlled temperature
(23 ± 1◦C) and humidity (50 ± 10%) conditions. Mice were
fed a standard chow (FR-2, Funabashi Farm Co., Chiba, Japan)
and water with free access. Before the experiments, mice were
habituated in the animal facility for more than 1 week. All
experimental protocols were approved by the Committee for
Animal Experiments at the National Institute of Public Health
(Protocol number 31-005) and were performed following all
guidelines and laws for animal experiments in Japan. All animal
experiments were in accordance with the Animal Research:
Reporting of in vivo Experiments guidelines (31).

Chemicals
Lipopolysaccharides (LPS) from Escherichia coli O26:B6,
fluorescein isothiocyanate (FITC)-labeled wheat germ agglutinin
(WGA) lectin from Triticum vulgaris, and tetramethylrhodamine
(TMR)-labeled dextran (average molecular weight, 75 kDa
[TMR-dex75]) were purchased from Sigma-Aldrich Co. (St
Louis, MO). The mouse-soluble syndecan-1 (Sdc-1) enzyme-
linked immunosorbent assay (ELISA) kit from Diaclone
SAS (Besancon Cedex, France) was purchased. Ketamine
hydrochloride, xylazine hydrochloride, and rhodamine 6G were
purchased from Wako Pure Chemical Industries, Ltd. (Osaka,
Japan). Sevoflurane was purchased from Pfizer Japan Inc. (Tokyo,
Japan), and used for anesthesia using a small animal anesthetizer
(MK-A110D, Muromachi Kikai Co., Ltd., Tokyo, Japan).

LPS-Administered Septic Model and
Overall Protocol of Animal Experiment
Sepsis was induced by intraperitoneal administration of LPS,
as described in previous studies (25, 30). As the severity of
the pathophysiological condition depends on the LPS dose,
the dose was set to 2 mg/kg to allow the observation of
spontaneous recovery following titration. LPS was administered
intraperitoneally in two separate doses as follows: (i) an initial
injection of 1 mg/kg and (ii) a second injection of 1 mg/kg
administered 18 h later. Body weight was recorded daily for up
to 10 days after LPS administration. Blood pressure was also
measured daily up to 5 days by using a non-invasive blood
pressuremeasuring device, which is based on the tail-cuffmethod
(BP-98A-L; Softron Co, Tokyo, Japan). Measurements were
performed between 10 am and 12 pm. Repetitive measurements
were examined until three independent measurements were
completed, and their mean value was employed as the blood
pressure of themouse on that day.Table 1 summarizes the overall
protocol for the series of experiments.

Measuring Syndecan-1 Concentrations in
Blood Plasma
The plasma concentration of Sdc-1 was used as a marker of GCX
disruption. We collected a small volume of blood (approximately
200 µL) from the buccal venous plexus using an animal lancet
(MEDIpoint, Inc. Mineola, NY) on each designated day. Plasma
from the collected blood was frozen at −30◦C. The plasma
concentration was then quantified using the murine sCD138
(Sdc-1) ELISA Kit (Diaclone SAS, Besançon, France), according
to the manufacturer’s instructions.
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TABLE 1 | Overview of the experimental protocol.

0h 18h 24h 48h 72h 96h 120h

LPS administration ↓ ↓

Body weight • • • • • •

Blood pressure • • • • • -

Syndecan-1 • • • - • -

Leukocyte adhesion - - -

Thickness index of GCX • • • • - -

Permeability - - - -

•, measurement, , image acquisition. The experiments conducted at each time point are displayed. LPS was intraperitoneally administered to the mice immediately after the observation

at 0 h. After 18 h, LPS was additionally administered. Moreover, a total dose of 2 mg/kg was administered. Measurements were performed at each time point, until the value recovered

to the original value. ↓, LPS (1mg/kg) administration.

Dorsal Skinfold Chamber Preparation
A dorsal skinfold chamber (DSC) was surgically implanted into
mice according to a previously reported method (32). The DSC
was implanted at least 3 days before the scheduled observation to
allow the animals to recover from acute inflammation caused by
the surgical invasiveness of the procedure.

Quantifying Leukocytes Interaction to the
Endothelium
The adhesive leukocytes were counted over time using intravital
microscopy. Leukocytes were fluorescently stained with
rhodamine 6G (30, 32). Moreover, rhodamine 6G (100 µL) was
administered intravenously to mice with implanted DSC. Each
mouse was then set on the stage of a fluorescence microscope,
and the leukocyte-endothelial interactions in both arterioles
and venules were observed. Subjectively, a blood vessel with
a diameter of 20–50µm was selected, and a video for 15 s at
three locations per mouse was recorded. The adhesive leucocytes
within randomly selected regions of interest (ROIs) were
manually counted for 15 s in a blinded fashion. Adhesiveness was
classified into “adhering” and “rolling.” “Adhering” leukocytes
was defined as leukocytes that do not move during the 15 s
of measurement in the ROI. By contrast, “rolling” leukocytes
were those that interacted with the endothelium and flowed
more slowly than the blood. The adhering and rolling counts
were calibrated according to a vascular diameter and length of
100 µm each.

To confirm the spatiotemporal relationship between the GCX
layer and leukocyte adhesiveness, intravital double staining of
GCX and leukocytes was performed with FITC-WGA lectin and
rhodamine 6G, respectively. Fluorescent images were captured
using appropriate fluorescent filters and fluorescence microscopy
(BZ-X710, Keyence), and merged using an image analyzer
optimized for the BZ-X710 microscope.

Measuring GCX Thickness
The thickness of the vascular endothelial GCX was measured
using in vivo imaging and stained with FITC-WGA lectin in
DSC-implanted mice. Three mice were used for four time points
because the toxicity of WGA-lectin might not be negligible
following its repeated accumulation.

The mice were anesthetized with a cocktail of ketamine
and xylazine, and FITC-WGA lectin was administered via
the tail vein (6.24 mg/kg body mass). Images of arterioles
and venules with a blood vessel diameter of 20–50µm were
captured using a fluorescent microscope (BZ-X710) with ×20
objective lens (SPlan Fluor ELWD, NA 0.45, Nikon Co.,
Tokyo, Japan). The images of seven arterioles and seven
venules per mouse were randomly captured using an 8-bit
gray scale and analyzed offline by using ImageJ software
(National Institutes of Health, Bethesda, MD). To calculate
the GCX thickness, we used a rectangular ROI (40×200
pixels) that included one side of the vascular endothelium.
In the ROI, the long axis (200 pixels that corresponds to
75.4µm) was adjusted to follow the direction of the blood
flow (Figure 4A). The threshold value (Th) was calculated
based on a brightness histogram of the ROI using the
following formula:

Th= F (Imax−Imin)+Imin

where Imax is the maximum brightness value in the ROI,
Imin is the minimum brightness value in the ROI, and F
is an estimated value that allows an accurate capture of
the GCX layer. In this study, F was set to 0.7 based on
several trials.

Then, the ROI image was binarized according to the Th and
inverted. The extracted black pixels were considered as the GCX
layer. Thus, the thickness of the GCX could be measured if the
total number of black pixels was divided by 200 pixels, and
calibrated using a real scale. The obtained value was defined as
the thickness index (TI) of the GCX.

Measuring Vascular Permeability
TMR-dex75 was used to assess vascular permeability. A bolus
(100 µL) of TMR-dex75 solution (3% [w/v] in saline) was
administered via the tail vein to mice that had been anesthetized
with sevoflurane. Three locations per mouse that included
venules with a diameter of 20–50µm in the DSC were randomly
selected. Time-lapse images of these locations were saved every
30min for up to 120min using a fluorescent microscope (BZ-
X710).
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The vascular permeability area was confirmed in the three
ROI squares (30µm × 30µm), adjacent to the blood vessel
per series of the time-lapse images. The fluorescence intensity was
measured inside each ROI, and it was subtracted from the control
value. Changes in these values were defined as the vascular
permeability index.

Statistical Analyses
All data are presented as mean ± standard deviation. Data were
statistically analyzed using SPSS Statistics software (version 23;
Japan IBM Co., Tokyo, Japan). One-way analysis of variance
(ANOVA) was used to compare the experimental data. Dunnett’s
test was performed for post-hoc comparisons. The statistical
significance was set at P < 0.05.

RESULTS

Physiological Outcomes
Table 1 summarizes the overall protocol for the series of
experiments. The body weight and blood pressure reached a
minimum at 48 h (Figure 1A, P < 0.01) and 24 h (Figure 1B,
P < 0.01), respectively, following LPS administration. These
significant decreases in the body weight and blood pressure
were maintained for up to 72 h and 48 h, respectively. In
addition, it took almost 168 h and 72 h to restore the body
weight and blood pressure, respectively, to their original values
(Figure 1).

Measuring Syndecan-1 Concentrations in
the Blood Plasma
The plasma Sdc-1 concentration, used as a marker of
GCX degradation, was quantified using an ELISA kit. The
concentration increased significantly at 24 h after administration,
compared with the value at 0 h (1.85 ± 0.48 ng/mL [0 h] vs. 3.83
± 1.09 ng/mL [24 h]) (Figure 2). However, it returned to the
control value after 48 h.

Quantifying Leukocyte-Endothelium
Interaction
The number of adhesive leukocytes (sum of rolling and adhering
leukocytes) in the venules increased at 24 h vs. 0h (P < 0.01).
Following 48 h, the number of adhesive leukocytes returned to
the original level (Figure 3A). However, no significant difference
was found in the arterioles.

The spatio-temporal relationship between the GCX and
leukocyte adhesion is shown in Figure 3. The FITC-WGA
lectin signal in the endothelium at 24 h was less intense than
that at 0 h (Figures 3B,E). The number of leukocytes stained
red by rhodamine 6G increased at 24 h, compared with that
at 0h (Figures 3C,F). Yellow-stained leukocytes in merged
images (Figures 3D,G) demonstrated that the leukocytes had
tightly adhered to the endothelium, at least for the observation
time (8 s). The time lag for capturing these two-color images
enabled us to distinguish the tight adherence of leukocytes to
the endothelium from those that were rolling/flowing along
the endothelium.

Measuring GCX Thickness
The GCX in the microvasculature was fluorescently labeled
with FITC-WGA lectin, and the thickness of the fluorescent
layer was quantified using image analysis. The thickness of the
GCX decreased in both arterioles and venules at 24 h after LPS
administration [arteriole, 1.28± 0.27 (control) vs. 1.79± 0.62, P
< 0.01; venule, 1.05± 0.39 vs. 1.51± 0.56, P< 0.05] (Figure 4D).
However, the thickness recovered 48 h after LPS administration
(vs. control, P > 0.05).

Measuring Vascular Permeability
A total of 9 mice were used, of which 3 were used for the analysis
at 0 h and 6 were for 24 h. In the experimental procedure, three
microvascular images inside the DSC were saved per mouse.
In the analysis, three squared ROIs were set for each of three
saved images locations. Therefore, 27 measurements at 0h and
54 measurements at 24h were examined respectively. Despite an
extravascular leakage of TMR-dex75 observed for up to 120min,
no significant increase was found (Figure 5).

DISCUSSION

In this study, we monitored the recovery of degraded GCX. A
certain level of recovery was achieved within 24 h, following
the peak of GCX degradation in a septic mouse model with
DSC implants.

In our previous report, GCX was degraded by LPS treatment,
resulting in increased leukocyte-endothelial interactions and
vascular permeability (30). In the present study, we attempted
to elucidate the spatiotemporal restoration of GCX post-
degradation. As an index of GCX degradation, we quantified
the GCX thickness based on fluorescent images and FITC-
WGA lectin staining. To validate the TI, we quantified the
plasma Sdc-1 concentration, a marker of GCX degradation
(33, 34). Furthermore, we analyzed the daily changes in body
weight and mean blood pressure as systemic outcomes to
determine the recovery from the pathophysiological condition.
The decrease in GCX TI and the increase in the plasma Sdc-
1 concentration plateaued at 24 h after LPS administration. In
addition, these parameters returned to their original levels at
48 h. Moreover, the blood pressure reached its lowest value
at 24 h, and returned to the original level at 72 h. The body
weight reached its lowest value at 48 h, and required ≥168 h
to return to its original level. Thus, a recovery from the
impact of septic insult took longer than the recovery of the
GCX structure, implying that GCX restoration occurs relatively
rapidly, and preceded the restoration of physical conditions in
the body.

One of the important physiological roles of the GCX is
vascular protection via the inhibition of leucocyte adhesion.
Under the pathophysiological condition, the GCX is targeted
and shed by inflammatory mediators. LPS administration
increases the production of cytokines such as tumor necrosis
factor-α, interleukin-6, and interleukin-8 from immune cells.
These activate matrix metalloproteinases and other degrading
enzymes that degrade the components of GCX. This results
in the fragmented release of Sdc-1 into the blood (35). Along
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FIGURE 1 | Time dependent changes in the body weight and mean blood pressure following LPS administration. (A) The body weight was followed for up to 216 h (9

days). The weight of the implanted dorsal skinfold chamber apparatus (1.5 g) was excluded. Significant differences are observed at 24, 48, and 72 h, compared to the

value at 0 h (*P < 0.05, **P < 0.01). Each data item represents the mean ± SD (n = 8). (B) The blood pressure was measured. Each data item represents the mean ±

SD of the mean blood pressure (n = 5) (*P < 0.05, **P < 0.01).

FIGURE 2 | Time-dependent changes in the soluble plasma syndecan-1 level after LPS administration. The plasma level was determined using a commercially

available ELISA kit. LPS was immediately administered after blood collection at 0 h. Blood was collected from similar mice (n = 3), and the plasma was extracted by

centrifugation. A one-way ANOVA was performed, and the Dunnett’s test was conducted for post-hoc comparisons (**P < 0.01).

with the unveiling of the GCX, adhesion molecules are exposed
and facilitate ligand–receptor interactions that promote
the adhesion of leukocytes (28, 36, 37). From this point of
view, the measurement of real time leukocyte-endothelial

interaction using intravital microscopy by applying a dorsal
skinfold chamber is considered very important (30, 38).
Our findings suggested that both leukocyte-endothelial
interactions and plasma Sdc-1 concentrations were inversely

Frontiers in Cardiovascular Medicine | www.frontiersin.org 5 September 2021 | Volume 8 | Article 730298

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Shinohara et al. Time-Dependency to Restore of Glycocalyx

FIGURE 3 | Quantitative analysis of leukocytes endothelium interactions after LPS administration. (A) Number of rolling leukocytes increased at 24 h and showed a

significant difference compared with the values at 0 h [One-way ANOVA followed by Dunnett’s test (**P < 0.01)]. By contrast, there is a small difference in the number

of adhering leukocytes but this is not significant in the one-way ANOVA (P = 0.10). Each column represents the mean ± SD of 12 measurements from four mice at

each time point. (B,E) Typical merged images of anesthetized mouse dorsal skin microvasculature: glycocalyx and leukocytes stained using FITC-WGA (green). (C,F)

Typical merged images of microvasculature: cells containing mitochondria (leukocytes and platelets) stained using rhodamine 6G (red). Images in (C,F) captured 8 s

after images in (B,E). (D) Merged image of (B,C) captured at 0 h. (G) Merged image of (E,F) captured 24 h after LPS administration. Yellow cells (arrowheads)

represent leukocytes that adhered to the endothelium. By contrast, red or green cells represent rolling leukocytes with weak interaction with the endothelium. Images

modified (colored and merged) using commercial software. Scale bar: 100µm.

FIGURE 4 | Changes in glycocalyx thickness index (TI) over time. (A-C) A typical image analysis procedure. (A) Gray image displaying fluorescent FITC-WGA lectin;

the region of interest (ROI) (40 × 200 pixels) is set as containing one side of the vascular endothelium. The long axis is set similar to the blood flow direction. (B) The

ROI image was saved as a separate file. (C) The saved ROI image is binarized according to the threshold value and inversed. The TI value was then calculated. (D)

Time dependent changes in TI for both arterioles and venules after LPS administration. Each data item represents the mean ± SD for 21 measurements from three

mice for each condition. A one-way ANOVA was performed, and Dunnett’s test was conducted for post-hoc comparisons (*P < 0.05, **P < 0.01).
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FIGURE 5 | Quantitative analyses of the vascular permeability of TMR-dex75 at 0, and 24 h after LPS administration. (A) Typical fluorescent gray image following

TMR-75 administration (0min). Interstitial tissue containing as few capillary blood vessels as possible was randomly selected, and a square region of interest (ROI) was

set at three locations (30 × 30µm each). The mean fluorescence intensity within the ROI was calculated using ImageJ. The ROI was followed up at 30, 60, 90, and

120min to determine the fluorescence intensity of the interstitial tissue. (B) A time-dependent increase was not observed even at 24 h after LPS administration (n = 9).

correlated with the GCX TI. This is probably the first report
on the relationship between GCX integrity and leukocyte
behavior. In other words, the restoration of GCX regulated
adhesion-related molecules located on the endothelial surface,
such as selectins, ICAM-1 and VCAM-1, and suppressed
inflammatory response.

Few studies have reported on the restoration of GCX after
degradation. It takes several days to restore the GCX (22–
25). Despite similar results, a direct comparison is difficult
because of the differences in the experimental procedures and
target organs. Inagawa et al. used a septic mouse model with
LPS injection (25). They reported that plasma Sdc-1 levels
peaked at 24 h, and returned to baseline at 48 h following LPS
injection. This does not mean the restoration of the GCX, but
may suggest that the GCX degradation process is interrupted.
Moreover, GCX restoration following LPS injection required
72–96 h to return to the control level by observation with
electron microscopy. Some of these findings were similar to
ours (Figures 2, 4). However, the time required for restoring
GCX thickness to the control level was longer than the present
results. This difference could be attributed to several possible
reasons as follows: (i) differences in the technique used to
identify GCX (electron microscopy vs. fluorescent intravital
microscopy) and (ii) differences in the severity of induced
sepsis. Inagawa et al. reported on a survival rate of 21% at
48 h in LPS-treated mice, compared with a rate of 100% at 48 h
in our experiment. The severity of induced sepsis reportedly
depends on both the amount of LPS administered and the mouse
strain (25).

Notably, our study failed to confirm hyperpermeability
following sepsis. Our previous study (30) reported on the
time-dependent permeability of TMR-dex75. This difference can
be attributed to the impact of induced sepsis. We used an LPS
dose of 4 mg/kg in the previous study, resulting in a 48%

survival rate (30), compared with a dose of 2 mg/kg in the
present study, resulting in a 100% survival rate. Considering
our aim to clarify the GCX recovery process, we chose not to
use a model with a low survival rate. These differences can be
explained by the hypothesized mechanism called the “double
barrier concept” (39). This concept is based on the idea that
if only the GCX disruption occurs, an intact second barrier,
“tight junctions” remains in the region of the vasculature. The
tight junctions restrict the passage of macromolecules, and when
an injury affects both the GCX and the tight junctions, the
permeability of the vessel wall is thought to increase significantly.
Recently, we reported a similar phenomenon that the structural
barrier of the GCX does not solely determine the permeability
of the endothelial layer, since enzymatic depletion of the GCX
did not increase the permeability (40). Therefore, the simple
digestion of the GCX cannot induce hyperpermeability, owing
to the failure of the opening signal required for loosening of the
endothelial tight junction to enter. Our model demonstrated that
leukocyte-endothelium interactions occur after GCX damage.
The role of leukocytes in the release of the opening signal for
tight junctions should increase the permeability. This necessitates
exploring the mechanism of hyperpermeability. Considering the
above-mentioned putativemechanism, researchersmight need to
examine an animal model with vascular hyperpermeability under
sepsis for promoting the research on GCX restoration.

Herein, we presented the time-dependent dynamics required
for the degradation and restoration of vascular endothelial GCX.
GCX can be rapidly restored, and precedes systemic recovery.
In conclusion, our findings improve our understanding of the
recovery of degraded GCX. To our knowledge, this is the first
study to document the time required for GCX restoration under
septic conditions, using intravital microscopy. Our findings
provide important basic information for exploring strategies to
protect or restore GCX.
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