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ABSTRACT

R-loops are three-stranded nucleic acid structures
formed from the hybridization of RNA and DNA. While
the pathological consequences of R-loops have been
well-studied to date, the locations, classes, and dy-
namics of physiological R-loops remain poorly un-
derstood. R-loop mapping studies provide insight
into R-loop dynamics, but their findings are chal-
lenging to generalize. This is due to the narrow bi-
ological scope of individual studies, the limitations
of each mapping modality, and, in some cases, poor
data quality. In this study, we reprocessed 810 R-loop
mapping datasets from a wide array of biological con-
ditions and mapping modalities. From this data re-
source, we developed an accurate R-loop data qual-
ity control method, and we reveal the extent of poor-
quality data within previously published studies. We
then identified a set of high-confidence R-loop map-
ping samples and used them to define consensus
R-loop sites called ‘R-loop regions’ (RL regions). In
the process, we identified a stark divergence be-
tween RL regions detected by S9.6 and dRNH-based
mapping methods, particularly with respect to R-
loop size, location, and colocalization with RNA bind-
ing factors. Taken together, this work provides a
much-needed method to assess R-loop data quality
and offers novel context regarding the differences

between dRNH- and S9.6-based R-loop mapping
approaches.

INTRODUCTION

R-loops are three-stranded nucleic acid structures formed
from the hybridization of RNA and DNA, often in regions
with high G (guanine) or C (cytosine) skew, such as CpG
islands (1–3). The study of R-loops has mostly focused on
their pathological consequences in promoting genomic in-
stability (4,5) and in hypertranscriptional cancers, such as
Ewing sarcoma (6,7). However, recent studies have revealed
that R-loops contribute to physiological processes, such as
DNA repair (8), DNA methylation (9), and even repro-
gramming to pluripotency (10). While these studies have
increased interest regarding the causes and consequences
of physiological R-loops, fundamental questions regarding
their subtypes, dynamics, and interactions remain unan-
swered.

R-loop mapping via high-throughput sequencing can
elucidate R-loop locations and dynamics genome-wide. Pre-
sented in 2012, DNA:RNA immunoprecipitation (DRIP)
sequencing was the first such technique, utilizing the S9.6
antibody to detect R-loops (2). In 2017, Chen et al. in-
troduced ‘R-ChIP’, an R-loop mapping modality which
relies on catalytically inactive RNase H1 (dRNH) as an
alternative to S9.6-based methods (11). Though prelimi-
nary evidence suggested differences in dRNH and S9.6-
based R-loop mapping (11,12), the extent and biological
relevance of these disparities remains unclear. Recently,

*To whom correspondence should be addressed. Tel: +1 210 562 9060; Email: bishopa@uthscsa.edu
Correspondence may also be addressed to Henry E. Miller. Tel: +1 210 562 9060 Email: millerh1@livemail.uthscsa.edu
Present address: Alexander Bishop, Greehey Children’s Cancer Research Institute, Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio,
TX 78229, USA.

C© The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

https://orcid.org/0000-0003-3756-3918
https://orcid.org/0000-0002-5742-4387


Nucleic Acids Research, 2022, Vol. 50, No. 13 7261

Castillo-Guzman and Chedin reviewed the relevant R-loop
mapping literature and hypothesized that dRNH and S9.6-
based modalities may identify biologically distinct subtypes
of R-loops (‘Class I and II’) (13), but no studies to date
have evaluated these subtypes bioinformatically. It is also
unknown how different R-loop mapping modalities relate
to each other more generally or whether they each reliably
map the same sets of R-loops. This gap in knowledge has
become a critical concern as, at the time of writing, there
are now 23 distinct R-loop mapping modalities, 14 of which
were developed since 2019 alone (Supplementary Table S1).

Previous work in the transcriptomics and epigenomics
fields have demonstrated the potential for public data min-
ing to yield novel biological insights (14,15). However, data
mining studies are scant within the R-loop field. Our previ-
ous analysis of 108 public DRIP-Seq datasets (16) demon-
strated the potential for greater insight from larger and
more diverse datasets. However, it also revealed a number of
inconsistencies in quality between publicly available R-loop
mapping samples (16). These findings were echoed by the
recent work of Chedin et al., who demonstrated that issues
of data quality persist even within prominent R-loop map-
ping studies (17). While these findings indicate the need for
robust quality control methods specific to R-loop datasets,
no such techniques have yet been proposed to our knowl-
edge.

In the present study, we profiled 810 publicly available
R-loop mapping datasets. We devised methods to assess
R-loop data quality control and applied these methods to
identify high-quality R-loop mapping samples. From these
samples, we defined consensus sites of R-loop formation,
termed ‘R-loop regions’ (RL regions). From meta-analysis
of RL regions, we observed stark contrasts between S9.6
and dRNH-based R-loop mapping results, supporting the
concept of different subclasses of R-loops such as pro-
posed with the ‘Class I/II’ hypothesis. We then explored
R-loops mapped uniquely by dRNH, finding their enrich-
ment at transcriptionally-silent, bivalent enhancer clusters
in pluripotent stem cells. Finally, we characterized R-loop
regions based on their level of conservation between inde-
pendent samples, finding that they differ with respect to
pathways relevant for transcription and replication. More-
over, we find that more constitutive RL regions are associ-
ated with housekeeping genes.

Taken together, our findings support a model in which
dRNH-based mapping approaches are unable to measure
most of the R-loop-covered genome, likely owing to the
presence of RNA binding factors in these same regions.
On the other hand, dRNH-based mapping approaches also
have greater sensitivity to detect small, native R-loops in
promoters and enhancers compared to S9.6 modalities.
Though our model necessitates future wet-lab validation,
it should prove useful for designing future R-loop mapping
experiments.

In this study, we also establish novel approaches for the
quality control and analysis of R-loop mapping data, which
we provide in the collection of software tools, ‘RLSuite,’
which accompany this work (see Availability). While these
software packages are not described in this work, we have
made them publicly accessible, and we plan to provide a full
description in a future manuscript.

MATERIALS AND METHODS

R-loop forming sequences (RLFS)

We predicted R-loop forming sequences using the
QmRLFS-finder method (18) implemented as part of
the makeRLFSBeds.R script in the accompanying data
generation repository (see Availability). Briefly, we down-
loaded every genome for which gene annotations were
available in ‘FASTA’ format from the University of Cal-
ifornia Santa Cruz (UCSC) genome repository. Then we
ran the QmRLFS-finder.py script to generate predictions.
Finally, we converted the results table to ‘BED’ format.

Cataloguing R-loop mapping datasets

R-loop data was found by querying the Gene Expression
Omnibus (GEO), Sequence Read Archive (SRA), Array-
Express, and PubMed with the keywords ‘R-loop’, ‘R-
loops’, ‘RNA:DNA hybrid’, ‘RNA:DNA hybrids’, ‘RNA-
DNA hybrid’, ‘RNA-DNA hybrids’, ‘DRIP-Seq’, ‘R-
ChIP’, ‘S9.6’ and ‘D210N’. We included all query results
with R-loop mapping data publicly accessible via SRA. For
every R-loop mapping sample, we recorded the following
details:

1. The sample accession (GEO or SRA).
2. The accession for the corresponding genomic input sam-

ple (if available).
3. The sample condition (e.g., RNase H1 treated, ‘RNH’).
4. The mapping mode (e.g., ‘DRIP’ for DNA-RNA im-

munoprecipitation sequencing (DRIP-Seq)).
5. The tissue of the sample. For cell lines, this was the cell

line name (e.g., ‘HEK293’). For organs and whole or-
ganisms, the tissue name (e.g., ‘B-cell’ for B-cells, ‘SC’
for whole brewer’s yeast (Saccharomyces cerevisiae)).

6. The sample genotype, where relevant (e.g., ‘BRCA1’ for
samples derived from BRCA1 mutant breast cancer pa-
tients).

7. ‘Other,’ a catchall for other relevant metadata provided
by the original data submitters, such as drug treatment
information.

8. The source publication PMID, if available.
9. The last author on the source publication, if available.

Supplementary Table S1 provides the full list of samples.

Standardization of sample metadata

We standardized the manually curated catalogue via the
custom scripts in the accompanying data generation repos-
itory (see Availability). First, the ‘condition’ was binarized
to one of the following labels: ‘POS’ (samples which were
expected to map R-loops, e.g., ‘D210N’ in R-ChIP data)
or ‘NEG’ (samples which were not expected to map R-
loops, for example, ‘Input’ for DRIP-Seq data). The map-
ping of ‘condition’ to ‘label’ relied on a manually curated
regular expressions (REGEX) dictionary and simple string
matching (Supplementary Table S1). Additionally, we fil-
tered the manifest to keep only R-loop mapping samples
(except for bisulfite sequencing samples). Finally, we exe-
cuted the RLPipes v0.9.0 software program to query the
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SRA database for missing metadata related to each sample
(see Availability).

R-loop mapping data standardization

To reprocess all available R-loop mapping datasets, we used
a long-running computational pipeline that is available in
its entirety with detailed instructions in the accompany-
ing data generation repository (see Availability). For all up-
stream processing steps, we used RLPipes v0.9.0, a CLI tool
based on Snakemake (19) (see Availability). We executed
this pipeline on a remote server running Ubuntu 18.04 with
500GB of RAM, 192 cores, and a 10GiB/s internet connec-
tion available. The pipeline took one week to finish process-
ing all samples. The primary steps of the pipeline involved
all the following:

First, raw reads in SRA format were downloaded for each
SRA run via the prefetch software from NCBI sra-tools.
Then, reads were converted to ‘FASTQ’ format using fastq-
dump from sra-tools. Next, technical replicates were merged
and interleaved (in the case of paired-end data) using refor-
mat.sh from bbtools (20). Then, reads were trimmed and fil-
tered with fastp (21), generating a quality report.

For R-loop mapping data, reads were aligned to the
appropriate genome using bwa-mem2 (22). Then, align-
ments were filtered (minimum quality score of 10 enforced),
sorted, and indexed using samtools (23) and duplicates were
marked using samblaster (24). Then, peaks were called us-
ing macs3 (25) and coverage was calculated using deepTools
(26).

The outputs of the pipeline were (A) peaks in ‘broadPeak’
format, (B) coverage in ‘bigWig’ format, (C) quality reports
for alignments and raw reads, and (D) alignments in ‘BAM’
format (see Availability).

Normalization of read coverage

To calculate normalized coverage tracks for visualiza-
tion purposes, we first calculated scaling factors using the
trimmed mean of M-values (TMM) method previously
demonstrated for similar sequencing approaches (27) imple-
mented via the edgeR R package (28). Then, we calculated
the expected fragment sizes for each sample using the macs3
predictd method (25). We then calculated coverage using
the bamCoverage command from deepTools (26) with argu-
ments ‘–scaleFactor <scale factor> -e <fragment size> –
ignoreDuplicates’ where ‘<scale factor>’ is the scaling fac-
tor derived from edgeR and ‘<fragment size>’ is the pre-
dicted fragment size from macs3. The resulting tracks were
visualized in the UCSC genome browser.

R-loop mapping data quality control

Following data standardization, a quality control model
was developed to filter out poor-quality samples prior to
meta-analysis of R-loop consensus sites. This involved (1)
R-loop forming sequences (RLFS) analysis, (2) quality
model building and (3) sample classification.

R-loop forming sequences analysis. R-loop forming se-
quences (RLFS) analysis was performed using a custom

R script, rlfsAnalyze.R, available in the accompanying data
generation repository (see Availability). The analysis script
calls the analyzeRLFS function from the RLSeq R package
(see Availability). This function implements a method for
assessing the enrichment of R-loop mapping peaks within
RLFS via the following procedure: Permutation testing is
implemented via the permTest function from the regioneR
(29) R package such that, for each permutation, R-loop
peaks were randomized using the circularRandomizeRe-
gions function and then the number of overlaps with RLFS
was counted. 100 permutations were used to build an em-
pirical null distribution for peak/RLFS overlap. Then the
true number of overlaps from non-randomized peaks and
RLFS was compared to the null distribution to calculate the
Z-score and significance of enrichment. Finally, a Z-score
distribution was calculated using the localZScore function
from regioneR (29) within 5kb upstream and downstream of
the meta-RLFS midpoint. For more detail, see the RLSeq
reference (see Availability). For visualization purposes, the
scaled Z score distributions were calculated for each peak
set in the reprocessed data and visualized using locally esti-
mated scatterplot smoothing (LOESS) regression with the
standard error as the confidence interval.

Quality model building. The quality classification model
was built using the models.R script in the accompanying
data generation repository (see Availability). The process
of model building is semi-supervised and utilizes a graph-
ical user interface to allow operators with minimal coding
experience to conveniently use it. The model building pro-
cedure involves the following steps: (A) The operator exe-
cutes the models.R script from the command line, launching
an interactive web interface that contains a table with SRA
experiment ID and label (‘POS’ or ‘NEG’) for each sam-
ple along with a plot showing the Z-score distribution from
the RLFS analysis of that sample. This interface also indi-
cates samples that have been previously deliberated about.
(B) The operator then decides which samples to exclude
from the model building process. A sample should only be
excluded when the Z-score distribution drastically differs
from the expected Z-score distribution for its label (exam-
ples are provided to the operator in the web interface). (C)
Once all samples with a label mismatch are selected, the op-
erator clicks the ‘Build model’ button which executes the
model building process on the non-excluded data via the
RMarkdown notebook, FFT-classifier.Rmd (available from
the accompanying data generation repository). This note-
book automatically executes the following steps: (C.1) The
data are wrangled. (C.2) Then, the engineered features are
calculated from the Z-score distributions (Table 1). The en-
gineered features are then wrangled into matrix form with
samples in rows and engineered features and label as the
columns. The label in this case is ‘POS’ (expected to map R-
loops) or ‘NEG’ (not expected to map R-loops). (C.3) Then,
the feature matrix was standardized (centered and scaled)
and transformed with the Yeo-Johnson normalization via
the caret R package (30). The data was then partitioned us-
ing a 50:25:25 (train:test:discovery) split. (C.5) The discov-
ery set was analysed with the Boruta automated feature se-
lection method via the Boruta R package (31) to select the
parsimonious feature set used to train the classifier. (C.6)
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Table 1. Engineered features used in the quality model. Where ‘Z’ is Z-
score distribution, ‘ACF’ is the autocorrelation function, and ‘FT’ is the
Fourier Transform (calculated via the fft function in R)

Feature Description

Z1 mean of Z
Z2 variance of Z
Zacf1 mean of ACF(Z)
Zacf2 variance of ACF(Z)
ReW1 mean of FT(Z) (real part)
ReW2 variance of FT(Z) (real part)
ImW1 mean of FT(Z) (imaginary part)
ImW2 variance of FT(Z) (imaginary part)
ReWacf1 mean of FT(ACF(Z)) (real part)
ReWacf2 variance of FT(ACF(Z)) (real part)
ImWacf1 mean of FT(ACF(Z)) (imaginary part)
ImWacf2 variance of FT(ACF(Z)) (imaginary part)

The training set was then used to train a stacked ensemble
classifier from the caretEnsemble R package (32), with the
following architecture:

• The ensemble meta model is a Random Forest classifier
and the five base models in the stack are:

• Latent Dirichlet allocation
• Recursive partitioning
• Generalized linear model (logit)
• K-nearest neighbours
• Support vector machine (radial)
• 10-fold cross-validation repeated 5 times was imple-

mented during training.
(C.7) Finally, the model was evaluated on the test set

with the confusionMatrix function from the caret R package
(30).

Sample classification. Following model building, all sam-
ples were subsequently classified using the classifySam-
ples.R script from the accompanying data generation repos-
itory (see Availability). This script primarily uses the predict-
Condition function from the RLSeq R package (see Avail-
ability). The procedure implements the following steps for
each peak set in the reprocessed R-loop mapping data: (i)
calculates the Fourier transform of the Z-score distribution,
(ii) reduces the dimensions to the engineered feature set
(see Quality model building), (iii) applies the pre-processing
model to normalize these features (see Quality model build-
ing) and (iv) implements the classifier to render a prelim-
inary quality prediction (see Quality model building). Of
note, the quality model alone does not provide the final
prediction for each sample. Instead, the final prediction is
‘POS’ (positive) only if all the following are true:

1. The RLFS Permutation test P value is significant (P <
0.05)

2. The Z-score distribution at 0 bp is greater than 0 (see
R-loop forming sequences analysis)

3. The Z-score distribution at 0 bp is greater than the value
at both −5000 bp (start) and +5000 bp (end) (see R-loop
forming sequences analysis)

4. The quality model predicts a preliminary label of ‘POS.’

These conditions were chosen to ensure that a positive
prediction from the model (based on the distribution of the

Z score) also met baseline criteria which indicate enrich-
ment in typical permutation testing (29). These criteria may
prevent spurious predictions when the model is applied to
data types on which it was not originally trained.

Finally, predictions were rendered for every sample for
which peaks could be calculated (776/810 samples).

QC model validation

To examine the internal and external validity of the pre-
dicted labels, several approaches were implemented: (A)
RLFS consensus analysis, (B) genic feature enrichment
analysis and (C) sample correlation analysis. All four (pre-
diction:label) conditions: POS:POS, POS:NEG, NEG:POS,
NEG:NEG were compared in each approach.

Visualization of normalized read coverage around MALAT1.
This analysis involved four DRIP-Seq samples, ‘TCELL
(Input)’ (SRX2455193), ‘TCELL’ (SRX2455189), ‘786-O
(RNH)’ (ERX3974965), and ‘786-O’ (ERX3974964), in
which both the ‘TCELL’ samples were from the same study
(SRP095885), and the ‘786-O’ samples were also from the
same study (ERP120322). Both ‘TCELL’ samples and both
‘786-O’ samples respectively were from the same study.

Feature enrichment analysis. Genic features were obtained
via the TxDb.Hsapiens.UCSC.hg38.knownGene R pack-
age (33). The computationally predicted G4 quadruplexes
(G4s) were provided by Chariker et al. in their recent
work (34). The experimentally determined G4s were deter-
mined by Chambers et al. via their previous chromatin im-
munoprecipitation (ChIP) sequencing study (GEO acces-
sion: GSE63874) (35). All samples for which peaks could
be called (34 samples excluded) were subjected to feature
enrichment analysis for genic features and G4s. This anal-
ysis applied the following procedure to test the enrichment
of peaks within these features: Using the RLSeq R pack-
age (i) peaks were randomly down sampled to a maximum
of 10 000 peaks, (ii) down sampled peaks were overlapped
with genic features, (iii) then, intersect statistics were calcu-
lated using Fisher’s exact test via the valr R package (36),
finally, (iv) log2 odds ratios of each label:prediction group
were compared using a Kruskal–Wallis test and pairwise
Dunn pos-hoc tests with Bonferroni p value correction, all
performed via the rstatix R package (37).

Correlation analysis. This analysis uses correlation of R-
loop signal around high-confidence R-loop sites to as-
sess sample-sample similarity. To prepare the analysis, the
read coverage track (bigWig) files for each sample were
quantified around high-confidence sites (as first described
by Chedin et al. (17)) via the gsgCorr.R script in the
accompanying data generation repository (see Availabil-
ity). First, high-confidence R-loop sites were identified
from ultra-long-read R-loop sequencing (SMRF-Seq) (38).
Then, high-confidence sites were lifted from hg19 to hg38
and extended by 100 kb bidirectionally. The sites were then
binned into 1 kb windows. The read coverage signal for ev-
ery human R-loop mapping sample was then summed over
each bin to create a matrix of bins[i] x samples[j] containing
the total signal of each sample within each bin [ij]. Finally,
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the cor function was used to calculate the Pearson correla-
tion of the samples in the matrix. The results were visualized
with the ComplexHeatmap R package (39).

R-loop consensus analysis

This analysis identified human R-loop consensus sites
within catalytically dead RNase H1 (dRNH) and S9.6-
based samples. To identify general R-loop consensus re-
gions (RL regions), the union of dRNH and S9.6 consen-
sus sites was calculated. To obtain these data, the following
procedure was implemented: First, samples were prepared
for R-loop consensus analysis using the prepareConsensus.R
script from the accompanying data generation repository
(see Availability). The following criteria were used to select
samples for R-loop consensus analysis: (i) label of ‘POS’, (ii)
prediction of ‘POS’, (iii) at least 5000 peaks called under a
P adjusted value of 0.05, (iv) is a human sample. We chose
to enforce a label of ‘POS’ as ‘NEG’-labelled are subjected
to treatments which should prevent robust R-loop mapping
and may, therefore, introduce unwanted technical variance
to the consensus analysis. We chose samples with at least
5000 peaks due to the need for random peak down sampling
to 5000 ranges.

Two hundred and forty-seven samples met the full crite-
ria for inclusion in the analysis of the 375 ‘POS’-labelled
human samples. For each included sample, peaks were ran-
domly shuffled and down sampled to 5000 ranges to ensure
high peak-count samples would not dominate the analysis.
Finally, samples were partitioned based on whether they
used dRNH or S9.6-based R-loop mapping. Then, each
down-sampled peak set was processed further using the rlre-
gions.smk workflow (built on snakemake) from the accom-
panying data generation repository (see Availability).

For S9.6 and dRNH samples, the following were per-
formed separately: (i) the peak sets were intersected with
10 bp genomic windows and the number of peak over-
laps per window was counted (using bedtools (40)). (ii) The
resulting windows and counts were converted to a bed-
Graph file (and its binary bigWig file format) and sorted
using bedtools (40). (iii) macs3 bdgpeakcall (25) was then
implemented with the options ‘-g 1000 -c x’ where x =
max( f loor (.15 ∗ n samples), 5) and n samples is the num-
ber of samples provided. These steps yielded (A) consensus
tracks (bigWig) and (B) consensus R-loop peaks (narrow-
Peak) for both S9.6 and dRNH samples.

Then, consensus RL Regions were generated using the
peakUnion.R script from the accompanying data gener-
ation repository (see Availability). This script found the
union of the peaks in the dRNH and S9.6 narrowPeak
files, along with calculating the percent of samples within
each group in which each peak appeared (conservation
score) and averaging these scores in cases where dRNH
and S9.6 peaks overlapped to create a peak union. Finally,
RL regions and associated metadata were finalized using
the finalizeRLRegions.R script from the accompanying data
generation repository (see Availability). R-loops were fil-
tered to remove any regions over 50kb in size, then every
hg38 ‘POS’-labelled peak set was overlapped with the re-
gions via the bed intersect function from the valr R pack-
age (36) to yield a peak-RLRegion overlap matrix. This

matrix was subsequently intersected with the sample meta-
data corresponding to each peak. Further details on ad-
ditional metadata not used in this study are described in
the RLHub R package reference (see Availability). More-
over, RL region ‘confidence scores’ were calculated for the
purposes of colouring the RL region peaks when visual-
ized in the genome browser. These scores are the geomet-
ric mean of scaled log2pct case (percent of samples de-
tecting the RL region which are predicted ‘POS’), nStud-
ies (number of independent studies in which the RL re-
gion is detected), log2medQVal (the median false discov-
ery rate of peaks which overlap this RL region), and the
log2medSignalVal (the median signal value of peaks which
overlap this RL region).

Consensus site signal around genes

Consensus R-loop signal for dRNH and S9.6 was quanti-
fied around all hg38 ensemble genes using the computeM-
atrix function from the deepTools software program (26).
The resulting data was scaled based on the number of sam-
ples in each group. The scaled signal was then scaled to a
[0, 1] range prior to plotting.

Consensus overlap analysis with genomic annotations

The following analyses were performed automatically by
running the figures.R script which accompanies this work
(see Availability).

Peak summitting. For analyses which involved calculating
the overlap (with or without enrichment analysis) of dRNH
and S9.6 consensus peaks with genomic features, peaks were
‘summited’ (length-standardized) prior to overlap to miti-
gate size biases. Standardization involved finding the posi-
tion of highest signal within the peaks (peak summit) and
extending 250 bp bidirectionally to form 500 bp ranges.
Peak summits were provided automatically by the output of
macs3 peak calling. Summited peaks were then overlapped
with genomic annotations for downstream analysis via the
bed intersect function from the valr R package.

Transcript feature overlap. Transcript fea-
tures (tx features) were obtained from the
TxDb.Hsapiens.UCSC.hg38.knownGene R package
(33). Peak overlap with tx features was calculated via the
bed intersect function from the valr R package. Intersected
peaks and tx features were analysed and a unique tran-
script feature was assigned to each peak. To achieve unique
assignment, a priority rule was enforced such that peaks
which overlapped two tx feature types would be assigned
to the one with the highest priority. The priority order was
‘TSS’, ‘TTS’, ‘fiveUTR’, ‘threeUTR’, ‘Exon’ and ‘Intron’.
The ‘Intergenic’ assignment was provided to all peaks
which did not intersect any tx feature.

Enhancer analysis

Annotation sources. Enhancer annotations were devel-
oped from three sources: predicted cis-regulatory ele-
ments (CREs) provided by ENCODE SCREEN (41), high-
confidence enhancers and enhancer-gene interaction data
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provided by GeneHancer v4.4 (42), and induced pluripo-
tent stem cell (iPSC) chromatin states (ChromHMM
(43) 18-state models) provided by ENCODE (file set:
ENCSR976ZHN) (41). Statistical enrichment of peaks
within CREs was calculated using the bed fisher function
from the valr R package (36). Enrichment metaplots within
GeneHancer enhancers was calculated via the binOver-
Feature function from the ChIPpeakAnno R/Bioconductor
package (44). Distal enhancers were identified using the an-
notatePeak function from the ChIPseeker R/Bioconductor
package (45).

Cell type-specific analysis of enhancer regions. To analyze
the relationship between enhancers and R-loops mapped by
dRNH modalities, cell type-specific global run-on (GRO)
sequencing datasets were obtained from the Gene Expres-
sion Omnibus (GEO) in induced pluripotent stem cell
(iPSC) (GSE117086) and CUTTL1 (GSE115894) cell lines.
These were analysed jointly with the MapR (a dRNH-
based R-loop mapping modality) datasets curated previ-
ously via the steps described beforehand (see R-loop map-
ping data standardization). Samples were selected which
matched the same confidence filters applied in the gener-
ation of consensus peaks (see R-loop consensus analysis).
Gene set over-representation analysis was implemented to
identify the pathways relevant to R-loop bound distal en-
hancers in each cell line. Briefly, the distal enhancers over-
lapping intergenic MapR peaks were identified. Then, the
GeneHancer interaction database was queried to obtain
high-confidence gene targets for each enhancer. Gene set
over-representation proceeded using the enrichr function
from the enrichR R package (46,47) with gene sets from the
CellMarker database (48), the MSigDB Hallmark database
(49), the ChEA database (50) and the ARCHS4 transcrip-
tion factor database (51).

Analysis of CTCF/Cohesin co-localization with R-loops.
To analyze the relationship between CTCF/Cohesin
and R-loops, cell type-specific CTCF ChIP-sequencing
datasets were obtained from the ENCODE in iPSC
(ENCFF322WKG) cells and from GEO for CUTTL1
(GSE130140) cells. We also obtained HiC sequencing
data from GEO for iPSC cells (GSE125540) (CUTLL1
not available). HiC-sequencing data was added to the
UCSC genome browser and compared with MapR bigWig
tracks. Enrichment analysis of CTCF peaks within MapR
peaks was calculated via the binOverFeature function
from the ChIPpeakAnno R/Bioconductor package. CTCF,
RAD21 and SMC3 consensus peaks were obtained from
the ENCODE3 transcription factor binding site collection,
provided by the UCSC table browser. SA1 and SA2 peaks
were curated as previously described (16), and then consen-
sus peaks were calculated using the chip-r command line
utility (52). R-loop consensus peaks were enriched within
CTCF peaks using the binOverFeature function. Then,
Fisher’s exact tests were performed using the bed fisher
function from the valr R package for R-loops within CTCF,
RAD21, SMC3, SA1, and SA2 peaks.

Bivalent enhancer analysis. GeneHancer enhancer anno-
tations were extended to include the labels from the

chromHMM 18-state model predictions in iPSC cells (de-
scribed in preceding section). Briefly, chromHMM en-
hancer states were overlapped with distal GeneHancer
enhancers using the findOverlapsOfPeaks function from
the ChIPpeakAnno R/Bioconductor package (44). Over-
lapping chromHMM enhancer labels were transferred to
the GeneHancer enhancer annotations for further analy-
sis. Global Run-on (GRO) sequencing, RNA Pol II ChIP
sequencing, CTCF ChIP sequencing, EZH2 ChIP se-
quencing, ATAC sequencing, H3K27me3 ChIP sequencing,
H3K4me1 ChIP sequencing, H3K27ac ChIP sequencing,
and HiC sequencing datasets were obtained from GEO for
the hg19 human genome and input into a custom genome
browser session (for a list of accessions, see Availability).
Tornado plots were constructed using the computeMatrix
and plotHeatmap functions from the deepTools package
on chromHMM-predicted bivalent (or non-bivalent) en-
hancers (26).

ChIP/eCLiP enrichment analysis. To analyze the location
of S9.6 and dRNH consensus peaks compared to sites of
chromatin and RNA localization of RNA binding proteins,
data was downloaded from the ENCODE database using
the accessions recently described (53). Enrichment of peaks
within ChIP/eCLiP sites was calculated using the bed fisher
function from the valr R package (36).

R-loop region abundance calculation

R-loop region (RL region) abundance was calculated within
each human sample using the rlregionCountMat.R script
from the accompanying data generation repository (see
Availability). sample alignment files (‘BAM’ format) were
processed with featureCounts from the Rsubread R package
to quantify the read counts from each within RL regions
(54). Finally, the variance stabilizing transform (VST) was
used to calculate normalized counts (55).

Differential abundance of RL regions

Differential abundance between dRNH and S9.6 samples
was calculated by the following procedure: (1) the count
matrix was subset to contain only the RL regions found by
both dRNH and S9.6 peaks, (2) the DESeq function from
the DESeq2 R package (55) was applied to calculate dif-
ferential abundance, (3) the enrichR R package (46) (and
R interface to the enrichr web service (47)) was used to find
the enrichment of gene ontology (GO) (56) terms within the
genes overlapping differentially abundant RL regions.

Additionally, the prcomp function in R was used to calcu-
late principal component analysis plots and the Enhanced-
Volcano R package (57) was used to generate the volcano
plot. Downsampled permutation testing was performed by
randomly downsampling the S9.6 dataset to include the
same number of studies as the dRNH dataset. Then, if the
S9.6 dataset still contained more samples than dRNH, it
was downsampled again to include the same number of
samples. This approach was designed to ensure that dRNH
and S9.6 downsampled datasets contained both the same
number of studies and (approximately) the same number of
samples. Random permutations were performed 10 times,
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and the differential R-loop abundance was recalculated
with each. Finally, the Pearson correlation of the differen-
tial abundance Wald statistic was compared pairwise be-
tween all samples and visualized with the pheatmap R pack-
age.

Finally, the pausing index for each gene (58) was calcu-
lated using the getPauseIndices function from the BRGe-
nomics package (59). This calculation was performed us-
ing precision run-on (PRO) sequencing data in multiple cell
lines, downloaded from different sources (see Accessions).

Conservation analysis of RL regions

Conservation (percent of samples which detect an RL re-
gion) was ranked and bins were selected to partition RL re-
gions by conservation percentiles. Binned RL regions were
overlapped with genomic features and enrichment was cal-
culated via the procedure described above (see Consensus
site overlap in genes). Pathway enrichment was also per-
formed via the procedure outline in the above section (Dif-
ferential abundance of RL regions), with the only difference
being that the ChEA (50), KEGG (60), and MSigDB (49)
pathway databases were tested.

RESULTS

Curation of public R-loop mapping samples

The data in this study were hand-curated from public data
repositories, yielding 810 R-loop mapping samples from 74
different studies (Supplementary Table S1). The data are
technologically and biologically diverse, representing 67 dif-
ferent tissue types, seven species, and 20 R-loop mapping
modalities (Supplementary Table S1, Figure S1A). More-
over, the data includes both ‘POS’ (expected to map R-
loops) and ‘NEG’ (not expected to map R-loops) labelled
samples (Supplementary Table S1, Figure S1A). Examples
of NEG-labelled samples include ‘WKKD’ (RNase H1 that
is incapable of both DNA binding and R-loop resolution
(11)) R-ChIP data, RNase H1-treated DRIP-Seq, and ge-
nomic ‘Input’ samples. Examples of POS-labelled samples
include ‘D210N’ (catalytically inactive RNase H1) R-ChIP
data and typical S9.6 DRIP-Seq data. The scale and diver-
sity of these data made them suitable as a basis for building
our quality methods and for our subsequent meta-analyses.

Following manual curation of R-loop mapping datasets,
we developed a purpose-built R-loop pipeline tool called
‘RLPipes’ and applied it to reprocess all datasets, yielding
peaks, read coverage and other processed files (see Avail-
ability) (Figure 1A).

The number of R-loops detected varies within and between
modalities

Previous work has demonstrated discrepancies in the num-
ber of R-loop sites uncovered by different mapping meth-
ods (12). However, to our knowledge, no study to-date has
quantified the extent of these differences. From our anal-
ysis of the numbers of peaks called from various tech-
niques in POS-labelled samples, we found discrepancies be-
tween modalities spanning multiple orders of magnitude

(Supplementary Figure S1B). We found that DNA:RNA in
vitro enrichment (DRIVE) sequencing produced the fewest
peaks (337). However, only one DRIVE-Seq sample is pub-
licly available at present (1). Following DRIVE-Seq, R-
ChIP contains the fewest average peaks (∼6 thousand).
Strand-specific DRIP (ssDRIP) sequencing generated the
greatest average number of peaks (∼314 thousand). More-
over, we observed variability among the number of peaks
even within mapping modalities (Supplementary Figure
S1B). Taken together, these findings suggest that no single
modality can confidently assess the locations of all R-loops
within a sample. The results also reveal technical variance
between samples belonging to the same mapping modal-
ity, suggesting potential issues with sample quality control
across studies.

R-loop forming sequences provide a suitable test of sample
quality

Recent studies have identified the presence of poor-quality
R-loop mapping datasets within the literature (16,17), but
no tests of R-loop mapping accuracy have yet been pro-
posed to our knowledge. To address this limitation, we
developed a purpose-built quality control approach based
on R-loop forming sequences (RLFS). RLFS are genomic
regions which show favourability for R-loop formation
(18,61–64). They are computationally predicted from ge-
nomic sequence with tools like QmRLFS-finder (18). We
calculated RLFS across each genome and found that they
agreed well with the R-loop mapping data we reprocessed
(Figure 1B). We then implemented permutation testing to
assess the statistical enrichment of R-loop peaks within
RLFS. From this analysis, we found a strong enrichment
within RLFS for representative POS-labelled samples and
a lack of enrichment within NEG-labelled samples (Fig-
ure 1C). These findings highlighted the suitability of using
RLFS as a basis for assessing R-loop mapping data quality.

Ensemble learning from RLFS provides accurate quality pre-
dictions

Evidence from our recent work and from Chedin et al. in-
dicated that POS-labelled samples may sometimes fail to
map R-loops as expected (16,17). To address this concern,
we performed RLFS analysis for every sample with peaks
available (776 samples), yielding a P value and Z score dis-
tribution for each. As anticipated, we found some samples
with a ‘POS’ label, but which did not show expected en-
richment around RLFS, based on Z score (Supplementary
Figure S2A). This indicated the potential for using RLFS
analysis to identify POS-labelled samples which fail to map
R-loops as expected.

We reasoned that the p value from RLFS analysis would
be sufficient for distinguishing sample quality. Unexpect-
edly, we found that while many POS-labelled samples
showed the expected Z-score distribution and significant P
value, there were also examples of false positives in which
the P value was significant, but poorly representative of
both the assigned label and of the Z score distribution (Sup-
plementary Figure S2B). This indicated the need for a more
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Figure 1. Reprocessing and standardization of R-loop mapping data reveals enrichment within R-loop forming sequences (RLFS). (A) The workflow
used for reprocessed datasets. (B) A Genome Browser view of four representative samples. One ‘POS’-labelled (expected to map R-loops) and one ‘NEG’-
labelled (not expected to map R-loops) sample each from DRIP and R-ChIP modes along with R-loop forming sequences (RLFS). NEG-labelled samples
are indicated with red text (e.g. ‘RNH1’). The genome browser session for this visualization is also provided within this manuscript (see Availability).
The SRA IDs of these samples are SRX1025894 (‘NT2’), SRX1025896 (‘NT2 (RNH1)’), SRX2683605 (‘HEK293’), SRX2675009 (‘HEK293 (WKKD)’;
WKKD: mutant RNase H1 without catalytic or DNA binding capabilities). (C) Metaplots of the four samples in (B) showing the enrichment of their
called peaks around RLFS. The Y axis is the Z score after min-max scaling.

sophisticated test of sample quality from the RLFS analysis
results, prompting our development of an ensemble learn-
ing model which could analyze the ‘noisiness’ of the Z score
distribution to provide additional discriminatory capability.

We built a classifier using a semi-supervised approach
that involves a human operator deciding whether to exclude
samples from the training set based on the alignment be-
tween the RLFS Z-score plot and the sample label (Sup-
plementary Figure S2C, D). The purpose of this supervi-
sion was to prevent the model from learning the ‘POS’ label
from samples which likely failed to map R-loops and vice
versa with the ‘NEG’ label. Of the 776 samples which had
sufficient read depth for peak calling, the operator excluded
157 (20.2%) due to a mismatch between the sample label and
the Z score distribution. Having selected the samples to dis-
card, the operator triggered the automated model building
script, which initiated the training process.

Most features in the discovery set were automatically se-
lected using the Boruta method (31) (Supplementary Figure
S2E). The ensemble learning model was trained via the au-
tomated script and evaluated internally via repeated cross
validation, showing average performance above 0.95 speci-

ficity, 0.85 sensitivity, and 0.95 receiver operator character-
istics area under the curve (ROC) for all base models (Sup-
plementary Figure S2F). The final model performance was
evaluated on a test set which the model had never previ-
ously seen. On this data, the model displayed an accuracy of
0.9191 (95% confidence interval: 0.8599-0.95189; no infor-
mation rate (NIR): 0.625; P-value [accuracy > NIR]: 3.58e–
15) (Supplementary Figure S2G), demonstrating the high
accuracy of the model.

Finally, we combined the machine learning model with
three other assessments to develop our final quality model.
Briefly, a sample with a final prediction of ‘POS’ must meet
all the following criteria: (i) have a permutation testing
P value below 0.05, (ii) show a Z score above 0 at 0 bp
in the distribution, (iii) show a Z score at 0 bp which is
greater than both the Z score at –5 kb and +5 kb, and
(iv) receive a prediction of ‘POS’ from the machine learn-
ing model. In this work, ‘quality model’ refers to criteria
i–iv. Of note, the purpose of criteria i–iii is to ensure that
a ‘POS’ prediction from the machine learning model also
meets baseline standards for assessing permutation testing
results (29).
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Figure 2. QC model predicts incorrectly labelled (false negative/positive) R-loop mapping datasets based on enrichment within R-loop forming sequences.
Metaplots display the consensus signal among samples that were labelled ‘POS’ (expected to map R-loops) or ‘NEG’ (not expected to map R-loops) and
samples which were predicted by the quality model to be ‘POS’ or ‘NEG’. The plots show the LOESS regression line along with a confidence interval based
on the standard error from LOESS regression. The annotations show the number and percentage of samples which are included.

Quality model is internally valid and highlights ‘false nega-
tive’ samples

We then applied the quality model to classify every repro-
cessed dataset in the present study (Figure 2). Unexpect-
edly, we found a discrepancy between the assigned label
(based on author-supplied metadata) and the predicted la-
bel (based on our quality model) for many samples (Fig-
ure 2). Of the 285 NEG-labelled samples, the quality model
classified 61 (21.4%) as ‘POS’ (‘false negatives’). Of the
491 POS-labelled samples, the quality model classified 149
(30.35%) as ‘NEG’ (‘false positives’). Moreover, we no-
ticed that some modalities were more likely than others to
contain these ‘false negatives’ and ‘false positives’ (Supple-
mentary Figure S2H). To better understand these results,
we divided the data by all prediction:label combinations
(NEG:NEG, NEG:POS, POS:NEG, POS:POS) and calcu-
lated the consensus Z score distribution for each group. The
results demonstrate that the classifications robustly repre-
sent the RLFS analysis of the data (Figure 2, Supplemen-
tary Figure S3A). Coupled with the high accuracy of the en-
semble model (Supplementary Figure S2G), these findings
demonstrate that our quality model is internally valid.

Of note, we observed that the model classified 61 ‘NEG’-
labelled samples as ‘POS’ (‘False negatives’). From univari-
ate analysis, we found that most false negatives (50/61;
82.0%) occur in samples treated with RNase (H1, A, or
T) or actinomycin D, suggesting incomplete R-loop degra-
dation (Supplementary Figure S3B). Surprisingly, among
the remaining 11 we noticed two DRIP-Seq input controls

(Supplementary Figure S3B). DRIP-sequencing input con-
trols model the genomic background and capture biases
in restriction enzyme digestion. Therefore, we did not ex-
pect to find input samples enriched within RLFS. To ad-
dress this finding, we first confirmed that these two samples
were both enriched within RLFS (Supplementary Figure
S3C), and then proceeded to examine them on the genome
browser alongside example ‘true positive’ (POS:POS) and
‘true negative’ (NEG:NEG) samples (Supplementary Fig-
ure S3C). Curiously, we found that the signal from these
samples was not randomly distributed, as we would have ex-
pected from a typical genomic input control. Moreover, we
observed that input control signal summits coincided with
promoter regions and CpG islands (Supplementary Figure
S3C), suggesting a bias that may be related to sequence con-
tent. While these false negatives represent a slim minority of
the dataset, they highlight the importance of background
controls when designing R-loop mapping experiments
so that bioinformaticians can reduce bias during peak
calling.

Validation of quality model reveals the prevalence of poor-
quality R-loop mapping data

We next proceeded to assess the external validity of our
quality method through other quality approaches that did
not involve RLFS analysis. The first approach was to visual-
ize the normalized read coverage tracks at sites of known R-
loop formation. A representative depiction of four DRIP-
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Figure 3. Quality control model predictions are externally valid. (A) A Genome Browser image capture showing examples of DRIP-Sequencing datasets
from two studies that exemplify all four possible quality model prediction and sample label (prediction:label) combinations (‘TCELL (Input)’ [SRX2455193]
- NEG:NEG; ‘TCELL’ [SRX2455189] - NEG:POS; ‘786-O (RNH)’ [ERX3974965] - POS:NEG; ‘786-O’ [ERX3974964] - POS:POS). The genome browser
session for this visualization is also provided within this manuscript (see Availability). (B) Violin/Box plots showing the distribution of Fisher’s exact
test odds ratios within all reprocessed R-loop mapping samples, split by prediction:label combination and by the genomic feature on which testing was
performed. Significance was determined via the Kruskal-Wallis test followed by Dunn post-hoc with Bonferroni correction. ****P < 0.0001; ***P < 0.001;
**P < 0.01; *P < 0.05; ns = p ≥ 0.05. (C) A heatmap showing the Pearson correlation (R) of reprocessed R-loop mapping samples around high-confidence
R-loop sites. Dendrograms and row order show hierarchical clustering of samples and annotations show the prediction, label, and mode of each sample.

Seq samples at a region near MALAT1 (a non-coding RNA
with constitutive R-loop formation (65)) shows that the
model predictions distinguish between samples which dis-
play R-loop detection and those which do not (Figure 3A).
These results provided preliminary evidence for the external
validity of our approach for determining whether a sam-
ple maps R-loops as expected. Of note, this analysis also
highlights an example of incomplete RNase H1 treatment
in DRIP sequencing data, ‘786-O (RNH)’ (Figure 3A), as
discussed in the previous section.

We then implemented enrichment testing for genic fea-
tures, such as exons and introns, across all human samples
in each prediction:label group. Given that R-loops are a by-
product of normal transcription, successful R-loop map-
ping should result in an enrichment of peaks within genic
features, as has been shown previously (11,16,66). From
our analysis, we found that NEG-predicted samples, re-
gardless of their original label, typically had low enrich-
ment in all genic features (Figure 3B). Moreover, we ob-
served that the enrichment of genic features (with the excep-
tion of ‘Intron’) was not significantly greater in NEG:POS
(prediction:label) samples compared to NEG:NEG sam-
ples (Figure 3B). Conversely, POS:NEG showed a signifi-
cant increase in enrichment in all features when compared
to NEG:NEG (Figure 3B). Together, these results support
the external validity of our model predictions.

We then repeated the same analysis with both predicted
and experimentally determined G4 quadruplexes (G4s)
(Supplementary Figure S4A). G4s are non-B DNA struc-
tures which may promote R-loop stability when present on
the displaced ssDNA strand (67–69). From feature enrich-
ment analysis of G4s, we found that POS-predicted samples

were significantly more enriched than NEG-predicted sam-
ples, regardless of prior label (Supplementary Figure S4A).

Previous work by Ginno et al demonstrated that G/C
skew (i.e. G or C skew) is a common feature of unmethy-
lated CpG islands (CGIs) with R-loop occupancy (2). Thus,
we would expect to observe an enrichment of successfully
mapped R-loops within both CGIs and regions of G/C
skew. We obtained predicted CGI locations from the UCSC
table browser, and we predicted G/C skew regions using
the SkewR algorithm on medium-confidence mode (2). As
expected, we observed a significant enrichment of POS-
predicted samples within CGIs and G/C skew regions when
compared to NEG-predicted samples, regardless of prior la-
bel (Supplementary Figure S4B). Taken together, these find-
ings further demonstrate the external validity of the model
predictions and their applicability to the analysis of R-loop
mapping results in a biological context.

Finally, we implemented sample-sample correlation anal-
ysis to evaluate the agreement between the results obtained
from the model prediction and the sample-level similar-
ity as determined through correlation (Figure 3C). As ex-
pected, we found that NEG-predicted samples tended to
cluster together and display low correlation or no correla-
tion with most POS-predicted samples (Figure 3C). Like-
wise, we found that POS-predicted samples tended to clus-
ter together, regardless of their original metadata label (Fig-
ure 3C). While these trends were broadly consistent, there
were notable exceptions in which NEG-predicted samples
correlated with POS-predicted samples, thus representing
disagreement between the correlation analysis and the qual-
ity model predictions (Figure 3C). However, we expected
to observe a small amount of disagreement, as the corre-
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lation analysis relies upon a fundamentally different ap-
proach from the quality model. Moreover, the finding that
these approaches agree in most cases lends further support
to the argument that the quality model is externally valid.
Finally, these results imply that a comprehensive evaluation
of R-loop data quality may benefit from the implementation
of overlapping and complementary quality control method-
ologies.

Taken together, these internal and external validations
demonstrate that the method we present here is an accurate
measure of R-loop mapping data quality. They also reveal
the extent of poor R-loop data within published datasets,
indicating that the approach described here will be of great
benefit to future studies. Of note, we provide access to this
quality method in the RLSeq R package (see Availability).

Consensus analysis reveals the locations and prevalence of R-
loop formation

The locations and prevalence of R-loops genome-wide has
been a subject of study since the first R-loop mapping
modalities were described (1,66). However, current esti-
mates of where R-loops form and the percentage of the
genome which they cover (3–13%) are derived from the
analysis of small numbers of samples and mapping tech-
nologies (66,70,71). As we demonstrate here, there is varia-
tion in the number of peaks called both between and within
modalities (Supplementary Figure S1B), indicating that the
true prevalence and locations of R-loops remain unclear.
Moreover, R-loop mapping experiments which rely upon
the S9.6 antibody identify different R-loops from those
which rely upon catalytically dead RNase H1 (dRNH)
(11,12). This has caused some to raise the intriguing pos-
sibility that S9.6 and dRNH-based mapping experiments
might detect different ‘classes’ of R-loops (13), though the
characteristics of these R-loop classes remains poorly un-
derstood.

To address these gaps in knowledge, we used high-
confidence human R-loop mapping samples to generate
dRNH- and S9.6-specific R-loop ‘consensus regions’ (Fig-
ure 4A-D). We first defined a high confidence set of sam-
ples based on the label, prediction, and number of peaks
in the sample (Figure 4B). We found that 56 of 77 hu-
man POS-labelled dRNH samples and 191 of 298 human
POS-labelled S9.6 samples passed the quality filters (Fig-
ure 4E). The analysis proceeded as described (see Methods)
and yielded consensus sites and signal for dRNH and S9.6
separately, along with a consensus set of ‘R-loop Regions’
(RL regions) from the union of S9.6 and dRNH consensus
sites (see Availability). Of note, each valid ‘consensus site’
was observed independently in at least 15% of all samples
for both dRNH (8 out of 56 required) and S9.6 (28 out of
191 required). This constraint increases confidence that the
consensus sites represent genuine R-loop formation.

A recent study from Lin et al employed a consensus anal-
ysis approach to identify high-confidence ‘R-loop zones’
(72). However, this approach does not consider dRNH and
S9.6 samples independently, and it does not use an R-loop-
specific QC model to ensure sample quality prior to analysis
(72), making it unsuitable for the present study.

From analysis of R-loop consensus regions, we observed
that dRNH samples yielded 34,451 consensus sites while
S9.6 samples yielded 37,043 consensus sites. These sites col-
lectively cover 138.6 megabases (Mb), which is 4.32% of the
human genome (dRNH: 36.4Mb, 1.13% of genome; S9.6:
121.8Mb, 3.80% of genome). Moreover, we calculated the
overlap of these sites and found 9950 shared sites (63.3Mb,
1.97% of genome) (Figure 4F). This indicated that despite
having clear differences, dRNH identified many of the same
R-loops as S9.6. Moreover, we observed that S9.6 consen-
sus peaks tended to be larger than dRNH consensus peaks
(Figure 4G).

We then examined consensus peak signal at CALM2, a
gene containing one of the most mapped R-loops in our
analysis. Interestingly, we observed that while both S9.6 and
dRNH peaks localize around the transcription start site
(TSS), only signal from S9.6 was found in the gene body and
around the transcription termination site (TTS) and Poly-A
regions (Figure 4H). This finding led us to perform a meta-
analysis of dRNH and S9.6 consensus sites within genic fea-
tures (Figure 4I–K). First, we identified the consensus peaks
found uniquely by S9.6 and dRNH, noticing that ∼75%
of S9.6 peaks do not co-localize with any dRNH peaks
(‘S9.6-only peaks’) and roughly 65% of dRNH peaks do not
co-localize with any S9.6 peaks (‘dRNH-only peaks’) (not
shown). From analysis of the 4.32% of the genome covered
by RL regions, S9.6 consensus peaks occupy most of those
regions (87.9% of total RL region genomic coverage) (Fig-
ure 4J). Conversely, we found that dRNH consensus peaks
only cover 26.3% of RL Regions (Figure 4J). Moreover,
comparing where S9.6- and dRNH consensus sites over-
lap (‘dRNH/S9.6-shared’ sites), we find that S9.6 consensus
sites identify a far larger area of genomic coverage (Figure
4J).

These results suggested a disparity regarding the pro-
portion of the R-loop-occupied genome which is accessible
by dRNH compared with S9.6. One potential explanation
might be that the efficiency of R-loop mapping within cer-
tain genomic features is higher for S9.6 compared to dRNH
and vice versa. From analysing the dRNH-only and S9.6-
only peaks with respect to genic features, we observed that
while both S9.6 and dRNH show a preference for the TSS
and TTS of genes, dRNH is more specific to these regions
than S9.6 (Figure 4K). Likewise, we observed that S9.6-
only regions were more specific to intronic sequences (Fig-
ure 4K).

Taken together, these findings indicated that consensus
R-loop sites recapitulate expected R-loop biology. More-
over, they reveal strong differences between dRNH and S9.6
mapping approaches with respect to the proportion of the
genome and the genomic features in which they detect R-
loops.

Differential analysis defines Class I/II R-loops based on as-
sociation with promoter pausing

In their recent work, Castillo-Guzman and Chedin hypoth-
esized the existence of two previously unstudied classes of
R-loops: ‘Class I’ (R-loops resulting from promoter prox-
imal pausing) and ‘Class II’ (R-loops resulting from tran-
scriptional elongation) (13). They hypothesized that Class
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Figure 4. Consensus analysis of high-quality samples reveals differences in dRNH and S9.6-mapped R-loops. (A) A flow diagram showing the workflow
used for consensus analysis of R-loop sites in catalytically dead RNase H1 (dRNH) mapping samples and S9.6-based (S9.6) mapping samples. (B) A flow
diagram showing the algorithm for selecting high-confidence samples to include in the analysis. (C) A flow diagram showing the workflow for building
consensus R-loop signal and calling consensus peaks. (D) A flow diagram showing the workflow for intersect analysis, which yields R-Loop Regions.
(E) Donut charts showing the proportion of ‘POS’-labelled dRNH and S9.6 samples passing the quality filters. (F) A Venn diagram showing the overlap
of consensus sites derived from dRNH and S9.6-based mapping samples. P value and odds ratio from Fisher’s exact test. (G) Density plot showing the
frequency of consensus peak width derived from S9.6 and dRNH-based mapping samples. X axis is log10 scaled. (H) Genome browser view of a top R-loop
region (at the CALM2 gene) with dRNH and S9.6 consensus signal, peaks, and signal tracks/peaks from representative S9.6 and dRNH R-loop mapping
samples. ‘R-loop regions’ were derived from union of dRNH/S9.6 consensus peaks and are coloured based on the ‘confidence score’ of that consensus (see
Materials and Methods). Arrow indicates direction of transcription. ENCODE cCREs are tissue agnostic cis regulatory elements predicted by ENCODE-
SCREEN, provided by the UCSC genome browser (colour code: red is ‘promoter-like signature’; orange is ‘proximal enhancer-like signature’; yellow is
‘distal enhancer-like signature’). The genome browser session for this visualization is also provided within this manuscript (see Availability). (I) Metaplot
showing the R-loop consensus signal (scaled by total number of samples in dRNH and S9.6 respectively) around genes. (J) Stacked bar chart showing
the proportion of total RL Region genomic coverage (in megabases, ‘Mb’) occupied by S9.6 and dRNH sites. S9.6 and dRNH consensus sites are split
into ‘only’ (unique to either S9.6 or dRNH) and ‘shared’ (detected by both S9.6 and dRNH). (K) Annotation plot showing the proportion of summitted
(500 bp width) dRNH and S9.6 consensus sites within various genomic features.

I R-loops are mapped by dRNH-based experiments with
high efficiency, but that these experiments are unable to ef-
ficiently map Class II R-loops (13). In the above analysis
of S9.6 and dRNH consensus sites, we found support for
this hypothesis by showing that dRNH consensus signal
aggregates around the TSS region while S9.6 signal covers
the gene body (Figure 4I, K). Moreover, our finding that
dRNH-mapped R-loops occupy a much smaller proportion
of the genome than S9.6-mapped R-loops also fits with this
hypothesis (Figure 4J). However, we had not yet addressed

a central tenet of the Class I/II hypothesis––namely, that
dRNH binds R-loops which result from promoter proximal
pausing. Moreover, we had not yet addressed the genes in
which Class I/II R-loops form, nor the biological programs
in which those genes participate.

To address these questions, we analysed differential R-
loop abundance for each high-confidence sample within
the 9950 R-loop regions (RL regions) found in both S9.6
and dRNH consensus sites (Figure 5A). We applied prin-
cipal component analysis (PCA) and found that dRNH
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Figure 5. Differential abundance analysis of dRNH- and S9.6-detectable R-loop regions reveals association between dRNH-specific R-loops and transcrip-
tional pausing. (A) Venn diagram highlighting the group of R-loop Regions (RL Regions) analysed in this figure. (B) A PCA plot showing the divergence
in abundance between dRNH and S9.6-based approaches within the shared RL regions. The percent of variance explained by each PC is indicated on
each axis. (C) Volcano plot showing the top differentially abundant RL regions between dRNH and S9.6-based samples. Vertical dashed line represents
absolute log2 fold change of 1, horizontal dashed line represents P adjusted value of P < 1e−30. Red: RL-regions which meet both the log2 fold change
and P adjusted value cut-off. Green: RL-regions which meet the log2 fold change cut-off alone. (D) A PCA feature plot showing a top differentially abun-
dant RL region (‘RL46345’). (E) Genome browser image of RL46345 highlighting difference in S9.6 and dRNH signal at that site. The genome browser
session for this visualization is also provided within this manuscript (see Availability). (F) Top dRNH and S9.6-specific hits from GO term analysis of the
genes associated with the top differentially abundant RL regions. Enrichment is measured by ‘Combined Score’ such that higher indicates more strongly
enriched. (G) Graphical illustration which depicts the Class I/II hypothesis. Class I R-loops are hypothesized to occur as a result of promoter pausing and
are efficiently mapped by dRNH and, to a lesser extent, S9.6. Class II R-loops are associated with transcriptional elongation and are mapped efficiently
by S9.6 alone. (H) Representative distribution plots showing the pause index of genes overlapping dRNH- and S9.6-specific R-loop regions. Data were
derived from precision run on (PRO) sequencing in three cell lines (HEK293, HeLa, K562) for which both dRNH and S9.6 R-loop mapping data were
available. (I) Representative genome browser image depicting a top dRNH-specific RL region (RL12840) which occurs at a bidirectional promoter for two
of the most transcriptionally paused genes, ATG3 and SLC35A5. PRO-Seq in HEK293, HeLa, and K562 is displayed alongside dRNH and S9.6 consensus
tracks. P values generated via Wilcoxon rank sum test (minimum displayable P value is 2.22e−16).
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and S9.6 samples diverge with respect to RL region abun-
dance even though the sites analysed here represent sites
detected by both approaches (Figure 5B), indicating our
ability to detect meaningful differences between them. We
also repeated the PCA without quality control filters and
we observed a clear separation of POS:POS (‘true positive’)
and NEG:POS (‘false positive’) samples along PC2, high-
lighting the utility of the QC workflow we describe in this
work (Supplementary Figure S5A). However, we also no-
ticed that PC1 still cleanly separates dRNH and S9.6 sam-
ples even with low quality samples included, further high-
lighting the differences between these mapping approaches
(Supplementary Figure S5A).

Differential abundance analysis led to the identification
of RL regions for which the S9.6-derived and dRNH-
derived signal intensity were discordant (Figure 5C) (see
Availability). We then visualized the top differentially abun-
dant RL region (RL46345) (Figure 5D, E), which reinforced
the clear differences in signal intensity between dRNH- and
S9.6-based R-loop mapping at that site.

One potential confounding factor in this analysis was
the disparity in number of samples and studies between
S9.6 (191 samples; 31 studies) and dRNH (56 samples; nine
studies). To address this concern, we randomly downsam-
pled the S9.6 dataset to match the dRNH dataset, and then
we repeated the differential analysis. Of note, due to previ-
ously observed batch effects between R-loop mapping stud-
ies (16), we randomly downsampled by study and then by
sample until the S9.6 dataset had the same number of stud-
ies as dRNH (9 studies) and the same number of samples
or less (∼56 samples). From comparing the downsampled
results to the full dataset, we found they agreed well (Pear-
son R: 0.95) (Supplementary Figure S5B). To validate that
this result was not due to random chance during downsam-
pling, we performed 10 random downsampling permuta-
tions and calculated the correlation across each. Like the
initial finding, all permuted results showed high correlation
with the full dataset and with one another (Supplementary
Figure S5C). Moreover, even when we tried downsampling
by sample number alone without considering the number of
studies, this correlation was similarly strong (Not Shown).
Taken together, these findings support the robustness of the
differential R-loop abundance results.

We also wanted to address the unlikely possibility that
dRNH- and S9.6-specific R-loops might coincide with
genes belonging to specific biological programs. Therefore,
we identified the genes overlapping the top 1000 dRNH-
and S9.6-specific differentially abundant R-loops and per-
formed GO term analysis. Unexpectedly, we found that,
unlike dRNH, S9.6-based mapping methods detected R-
loops in genes related to translation (Figure 5F). Con-
versely, dRNH-based methods detected R-loops in genes
related to endoplasmic reticulum stress (Figure 5F). While
these results are intriguing, it is still unclear why dRNH
or S9.6 map R-loops more efficiently in genes belonging to
some biological programs, so these results should be con-
sidered with caution.

The Class I/II hypothesis predicts that dRNH maps R-
loops which arise from promoter–proximal pausing with
high specificity compared to S9.6 (Figure 5G) (13). To ad-
dress this hypothesis, we identified the genes overlapping

dRNH/S9.6-specific R-loops and calculated their pausing
index (58) using publicly available precision run-on (PRO)
sequencing data. To improve the accuracy of the analysis,
we specifically chose to utilize PRO-Seq from untreated cell
lines found in both the dRNH- and S.6-based R-loop map-
ping datasets (HEK293, HeLa and K562) (see Availabil-
ity). Of note, we filtered the data to only include R-loop
regions which overlap with known transcription start sites
(TSS). We observed that dRNH-specific genes show signif-
icantly greater pausing compared to S9.6-specific genes in
all three cell lines (Figure 5H). This effect is exemplified by
RL12840, one of the top dRNH-specific RL regions, which
occurs at a bidirectional promoter for two of the top paused
genes, ATG3 and SLC35A5 (Figure 5I). To further vali-
date this finding, we mined public PRO-Seq datasets for an-
other nine cell lines and repeated the analysis (Supplemen-
tary Figure S5D). As expected, we found in each cell line
that dRNH-specific R-loops coincided with genes having a
significantly higher pause index than those which overlap
with S9.6-specific R-loops (Supplementary Figure S5D).

Taken together, these results further support the sound-
ness of the Class I/II hypothesis as dRNH displays a strong
preference for transcriptionally paused genes compared to
S9.6. Moreover, they suggest intriguing differences between
dRNH-based and S9.6-based R-loop mapping in several
gene programs.

dRNH-based mapping uniquely detect smaller R-loops asso-
ciated with distal enhancers

From the above analysis, we found support for the Class I/II
hypothesis by examining the genic distribution of dRNH
and S9.6 consensus R-loops (Figure 4H-K) and the associ-
ation of dRNH-specific R-loops with transcriptional paus-
ing (Figure 5H-I, Supplementary Figure S5D). However,
the Class I/II hypothesis is insufficient to fully explain the
16.4Mb of dRNH consensus sites which S9.6-based map-
ping does not detect (occupies 11.8% of RL Region cov-
ered genome; 0.51% of total human genome) (Figure 4F,
J), especially those which occur in intergenic regions (Fig-
ure 4K). This suggested that there may be additional sub-
classes of R-loops which we could defined from this anal-
ysis. To begin to identify novel subclasses of R-loops, we
decided to split dRNH consensus peaks into ‘dRNH-only’
(uniquely mapped by dRNH), ‘dRNH-shared’ (dRNH
peaks which overlap with an S9.6 peak) (Figure 6A) and
compared them to each other alongside S9.6 consensus
regions.

From a preliminary analysis of peak characteristics, we
noticed that dRNH-only consensus regions are smaller
(mean 754 bp) than dRNH-shared (mean 1588 bp) and
S9.6 (mean 3293 bp) (Figure 6B). From analysis of the
genes overlapping R-loops in each group, we were surprised
to observe that dRNH-only R-loops do not occur within
defined gene programs, unlike dRNH-shared and S9.6 R-
loops (Supplementary Figure S6A).

The smaller size and lack of distinct gene set enrichment
within dRNH-only peaks suggested that they might be co-
inciding with specific genomic features. From feature anal-
ysis, we observed that while dRNH-shared peaks display
strong enrichment in TSS and TTS regions, dRNH-only
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Figure 6. dRNH uniquely maps shorter R-loops that are enriched within distal enhancer regions. (A) Venn diagram highlighting the group of R-loop
Regions analysed in this figure. (B) Stacked bar chart showing the distribution of transcript (tx) features within dRNH-only (dRNH consensus peaks
not mapped by S9.6), dRNH-shared (dRNH consensus peaks which overlap with S9.6 consensus peaks), and S9.6 consensus peaks. (C) Distribution of
peak widths (log scaled) across groups. P value from Wilcoxon rank sum test (‘2.22e-16’ is the minimum displayable value). (D) Heatmap depicting the
enrichment of peaks within ENCODE-SCREEN predicted cis-regulatory elements (CREs). Values are the log2-transformed odds ratio from Fisher’s exact
test. (E) Line-plot showing pileup of consensus peaks around distal enhancers (GeneHancer database). (F) Venn diagram showing the overlap between
intergenic dRNH-only peaks and distal enhancers.

peaks are strongly over-represented in intergenic regions
(∼1/3 of all peaks) (Figure 6C). This led us to suspect that
dRNH may be uncovering intergenic R-loops which coin-
cide with cis-regulatory elements (CREs).

To assess the relationship between dRNH-only R-loops
and CREs, we analysed their enrichment within the pre-
dicted CRE database provided by ENCODE-SCREEN
(Figure 6D). In a recent study, Yan et al demonstrated
that MapR (a dRNH-based technique) detects R-loops
at predicted enhancers, a type of CRE (12). Likewise, we
also observed a strong enrichment of dRNH peaks within
enhancers (Supplementary Figure S6B, C). However, we
also found strong enrichment of dRNH-only peaks specif-
ically at distal enhancer regions (Figure 6D, E, Supple-
mentary Figure S6D). In line with this observation, we
found that ∼2/3 of intergenic dRNH-only peaks overlap
with distal enhancers (Figure 6F). Moreover, we observed
that dRNH peaks which overlap with distal enhancers
are significantly smaller than those which do not (Supple-
mentary Figure S6E), implying that dRNH uniquely de-
tects smaller R-loops which form within distal enhancer
regions.

dRNH-based mapping detects eRNA R-loops associated with
cell type-specific gene programs

Consensus analysis from dozens of cell lines and tissues
enabled us to identify a global enrichment of dRNH-
only peaks within distal enhancers (Figure 6, Supplemen-
tary Figure S6). However, many enhancers promote cell
type-specific gene programs (73). Therefore, to obtain fine-

grained characterization of dRNH/enhancer relationships,
we performed an analysis of dRNH R-loops in two cell
lines for which we expected to observe distinctive cell type-
specific enhancer activity: induced pluripotent stem cells
(iPSCs) and T-cell lymphoma cells (CUTTL1) (Figure 7A).

As expected, we found a strong enrichment of MapR (a
dRNH-based mapping method) peak pileup within distal
enhancers in both cell lines (Figure 7B, Supplementary Fig-
ure S7A). From overlap analysis, we found that 25.92% of
intergenic CUTLL1 peaks and 40.96% of intergenic iPSC
peaks overlap with distal enhancers (Supplementary Figure
S7B, C).

Enhancer RNA (eRNA) is a non-coding RNA species
that forms within enhancer regions (74,75) and which has
been previously associated with R-loop formation at en-
hancers (11). Therefore, we decided to determine whether
MapR-detectable R-loops coincided with eRNA produc-
tion and characterize the genes which those enhancers con-
trol (Figure 7C–F). As expected, we observed that distal en-
hancers have significantly greater transcriptional activity in
both iPSCs and CUTLL1 cells (Figure 7C, E). These re-
sults suggest that R-loop formation at distal enhancers is a
biproduct of eRNA transcription.

To determine whether the R-loop-bound enhancers per-
tained to cell type-specific gene programs, we used the
GeneHancer interaction database to obtain the down-
stream gene targets of each enhancer. We then used the Cell-
Marker database to test for cell type-specific gene programs
and, interestingly, we observed that the R-loop-bound en-
hancers in both CUTTL1 and iPSCs activate gene programs
specific to each tissue type (Figure 7D, F).
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Figure 7. Intergenic dRNH-only R-loops occur in tissue-specific distal enhancers and co-localize with CTCF/Cohesin. (A) A diagram showing the work-
flow for tissue-specific analysis of dRNH-mapped R-loops at distal enhancers. For both iPSCs and CUTLL1 cells, tissue-specific MapR (dRNH mapping
technique) and global run-on (GRO) sequencing datasets were combined with the GeneHancer enhancer database to identify distal enhancers with pu-
tative enhancer RNA (eRNA) R-loops. These enhancers were characterized using the GeneHancer interaction database and the CellMarker annotation
database. Finally, they were combined with HiC-sequencing data (iPSC-only) and visualized on the genome browser. (B) Line plot showing the enrichment
of iPSC MapR peaks (4 replicates) within distal enhancers. (C) For iPSC datasets, box plot showing the eRNA expression level within distal enhancers
that are bound by dRNH, compared to all distal enhancers. P value derived from Wilcoxon rank sum test (one-sided) (minimum displayable p value is
2.22e-16). (D) For iPSC datasets, Bar chart depicting the enrichment of gene targets of dRNH-bound distal enhancers. Enrichment uses the CellMarker
database. (E) Same as (C) but for CUTTL1 datasets. (F) Same as (D) but for CUTTL1 datasets. (G) Representative genome browser image showing iPSC
MapR and GRO-Seq signal (mean of replicates) at multiple distal enhancers (GH: GeneHancer database) around TAD boundary. Consensus dRNH-only
peaks are highlighted in the ‘dRNH Consensus Peaks’ track. The genome browser session for this visualization is also provided within this manuscript (see
Availability). (H) Same as (B) but for iPSC CTCF peaks. (I) Same as (B) but for enrichment of R-loop consensus peaks around CTCF consensus peaks.
(J) Bar chart displaying the enrichment of R-loop consensus peaks within CTCF and cohesin complex members (SA1, SA2, SMC3, RAD21). P adjusted
value (Padj) and Odds Ratio from Fisher’s exact test (maximum –log10P adjusted value: 307.7).

Taken together, these results further support the existence
of eRNA R-loops and suggest that they do not necessar-
ily impede the functionality of enhancers, particularly those
which are critical to defining cell identity.

dRNH-based mapping sensitively detects R-loop formation in
CTCF/Cohesin binding sites

In our analysis of iPSC HiC-sequencing data, we ob-
served examples of MapR-detected R-loop formation
which occurred nearby topologically-associated domain
(TAD) boundaries (Figure 7G). Previous studies have im-
plicated CTCF and members of the cohesin complex as R-
loop binding factors, suggesting that this binding activity
may play a role in the establishment of TAD boundaries
(16,76). To address this possibility, we mined CTCF chro-
matin immunoprecipitation sequencing (ChIP-seq) data in
iPSC and CUTLL1 cell lines. Interestingly, we observed a

strong enrichment of MapR peaks in CTCF ChIP-seq sites
for both iPSCs and CUTLL1 (Figure 7H, Supplementary
Figure S7D). Moreover, we found that a substantial pro-
portion of intergenic MapR peaks overlap with CTCF sites
(41.2% of iPSC and 27.3% CUTLL1) (Supplementary Fig-
ure S7E-F).

Having observed a strong enrichment of CTCF bind-
ing within cell type-specific dRNH data, we decided to as-
sess whether this enrichment also occurs in a cell type-
nonspecific manner. Interestingly, we observed a stark en-
richment of dRNH-only (but not dRNH-shared or S9.6)
peaks within CTCF consensus peaks (Figure 7I). Moreover,
we obtained consensus ChIP-seq peaks for core cohesin
complex members (RAD21, SA1, SA2 and SMC3) and
observed an enrichment of dRNH-only peaks within each
(Figure 7J). This result suggested that a subset of R-loops
co-localize with CTCF/cohesin in a cell type-nonspecific
manner and that dRNH detects those R-loops with higher
sensitivity than S9.6.
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dRNH-based mapping detects R-loop formation at bivalent,
transcriptionally silent enhancer clusters

To better understand R-loop-bound enhancers, we anal-
ysed chromHMM chromatin state data in iPSC cells
(CUTLL1 data not available). Given their global associa-
tion with eRNA transcription and cell type-specific gene
programs, we anticipated that R-loops would be enriched
at active enhancers, as was previously reported (12,77). Cu-
riously, we found that only a quarter of R-loop-bound dis-
tal enhancers were in an active state, similar to the pro-
portion found in the background population (Figure 8A).
Moreover, we observed the greatest enrichment within bi-
valent enhancers at approximately 2-fold the background
level (Figure 8A). From pileup analysis, we found evidence
of this enrichment pattern in every available iPSC MapR
replicate (Figure 8B).

Pluripotent stem cells contain a large number of biva-
lent enhancers which prime early developmental programs
(78). To understand whether R-loop-bound bivalent en-
hancers were relevant to developmental programs, we per-
formed pathway enrichment on the genes with which they
interact (Figure 8C, Supplementary Figure S8A). Interest-
ingly, we observed a marked enrichment of genes involved
in programs relevant to embryonic development, including
KLF2/4/5 binding targets (Supplementary Figure S8A).
We also noticed a strong enrichment of homeobox (HOX)
gene clusters (Figure 8C).

HOX genes are arranged co-linearly in four clusters (‘A’,
‘B’, ‘C’ and ‘D’) and act to regulate anatomical pattern-
ing during early development (79). In iPSCs and embryonic
stem cells, EZH2 acts to establish repressive (H3K27me3)
marks across these regions, supressing HOX transcriptional
activity (79). From examination of each HOX cluster in
the genome browser, we found that each contained a large
(>100 kb) sized bivalent enhancer cluster marked by EZH2
binding, high R-loop levels, RNA Pol II occupancy, and
low nascent transcription (Figure 8D, Supplementary Fig-
ure S8B; HOXB/C not shown), a pattern suggestive of
stable transcriptional pausing. We then assessed whether
this same pattern occurs across bivalent clusters genome
wide. As predicted by the pattern at HOX clusters, we ob-
served genome-wide RNA Pol II and R-loop occupancy,
coinciding with a lack of nascent transcription at bivalent
enhancer clusters genome-wide (Figure 8E). Interestingly,
we also found that, despite the cell type-specific nature of
many enhancers, dRNH consensus signal was also highly
enriched at iPSC bivalent enhancer clusters (Figure 8E).
As expected, however, we observed a lack of S9.6 consen-
sus signal enrichment at these sites (Figure 8E). Taken to-
gether, these results reinforce previous reports of dRNH-
mapped R-loops at bivalent enhancers (77) while offering
new context that suggests these R-loops may form preferen-
tially over transcriptionally-silent, bivalent enhancer clus-
ters which regulate core developmental programs.

dRNH and S9.6 differentially detect R-loops co-localizing
with RNA-binding factors

While the preceding results reinforced the Class I/II hy-
pothesis and characterized the R-loops which dRNH map-

ping technique uniquely detect, it remained unclear why
dRNH consensus sites only cover 26.3% of the RL-region
occupied genome, compared to 87.9% for S9.6 (Figure 4J).
It was also unclear why S9.6 maps R-loops in gene bod-
ies with greater efficiency than dRNH (Figures 4I, K and
6C). We decided to explore the possibility that these find-
ings might relate to differences in the S9.6 and dRNH-based
mapping protocols, particularly with respect to protease
treatment.

S9.6-based mapping techniques, such as DRIP-Seq, rely
upon immunoprecipitation of R-loops within proteinase-
treated chromatin (2). MapR and R-ChIP, the two domi-
nant dRNH modalities, both involve mapping of R-loops
in the context of native chromatin (12,80). As such, the
presence of RNA- and/or DNA-binding proteins could be
one explanation for the increase in gene-body R-loop bind-
ing in S9.6 compared to dRNH. To address this possibility,
we identified R-loops mapped uniquely by dRNH or S9.6,
split by gene body or intergenic localization, and calculated
their enrichment within experimentally determined bind-
ing sites of chromatin-binding transcription factors (ChIP)
and RNA-binding factors (eCLiP) (Supplementary Figure
S8C). As expected, we observed an elevated enrichment of
ChIP factor binding within dRNH-only peaks and eCLiP
factor binding within S9.6-only peaks (Supplementary Fig-
ure S8C). Interestingly, we also observed that there was
a robust increase (P < 2.1E−7) in eCLiP enrichment for
S9.6-only genic peaks compared to intergenic peaks. This
result aligned with our prior expectations, given that most
RNA transcription occurs within gene bodies. However, in
dRNH-only peaks, the difference between genic and inter-
genic enrichment was marginal (P = 0.048), suggesting that
dRNH may bind preferentially to R-loops that lack RNA
binding factor occupancy, regardless of genic localization.
Of note, a recent study by Wang et al. utilized ex vivo and in
vivo mapping with S9.6 and dRNH and demonstrated these
R-loop sensors map R-loops similarly when analysed under
the same experimental conditions (81). Taken together with
the findings of our present study, this suggests that dRNH
modalities fail to efficiently map gene body R-loops in vivo
due to the presence of RNA binding proteins. It remains for
future studies to evaluate this hypothesis directly.

R-loop conservation analysis reveals differences between con-
stitutive and variable R-loop regions

Having addressed the similarities and differences between
dRNH and S9.6 consensus regions, we next sought to in-
vestigate whether R-loop region (RL region) conservation
across samples could highlight additional R-loop subtypes,
regardless of whether those RL regions derive from S9.6
or dRNH-based mapping samples. For these experiments,
we subdivided RL regions to identify those which are more
‘constitutive’ (more conserved across independent samples)
or ‘variable’ (less conserved across independent samples).
To accomplish this, we calculated RL region conservation
percentages, defined as the proportion of high-confidence
R-loop mapping samples that identify each RL region.

Prior to our main analysis, we wanted to ensure that
dRNH and S9.6-specific biases would not dominate the
conservation analysis. Therefore, we calculated the conser-
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Figure 8. R-loops are enriched at bivalent, transcriptionally paused enhancer clusters in iPSCs. (A) A stacked bar chart showing the proportion of intergenic
enhancers belonging to each chromHMM state. Enhancers that overlap with MapR peaks are labelled ‘dRNH-accessible’. (B) Line plot showing the
enrichment of iPSC MapR peaks (4 replicates) within bivalent distal enhancers. (C) Bar chart depicting the enrichment of gene targets of dRNH-bound
bivalent enhancers. Enrichment uses the ARCHS4 transcription factor co-expression database. (D) Representative genome browser image displaying the
HOXD bivalent enhancer cluster. The genome browser session for this visualization is also provided within this manuscript (see Availability). (E) Tornado
plots showing the pileup of signal for each track around bivalent and non-bivalent enhancer clusters. Max value in this plot is 2.2 and the minimum is 0.2.

vation percentage distributions for S9.6 and dRNH consen-
sus peaks separately, finding that they tended to be simi-
lar, with a noticeable increase in conservation levels within
sites found by both dRNH and S9.6 (Supplementary Figure
S9A). Comfortable with this result, we proceeded with the
union RL region set for the remainder of this analysis.

We examined the distribution of conservation percent-
ages across all RL regions and assigned them to bins for
discrete analysis (Figure 9A). Next, we examined the dis-
tribution of gene features overlapping the RL regions in
each conservation bin. We found a strong association be-
tween high R-loop conservation and statistical enrichment
within the transcription start site and transcription ter-
mination site of genes (Figure 9B). Moreover, we saw a
stronger enrichment of intron and intergenic features in
variable (‘15−20%’) RL regions (Figure 9B). One explana-

tion for this observation is that more constitutive RL re-
gions might associate with constitutively expressed ‘house-
keeping genes’ (82), while variable RL regions might over-
lap with more cell-type-specific genes. As expected, we ob-
served a greater enrichment of housekeeping genes in more
highly conserved bins (Supplementary Figure S9B). How-
ever, unexpectedly, the greatest enrichment was in the 40-
60% conservation range and not the 60–100% range (Sup-
plementary Figure S9B). This intriguing result led us to con-
sider the possibility that conservation bins may represent
biologically distinct R-loop programs that are partially in-
dependent from active gene expression, as we previously ob-
served in the context of iPSC MapR signal at bivalent en-
hancers (Figure 8E).

To better understand the biological significance of more
constitutive/variable RL regions, we performed pathway
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Figure 9. R-loop region conservation analysis. (A) Conservation rank plot showing all RL regions ordered by the percent of high-confidence samples in
which they are found and binned by percentile ranges. (B) Annotation plot showing the gene features which overlap RL regions from various conservation
percentile ranges. (C) Pathway enrichment plot showing the significance (via P adjusted value) and effect size (via Combined Score) of the ‘ChEA 2016’
transcription factor pathway enrichment from the genes overlapping RL regions within each percentile.

enrichment on the genes overlapping the R-loops in each
conservation bin. From an analysis of transcription factor
binding pathways, we found stark divergence between RL
regions conservation bins (Figure 9C). The strongest hit
from the top conserved bin was the ‘XRN2’ target gene set.
Notably, XRN2 has been associated with R-loops in pre-
vious studies, particularly with respect to transcription ter-
mination (65). Conversely, the strongest hit from variable
RL regions was the ‘DROSHA’ target gene set. DROSHA
is also a factor that has been previously studied in the con-
text of R-loops (83). Moreover, we found EZH2, a core
member of the polycomb repressive complex 2 (PRC2), was
also associated with variable RL regions. PRC2 has been
previously associated with R-loops in development-specific
genes (84,85) and we observed strong bivalent enhancer-
specific enrichment of R-loops around EZH2 sites (Figure
8E). In that context, this finding reinforces the notion that
cell type-specific R-loops may arise both in enhancers and

in the genes which control them. Curiously, we also ob-
served the significant enrichment of the ‘VDR’ target gene
set in both more constitutive and more variable RL regions,
but not in the bins between them (Figure 9C). VDR, the vi-
tamin D receptor, has not previously been associated with
R-loop biology to our knowledge, further indicating the
utility of this mode of analysis for revealing otherwise un-
known associations within R-loop biology.

Having demonstrated the biological relevance of distin-
guishing between more constitutive/variable RL regions,
we proceeded to examine the KEGG and MSigDB path-
ways enriched within these groups. The strongest hit for
the top conserved RL region bin was ‘Myc Targets V1’, an
MSigDB Hallmark gene set of genes which are regulated by
MYC (86). We suspected that this result might be due to the
role of MYC in promoting housekeeping genes (87), genes
involved in proliferation (88), and/or those involved in
RNA processing (89). Curiously, we noticed the enrichment
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of ‘G2-M Checkpoint’ in more constitutive RL regions
and ‘Mitotic Spindle’ in more variable RL regions (Sup-
plementary Figure S9C), further reinforcing the connection
with cell cycle. Moreover, we also observed the enrichment
of ‘Spliceosome’ and ‘RNA transport’ in more constitu-
tive RL regions (Supplementary Figure S9D), again high-
lighting a set of genes MYC regulates. While this demon-
strates that MYC regulated genes have highly conserved
R-loops, the function of those R-loops remains unknown.
Though weaker than the more constitutive enrichment re-
sults, we also observed enrichment of the ‘Adherens junc-
tion’ pathway in the variable RL regions (Supplementary
Figure S7D).

Taken together, these results demonstrate that R-loops
span a range of conservation levels, with many being more
constitutive and others being more variable across sam-
ples. They also reveal that more constitutive and more vari-
able R-loops associate with divergent genomic features and
gene programs, indicating they could represent biologically
meaningful and programmatic subclasses of R-loops which
require further exploration.

DISCUSSION

The role of R-loops in physiology and pathology remains
a topic of much study at present (3). Outstanding ques-
tions concern the types of R-loops which exist, their preva-
lence, their degree of conservation, their associations with
epigenomic factors and processes, and the differences be-
tween various R-loop mapping approaches. Many of these
questions cannot be answered by a single dataset, but in-
stead require the meta-analysis of hundreds of samples rep-
resenting diverse biological and technical conditions. In the
present study, we reprocessed and standardized 810 publicly
available R-loop mapping datasets, developing the largest
R-loop data resource to date. From these data, we devel-
oped a new and highly accurate method of quality con-
trol and implemented it to identify high-confidence R-loop
mapping samples suitable for meta-analysis. From this anal-
ysis, we defined R-loop consensus sites and elucidated the
differences between S9.6 and catalytically dead RNase H1
(dRNH) mapping approaches with respect to R-loop size
and locality. We then revealed the formation of dRNH-
detectable R-loops across transcriptionally-silent enhancer
clusters in pluripotent stem cells. Finally, we performed a
conservation analysis which revealed the biological signifi-
cance of more constitutive and variable R-loops.

The results of this work supports an extension of the
Class I/II model of Castillo-Guzman and Chedin (13) in
which dRNH maps a subset of all R-loops, particularly
those associated with (a) promoter proximal pausing, (b)
enhancers (particularly bivalent, transcriptionally silent en-
hancers), and (c) regions without RNA-binding protein oc-
cupancy (Figure 10). It will remain for future studies to
evaluate the molecular mechanisms of this model directly.
Moreover, these efforts led us to develop new bioinformat-
ics software packages, ‘RLSuite,’ for the analysis of R-loop
datasets. While we do not describe those software packages
in detail within this study, we have made them available for

public access and we plan to describe them fully in a future
work (see Availability).

In the following sections, we summarize the key findings
and provide additional context for their relevance to the
field.

A robust quality model reveals the prevalence of poor-quality
data in the literature

Within the R-loop mapping field, no methods to assess
whether an individual sample has robustly mapped R-loops
currently exists. Instead, studies rely only upon quality
methods which are generic to all sequencing datasets, such
as FastQC (11,90). Previous meta-analyses of R-loop map-
ping datasets relied upon comparisons with data from the
literature to indirectly gauge quality (16,17), an approach
which could be confounded by systematic biases affect-
ing large numbers of studies. From these limitations, and
the previous evidence of inconsistent R-loop data quality
(16,17), we identified a clear need for a new R-loop map-
ping QC method that could benefit future researchers while
also revealing the prevalence of high- and low-quality R-
loop data within the field.

R-loop forming sequences (RLFS) are genomic regions
which show favourability for R-loop formation (18,61–64).
They are computationally predicted from genomic sequence
alone and show consistency with R-loop mapping data and
with other computational prediction approaches, such as
SkewR (G or C skew prediction) (1,2,18). We calculated
RLFS and found that they agreed well with the R-loop
mapping data we reprocessed (Figure 1), indicating their
utility as the basis for our quality control methodology. We
then developed a quality model based on ensemble learn-
ing which uses the outputs from RLFS analysis to clas-
sify samples as ‘POS’ (robust R-loop mapping) or ‘NEG’
(poor R-loop mapping). This approach demonstrated ex-
cellent accuracy (Supplementary Figure S2E-F), along with
both internal and external validity (Figures 2 and 3, Supple-
mentary Figure S4). Unexpectedly, we found many samples
(24.5%) with mismatches between the expected label (from
sample metadata) and the predicted label from our quality
model (Figure 2). Taken together, these results reveal the ex-
tent of low quality R-loop data within published datasets,
indicating that the approach described here will be of great
benefit to future studies. Of note, we provide access to the
method described here via the RLSeq R package (see Avail-
ability).

R-loop consensus analysis reveals the sites of robust R-loop
formation

While it has been proposed that roughly 3–13% of the
genome may contain R-loops, these findings were de-
rived from an analysis of peaks from a limited number of
S9.6-based R-loop mapping samples (66,70,71). From our
analysis, we found stark discrepancies in the number of
peaks called between studies and between R-loop mapping
modalities (Supplementary Figure S1B). These findings in-
dicate that efforts to faithfully assess R-loop locations and
prevalence require a multi-study and multi-modality meta-
analysis. From our meta-analysis, we identified robust sites
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Figure 10. Model of differences in dRNH- and S9.6-mapped R-loops. R-loops arise as a result of transcriptional pausing at bivalent/poised enhancer
regions (eRNA R-loops). They also result from promoter-proximal pausing (Class I R-loops) and transcriptional elongation (Class II R-loops). Catalyt-
ically dead RNase H1 (dRNH) efficiently maps shorter R-loops in enhancer and promoter regions, but not within gene bodies. This is ostensibly due to
occupancy of Class II R-loops with RNA binding proteins (RBPs) and/or a preference of dRNH for shorter R-loops. S9.6-based mapping methods involve
a protease treatment which removes RBPs, and this may explain why they map larger R-loops across the gene body. These differences are reflected in the
proportion of the R-loop-forming genome (139 mega bases, ‘Mb’) which dRNH occupies (36.4 Mb) compared to S9.6 (121.8 Mb).

of consensus R-loop formation, ‘R-loop regions’ (RL re-
gions), which cover 4.32% of the human genome. These
RL regions reveal the locations of R-loop formation and
provide a discrete set of genomic annotations for future
studies to use in the analysis of their R-loop mapping
data.

dRNH and S9.6-based mapping approaches differentially de-
tect Class I/II R-loops in distinctive biological programs

Castillo-Guzman and Chedin recently proposed two classes
of R-loops: ‘Class I’ and ‘Class II.’ ‘Class I’ refers to R-
loops which result from promoter-proximal pausing, and
‘Class II’ refers to R-loops which result from transcriptional
elongation (13). They hypothesized that dRNH-based map-
ping approaches may preferentially detect Class I R-loops
whereas S9.6-based approaches map Class II R-loops with
higher efficiency (13). However, no bioinformatics analysis
had yet evaluated these R-loop classes genome wide.

From our analysis of dRNH and S9.6 consensus sites
(Figures 4 and 5), we found that S9.6-based R-loop map-
ping tended to produce larger peaks which cover a greater
proportion of the genome, compared to dRNH. We also
found that dRNH-mapped R-loops tend to localize pref-
erentially to the TSS (Figure 4H, I, K), consistent with
the Class I/II hypothesis. Our subsequent analysis demon-
strated that dRNH-specific R-loop regions occur in genes
which have a significantly higher pausing index (Figure 5H,
Supplementary Figure S5D).

Altogether, these findings support the Class I/II hypothe-
sis. Moreover, they support the idea that dRNH-based map-
ping approaches may not be capable of accessing all R-
loops which are detectable by S9.6-based methods.

dRNH mapping sensitively detects smaller R-loops which oc-
cur in distal enhancer regions

While the Class I/II hypothesis is sufficient to explain R-
loops detected exclusively by S9.6-based modalities, it does
not fully explain the 11.8% of R-loop region genomic cov-
erage uniquely mapped by dRNH modalities (Figure 6A).
From analysis of these ‘dRNH-only’ regions, we found that
they are significantly smaller than the dRNH consensus re-
gions that co-localize with S9.6 (‘dRNH-shared’) (Figure
6B), raising the possibility that dRNH modalities can sen-
sitively detect a subset of smaller R-loops that S9.6 modal-
ities cannot efficiently detect. Subsequent analysis found
that dRNH maps R-loops which form in enhancers with
greater specificity than S9.6 (12) (Figure 6D, Supplemen-
tary Figure S6B, C), particularly distal intergenic enhancers
(Figure 6D-F, Supplementary Figure S6C, D).

Distal intergenic enhancers are often involved in set-
ting up and controlling large-scale gene programs, such as
those which arise during development (73,74,74). Interest-
ingly, these regions are also transcribed into enhancer RNA
(eRNA) (74,75), though the function of eRNA remains
largely unclear. To gain greater cell type-specific insight
into the enhancer R-loops mapped by dRNH, we chose
to examine two cell types with defined epigenetic profiles:
iPSCs and CUTLL1 (a T-cell lymphoma). In both cases,
dRNH-mapped R-loops were highly enriched within distal
enhancers that displayed elevated transcription, as we ex-
pected given the presence of eRNA R-loops (Figure 7B, C,
E, Supplementary Figure S7A–C).

Previous reports have shown that eRNAs are smaller
than most lncRNA species, being ∼350 nucleotides in
length on average (91). In line with this observation, we
found the putative eRNA R-loops detected by dRNH are
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significantly smaller than other dRNH-detected R-loops
(Supplementary Figure S6E). Together, these results imply
that dRNH sensitively detects small eRNA R-loops which
S9.6 fails to map.

dRNH mapping detects R-loops which co-localize with CTCF
and Cohesin subunits

Cohesin is a multisubunit complex which coordinates with
CTCF to establish topologically-associated domain (TAD)
boundaries (16). Our previous work demonstrated that co-
hesin members SA1 and SA2 bind R-loops directly in vitro
(16). Moreover, we utilized a 108-sample DRIP-based con-
sensus analysis to demonstrate that SA1, SA2 and R-loops
co-localize genome wide (16). However, we had not yet
evaluated R-loop/cohesin colocalization in the context of
intergenic R-loops, dRNH-based techniques, nor consid-
ering other cohesin subunits. Having previously observed
the cell type-specific co-localization of R-loops with TAD
boundaries and CTCF (Figure 7G, H, Supplementary Fig-
ure S7D–F), we decided to return to our consensus analysis
and address the degree to which R-loops co-localize with
CTCF/Cohesin across tissues.

We calculated the enrichment of R-loop consensus sites
within consensus peaks for CTCF and cohesin complex
members SA1, SA2, RAD21 and SMC3. As expected, we
observed an enrichment of intergenic R-loop consensus
peaks within consensus sites for CTCF and all cohesin sub-
units (Figure 7J). Intriguingly, however, we observed that
dRNH-only peaks show a far stronger enrichment within
these regions, particularly within SA1 and SA2 bound re-
gions (Figure 7J). This result implies that dRNH-based
modalities may be useful for obtaining fine-grained map-
ping of genome-wide R-loop/cohesin colocalization.

Taken together, these results confirm and extend our pre-
vious findings (16) by showing that R-loops co-localize with
CTCF and major cohesin subunits genome wide in a tissue
non-specific manner. They also suggest that dRNH-based
techniques may be better-suited for measuring these inter-
actions.

dRNH mapping detects eRNA R-loops at transcriptionally
silent, bivalent enhancers

S9.6-based mapping studies have demonstrated that R-
loops are associated with both active and repressive genic
chromatin states (2,92,93) and are associated with the
maintenance of epigenetic memory during reprogramming
(93). dRNH-based studies have previously shown R-loop
formation in enhancers genome-wide (11,12). Most re-
cently, Wulfridge and Sarma used a dRNH-based method
(BisMapR) to demonstrate that R-loops form within
active (H3K27ac + H3K4me1/3) and bivalent/poised
(H3K27me3 + H3K4me1/3) enhancers (77).

Wulfridge and Sarma found that dRNH-mapped R-loops
are most enriched within active enhancers, though this had
not been examined at distal sites (77). In contrast to this
finding, we observed a lack of enrichment in active en-
hancers. Instead, we found a strong and consistent enrich-
ment within bivalent enhancers (Figure 8A-B). One poten-
tial reason for this discrepancy is that iPSCs (the cell type

used in this analysis) have a large number of bivalent en-
hancers which regulate developmental gene programs, such
as homeobox (HOX) genes (79). From further analysis, we
observed that HOX clusters display a highly bivalent his-
tone profile and elevated levels of R-loops (Figure 8C, D,
Supplementary Figure S8B). Curiously, we observed that
these regions also display RNA Pol II occupancy alongside
low levels of nascent RNA transcription (Figure 8D, Sup-
plementary Figure S8B), a pattern that suggests transcrip-
tional pausing. Furthermore, this pattern was observed
across bivalent enhancer clusters genome-wide (Figure 8E).

Multiple mechanisms have been proposed which have the
potential to explain R-loop formation at these transcrip-
tionally suppressed, bivalent enhancers. In 2020, Alecki et
al. demonstrated in Drosophila that PRC2 promotes DNA
duplex invasion by RNA in trans, leading to formation
of R-loops which help to further recruit PRC1 and PRC2
to the chromatin (84). This mechanism explains the co-
localization of R-loops with bivalent enhancers. However,
it does not explain the abundance of RNA Pol II coincident
with low nascent transcription at these sites in human iPSCs
(Figure 8D, E), an observation which suggests R-loop for-
mation in cis due to transcriptional pausing. Alternatively,
Skourti-Stathaki et al demonstrated in mouse cells that,
at certain genes, R-loops resulting from transcriptional
pausing may help recruit polycomb proteins to repress
transcription (85). While Skourti-Stathaki et al. described
this phenomenon in the context of promoter pausing at
a subset of developmental genes, it also aligns with our
genome-wide observation of R-loop formation at bivalent
enhancer clusters with transcriptional pausing. As a result,
we propose herein an extension of the model developed by
Skourti-Stathaki et al. to also apply at bivalent enhancers as
well.

dRNH-mapped R-loops do not coincide with RNA binding
protein occupancy

The results presented herein strongly support the Class I/II
hypothesis and help to partially explain the presence of
dRNH-only peaks, particularly in intergenic regions. How-
ever, it is still not known why S9.6-based mapping is ca-
pable of efficiently detecting R-loops over a larger propor-
tion of the genome compared to dRNH, or why S9.6-based
mapping is more efficient in detecting R-loops which oc-
cur in gene bodies downstream of the promoter proximal
pause site (Figure 4I–K). One possible explanation is that
dRNH-based techniques map R-loops in vivo and S9.6-
based techniques map R-loops ex vivo. This notion was
recently addressed by Wang et al who demonstrated that
S9.6 and dRNH are capable of mapping similar subsets
of R-loops when both are applied in the same ex vivo or
in vivo conditions (81). One possible explanation for the
breadth of R-loops detected with ex vivo mapping strate-
gies is their implementation of protease treatment which re-
moves RNA- and DNA- binding proteins prior to immuno-
precipitation (IP). Thus, we hypothesized that access to R-
loops within gene bodies might be restricted in vivo by the
presence of RNA binding proteins (RBPs). To assess this
hypothesis directly would require a follow-up study. How-
ever, by leveraging publicly available RBP and transcription
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factor ChIP/eCLiP profiles, we employed an indirect, asso-
ciative test.

We observed an enrichment of S9.6 consensus peaks
within RBP eCLiP binding sites (Supplementary Figure
S8C). We also observed a stark increase in eCLiP RBP
binding within genic S9.6 consensus peaks compared to
intergenic peaks, as we expected given that transcrip-
tion typically occurs within genes (Supplementary Figure
S8C). However, we did not observe the same phenomenon
with dRNH consensus peaks (Supplementary Figure S8C).
Though associative and indirect, this result implies that R-
loop sensors may be excluded from sites where RBPs bind,
offering a potential explanation for the inefficiency of in vivo
R-loop mapping for detecting Class II R-loops.

R-loop conservation levels relates to distinct biological path-
ways

Another outstanding question in the R-loop field relates to
the dynamics of more constitutive R-loops (those which are
consistently abundant across samples) and variable R-loops
(those which form under specific biological conditions). To
address this question, we analysed sites of R-loop forma-
tion, binned by level of conservation across samples (Fig-
ure 9, Supplementary Figure S9). From our analysis, we
found a strong relationship between RL region conserva-
tion and enrichment within TSS and TTS regions of genes.
Because R-loops tend to form as a result of transcription
in some genes, we decided to test whether high R-loop con-
servation was associated with ‘housekeeping genes’, genes
which are thought to be constitutively expressed in most
cell types (82). Curiously, this analysis revealed that while
more constitutive R-loops co-localize with many house-
keeping genes, these genes were not as strongly associated
with the most highly conserved RL regions (Supplemen-
tary Figure S9B). This unexpected result may indicate that
while high R-loop conservation is associated with consti-
tutive gene expression, there may be more constitutive R-
loops which form more independently from gene expres-
sion. Additionally, we also revealed a striking divergence
in the biological programs and pathways enriched within
more constitutive/variable RL regions (Figure 9C, Supple-
mentary Figure S9C-D). These findings indicate new and
interesting directions for future R-loop studies to pursue.

Limitations

Quality model training data. While the quality control
method proposed in this study is both internally and ex-
ternally valid (Figures 2 and 3, Supplementary Figures S2,
S3A, S4), it may not be well-suited to assess the R-loop
mapping techniques introduced in the future or those for
which limited data is currently available. As of this writing,
there are 23 different techniques for R-loop mapping, 14 of
which were introduced since 2019, with seven introduced in
2021 alone (Supplementary Table S1). Many of these tech-
niques rely upon approaches that do not use either S9.6
or dRNH, such as m6A-DIP (94) and could pose unfore-
seen challenges for our quality model. Moreover, several of
these techniques are represented by few samples and studies,
making it difficult to generalize about them. Finally, some

species have few R-loop mapping samples available. To ad-
dress these limitations, we have developed an online learn-
ing scheme whereby an operator can, with minimal training
and software experience, rebuild the model in a matter of
minutes to include new datasets. To facilitate this process,
we developed a user-friendly web-browser interface for in-
teracting with the model-building software (Supplementary
Figure S2A–D). This workflow offers a convenient and au-
tomatic model building scheme that makes it easy for us to
add new data as it becomes available so that our model con-
tinually improves over time.

Consensus analysis. We derived R-loop consensus sites
from 56 dRNH and 191 S9.6 high-confidence R-loop map-
ping samples. This represents all the available human data
which passed our quality thresholds. However, it still in-
dicates a significant imbalance between dRNH and S9.6,
leading to potential inconsistencies in the accuracy of our
findings. To address the impact of this discrepancy on the re-
sults, we randomly downsampled the S9.6 dataset to match
dRNH and demonstrated the stability of our differential
analysis results across random downsampling permutations
(Supplementary Figure S5B, C). However, there may be
other unforeseen consequences of this discrepancy in sam-
ple number which our permutation testing did not address.
Therefore, we have also made provisions to ensure that the
process of incorporating new data is as convenient and au-
tomatic as possible. We expect this will make it easy for us
to regularly update the database and, along with it, the ro-
bustness of the biological interpretation of these data.

A second caveat of this analysis was the need to select
a cut-off for ‘calling’ consensus peaks. In this analysis, we
chose a cut-off of 15% such that the ‘summit’ (point of high-
est signal) within the consensus peak is supported by at least
15% of high-confidence samples (8 samples for dRNH and
28 samples for S9.6). The choice of 15% was based on the
desire to obtain ‘variable’ RL regions, while reducing the
potential for spurious peaks. We chose this cut-off based on
manual examination of the number and ‘noisiness’ of peaks
produced at 5%, 10% and 15% thresholds (not shown). In
future studies, an automated approach for selecting this cut-
off should be developed.

Another caveat for the joint analysis of S9.6 and dRNH-
derived data is that there are large discrepancies between
the size of peaks and consensus sites between them (Figures
4G and 6B). S9.6-derived peaks and consensus sites tend to
be much wider than those from dRNH (Figure 4G, Sup-
plementary Figure S6B). This may be partially due to the
prevalence of DRIP-Seq data in the S9.6 group. Because
DRIP-Seq relies upon restriction enzyme digestion, it may
be biased toward larger peaks. Analyses for which this poses
an immediate problem are those involving enrichment in ge-
nomic features when a feature priority is used (Figures 4K
and 6C) as larger peaks may overlap with more genomic fea-
tures, leading to spurious over-enrichment in top-priority
features. Additionally, for analyses which involve finding
genes that overlap with R-loop sites, larger peaks may lead
to overlaps with many more genes than shorter peaks would
find. To address this issue, we forced the peaks to a uniform
width centered around peak ‘summits’ (the areas of highest
enrichment from peak calling) for these analyses.
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Bisulfite samples and stranded data analysis. We excluded
bisulfite samples from our analysis due to the added com-
plexity of processing them and the small number of avail-
able samples (only 27 in total). However, these techniques
should provide more accurate nucleotide-level R-loop map-
ping. Therefore, in future versions of the software used for
this analysis, we will include methods for analysing these
data types. Another limitation of this analysis is that it does
not incorporate strand assignment for any of the strand-
specific sequencing techniques included in the dataset. This
is intentional as DRIP-Sequencing (an unstranded mapping
method) is still the most well-represented modality and all
analyses require conversion to unstranded data for com-
patibility with it. However, as stranded techniques gain in
popularity and begin to outpace DRIP-Seq, we anticipate
that future versions of the software used for processing
these data will incorporate strand information. Therefore,
we expect to eventually update the analyses presented in this
study with stranded data to reveal higher-resolution insights
into R-loop dynamics.

CONCLUSION

In this study, we reprocessed and standardized 810 pub-
lic R-loop mapping samples, introducing a novel method
of quality control to assess them. From the results, we
demonstrate the widespread inconsistency of dataset qual-
ity within the literature and highlight the need for future
studies to adopt a quality control approach such as we pro-
vide here. Moreover, from the high-confidence R-loop sam-
ples identified herein, we proceeded to define RL regions,
sites of R-loop consensus across studies. From an analysis
of these regions, we revealed the stark differences between
the R-loops found by dRNH and S9.6-based techniques.
Furthermore, we uncovered new biologically relevant sub-
types of R-loops based on their conservation across sam-
ples and indicate that programmatically different R-loops
exist, more than the previously hypothesized class I/II R-
loops. Taken together, this study introduces new methods
and exciting future research questions for the R-loop map-
ping field.
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The repository containing the code used to gener-
ate all figures and tables in this manuscript is pro-
vided here: https://github.com/Bishop-Laboratory/
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