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Abstract

Members of the ubiquitously expressed CLC protein family of chloride channels and transporters play important roles in
regulating cellular chloride and pH. The CLCs that function as Cl2/H+ antiporters, ClCs 3–7, are essential in particular for the
acidification of endosomal compartments and protein degradation. These proteins are broadly expressed in the nervous
system, and mutations that disrupt their expression are responsible for several human genetic diseases. Furthermore, knock-
out of ClC3 and ClC7 in the mouse result in the degeneration of the hippocampus and the retina. Despite this evidence of
their importance in retinal function, the expression patterns of different CLC transporters in different retinal cell types are as
yet undescribed. Previous work in our lab has shown that in chicken amacrine cells, internal Cl2 can be dynamic. To
determine whether CLCs have the potential to participate, we used PCR and immunohistochemical techniques to examine
CLC transporter expression in the chicken retina. We observed a high level of variation in the retinal expression levels and
patterns among the different CLC proteins examined. These findings, which represent the first systematic investigation of
CLC transporter expression in the retina, support diverse functions for the different CLCs in this tissue.
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Introduction

The distribution of Cl2 across the plasma membrane is known

to be tightly regulated, primarily by the activity of two Cl2 co-

transport proteins: the potassium/chloride co-transporter (KCC)

and the sodium/potassium/chloride co-transporter (NKCC).

These transport proteins are known to play a critical role in

setting the equilibrium potential for Cl2 by adjusting cytosolic Cl2

concentrations and thus determining the sign (inhibitory or

excitatory) of synaptic transmission mediated by GABA- or

glycine-gated Cl2 channels. Another group of Cl2 transporters,

the CLC transporters, also move Cl2 across cellular membranes.

A subset of these transporters (ClCs 3–7) are chiefly expressed on

intracellular membranes (for review, see [1]). The activity of these

transporters also has the potential to affect Cl2 distribution and

may prove to be another important factor contributing to the

dynamic nature of cytosolic Cl2 concentration [2].

The vesicular CLCs can be subdivided into two groups based on

sequence similarity: ClCs 3, 4, 5 and ClCs 6, 7. Over the last

several years, biophysical studies of these transporters have

established that ClCs 3–7 are all Cl2/H+ antiporters

[3,4,5,6,7,8]. Furthermore, it has been established for ClC 4, 5

and 7 that the stoichiometry of exchange is 2Cl2:1H+ [3,4,5].

Additionally, CLCs are thought to operate as dimers with both

homo- and heterodimers observed in expression systems [9,10].

While the biophysical properties of the vesicular CLCs are

becoming clear, the functions of these transporters are less well

understood. Endosomal compartments are typically acidic due to

the presence of the V-type proton pump. This acidic environment

can facilitate other transport mechanisms and provide optimal

conditions for some enzyme functions. One proposed role for the

internal CLCs is that they move Cl2 into endosomes as a counter

ion to relieve the steep membrane potential generated by the

proton pumping [11]. The cost of this CLC-dependent Cl2

transport, however, is the exchange for protons previously moved

into the compartment by the ATP-dependent proton pump. The

resolution of this dilemma may be emerging from recent studies

utilizing mutations that convert ClCs 5 and 7 from Cl2/H+

antiporters into pure Cl2 conductors [12,13]. The results of these

studies imply that the primary function of some CLCs may be to

concentrate Cl2 in endosomal compartments. Another recent

study provides evidence that ClC5 plays a direct role in endosomal

acidification itself [2]. Thus the roles of the internal CLCs are just

coming into focus and it is possible that their functions are diverse

and may be dependent upon the specific cellular context in which

they reside.

The expression of ClCs 3–7 varies among cell types, however,

expression has been demonstrated for each of these transporters in

neuronal tissues [14,15,16,17,18]. Within cells, however, their

distribution differs with respect to their position in the endosomal

pathway. ClC3 resides in mid to late endosomes and synaptic

vesicles [19]. The localization of ClC4 is not completely resolved

but it seems to be in endosomal rather than lysosomal

compartments [1]. ClC5 is typically found in early endosomes

[20], and ClCs 6 and 7 in late endosomes and lysosomes [15,17].

Knockout studies and mutational analyses have shed light on some

of the physiological consequences of impaired CLC function.

ClC5 is mutated in the human kidney disorder Dent’s disease [21],

and ClC5 knockouts display impairments in the endocytic

PLoS ONE | www.plosone.org 1 March 2011 | Volume 6 | Issue 3 | e17647



pathway [22]. ClC7 knockouts developed osteopetrosis and

lysosomal storage disease in the central nervous system and in

the kidney [15,23]. Furthermore, knockouts in ClCs 3 and 7 led

to loss of hippocampal tissue and especially relevant to this work,

marked retinal degeneration [19,23]. The dramatic effects of

these knockouts on retinal tissue suggest the hypothesis that these

transporters are critical to normal retinal function and this

possibility is one motivation for our investigation into the retinal

localization of the vesicular CLCs. We are also motivated to

learn more about the vesicular CLCs in the retina because we

have previously demonstrated that nitric oxide (NO) causes the

release of Cl2 from an internal store in cultured avian amacrine

cells and rat hippocampal neurons [24]. A functional link

between the CLCs and the effects of NO is yet to be established

but the ability of these transporters to load Cl2 into a potentially

releasable store compels us to examine their retinal expression

pattern. Furthermore, despite the important role of certain CLC

family members in normal retinal development suggested by

analysis of knock-out mice [19,23], no systematic examination of

CLC transporter expression has yet been carried out in the

retina of any species. Here we explore the expression and

localization of ClCs 3,4,5,6 and 7 in the adult avian retina using

polyclonal antibodies raised against each of these transporters.

Double-labeling with retinal cell markers is used to further define

the cellular expression patterns for each of the proteins. We find

that each of the CLCs has a unique but sometimes overlapping

expression pattern in the avian retina. Furthermore, the CLC-

specific labeling patterns we describe are due to differences in

CLC expression among cell types as well as among sub-cellular

compartments. The specificity of CLC localization implies that

these transporters subserve specific and potentially diverse

functions in the retina.

Materials and Methods

Ethics Statement
All methods using animals in this study were approved by the

Institutional Animal Care and Use Committee, Louisiana State

University (Assurance #A3612-01).

PCR amplification
Expression of mRNAs coding for CLCs 3–7 was studied using

the reverse transcription-polymerase chain reaction method. A

mixed population of cultured chick retinal cells (embryonic

equivalent day 15) was collected in 100 ml lysis buffer+5 ml of

0.1 mM stock dithiothreitol and 40 units (1 ml) of RNAase inhibitor

(Invitrogen, Carlsbad, CA). Isolation of mRNA was performed

using dynabeads mRNA DIRECT Micro kit (Invitrogen). cDNA

synthesis and PCR amplification was conducted in a single tube

using a one-step RT-PCR system which includes a Superscript III

one-step RT-PCR mix consisting of both platinum Taq polymer-

ase and reverse transcriptase (Invitrogen). Two sets of gene specific

primers (Table 1) were designed for each CLC type and used at a

0.5 mM concentration in the PCR reaction mixture. Efficient

cDNA synthesis was achieved with a 30 min incubation at 55uC
for CLCs 3,4,5 and 7 and the same incubation time of 30 min at a

temperature of 50uC for CLC-6. Amplification of the reverse-

transcribed cDNA was performed using a Bio-Rad C-1000

thermocycler (Hercules, CA). An initial denaturation was

conducted at 94uC for 2 min. Forty cycles of PCR were carried

out under the following conditions: Denaturing at 94uC for 15 s,

annealing at 55uC (CLC-3, 4, 5, and 7) and 50uC (CLC-6) for 30 s

and extension at 68uC for 1 min. A final extension was performed

at 68uC for 5 min. The predicted sizes of the PCR products are

listed in Table 1. The PCR products were run on a 2% agarose gel

and stained with ethidium bromide. The gel was visualized with

the Bio-Rad gel documentation system. Specificity of PCR

products was confirmed through sequencing analysis.

Western Blots
Adult White Leghorn chickens were sacrificed by intraperito-

neal injection of sodium pentobarbital (250 mg/kg, Sigma-

Aldrich, St. Louis, MO) followed by decapitation. Flash-frozen

mouse and rat tissue was provided as a gift from Dr. Jacquelyn

Stephens, Louisiana State University. Chicken, mouse, and rat

brain tissue were homogenized in lysis buffer (2% Triton X-100,

300 mM NaCl, 20 mM Tris, 2 mM EDTA, 2 mM EGTA, 1%

NP40) containing a cocktail of protease inhibitors (PMSF (1 mM),

leupeptin, (5 mg/mL) aprotinin (2.5 mg/mL), 1,10 ortho-phenan-

trolin (0.2 mg/mL) and pepstatin (0.7 mg/mL)). Samples were spun

Table 1. Primer sequences for PCR amplifications.

Primer Sequence
Product
size (bp)

Annealing
temperature

CLC3
forward

59- GGTGAAGGTGTTTGCTCCAT-39 187 bp 55u

CLC3
reverse

59-GCAGGCAACATGTACCAATG-39 187 bp 55u

CLC3
forward

59-ATGGTCAGGATGGCTCGTAG-39 209 bp 55u

CLC3
reverse

59-CTGCCCAAGTTTTCCACTGT-39 209 bp 55u

CLC4
forward

59-GGAGTACCATACCCCCTGGT-39 231 bp 55u

CLC4
reverse

59-ATCAGCTCACTGGTGCTCCT-39 231 bp 55u

CLC4
forward

59-TCAAAAGACTCGGAGCGACT-39 226 bp 55u

CLC4
reverse

59-CCACAGTCTCCATTGGTGTG-39 226 bp 55u

CLC5
forward

59-AGGAACCACTTCCTGGTGTG-39 200 bp 55u

CLC5
reverse

59-TAAGGAACCTGCCAACAACC-39 200 bp 55u

CLC5
forward

59-AGGAACCACTTCCTGGTGTG-39 235 bp 55u

CLC5
reverse

59-GTCATCCAGTGGGCAGAAAT-39 235 bp 55u

CLC6
forward

59-GGAGTGCCTCTTCTGGAGTG-39 155 bp 50u

CLC6
reverse

59-ACAGGGAAGGCATGATGAAC-39 155 bp 50u

CLC6
forward

59-TGGAGTATGCAGGGCATGTC-
AGA-39

553 bp 50u

CLC6
reverse

59- TTTCCACTGTTTCCCACTCCA-39 553 bp 50u

CLC7
forward

59-TACCGTGTGGTGAAGGACAA-39 199 bp 55u

CLC7
reverse

59-CAACATGTGGGATCTTCACG-39 199 bp 55u

CLC7
forward

59-TACCGTGTGGTGAAGGACAA-39 169 bp 55u

CLC7
reverse

59-AGCATTTGATCTGGGGAATG-39 169 bp 55u

doi:10.1371/journal.pone.0017647.t001
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at 4,000 rpm for 20 min at 4uC. Protein content was determined

using the BCA Protein Assay Kit from Pierce (Rockford, IL). For

electrophoresis, protein samples were prepared on ice in loading

buffer containing 62.5 mM Tris, 2% SDS, 10% glycerol, 5% B-

mercaptoethanol, and 0.005% bromophenol blue. Protein samples

were boiled for three minutes prior to loading on the gel. Proteins

(50–200 mg) were separated on a 7.5% SDS gel along with 10 mL

Pageruler molecular weight markers (Fermatas, Glenburnie, MD),

except for blots probed with ClC4 and ClC7 antibody, which were

run on 5% SDS gels. Proteins were transferred to nitrocellulose

membranes. Membranes were blocked overnight at 4uC in 4%

milk and 5% normal goat serum (NGS, ClC3 and ClC5), for one

hr at room temperature in 4% milk (ClC6 and ClC7), or for one hr

at room temperature in 4% milk and 5% NGS (ClC4). Blocking

solutions were all made in tris buffered saline with 0.1% Tween 20

(TBS-T). Primary antibodies were diluted in TBS-T with 1%

bovine serum albumin (BSA). ClC6 antibody was diluted in 1%

BSA TBS-T with 5% NGS. ClC3 and ClC5 antibodies were

applied at 1:500 for one hr at room temperature. ClC4 and ClC6

were applied at 1:500 overnight at 4uC, and ClC7 antibody was

applied at 1:500 for 90 min at room temperature. Goat anti-rabbit

secondary antibody conjugated on horseradish peroxidase (Pierce,

Rockford, IL) was diluted from 1:1000–1:5000 in TBS-T with 1%

milk. Membranes were incubated in secondary antibodies for 1–

1.5 hrs at room temperature. Proteins were visualized using the

Supersignal Western Pico Reagent (Pierce).

Immunocytochemistry
Adult White Leghorn chickens were sacrificed by the same

methods indicated for Western blots. The eyes were enucleated

and hemisected. After removing the vitreous, eye cups were

immersed in 4% paraformaldehyde for 15–20 min at room

temperature. Following fixation, eye cups were washed three

times in PBS+1% Glycine. Central retina was dissected from the

eyecup and incubated in 15% sucrose for 30 min, 20% sucrose for

1 hr, and 30% sucrose solution overnight at 4uC. Retinae were

infiltrated in a 2:1 mixture of 30% sucrose and O.C.T. compound

(Sakura Finetek, Torrence, CA) for 30 min. Samples were frozen

in fresh sucrose/O.C.T. mixture on a slurry of isopentane and dry

ice. Sections (12–16 mm) were cut on a Leica CM1850 cryostat

(Wetzlar, Germany) and mounted on Superfrost Plus microscope

slides (Ted Pella, Redding, CA).

The primary antibodies used in this work are listed in Table 1

along with the source of the antibodies and the dilution at which

they were used. The monoclonal antibody to ClC-3 (cat#75-259,

clone N258/5) was developed and/or obtained from the UC

Davis/NIH NeuroMab Facility, supported by NIH grant

U24NS050606 and maintained by the Department of Neurobi-

ology, Physiology and Behavior, College of Biological Sciences,

University of California, Davis, CA 95616. In addition to the CLC

antibodies included in this table, five other commercially available

CLC antibodies were evaluated and rejected for use in this study

based on unsatisfactory Western blot results. Polyclonal antibodies

raised against peptides corresponding to regions of rat ClC4 and

ClC7 c-terminus (Alpha Diagnostics, CLC41-A and CLC71-A)

bound multiple bands at incorrect molecular weights for the

respective proteins. Polyclonal antibodies specific for internal

regions of human ClC3 and ClC5 (Santa Cruz Biotechnology, SC-

17572 and SC-22373) also gave nonspecific immunoreactive

bands. Finally, a polyclonal antibody raised against a region of

human ClC7 n-terminus gave inconsistent Western blot results

(Abcam, Cambridge, MA). Antibodies were diluted in dilution

solution consisting of phosphate-buffered saline (PBS), 1% BSA,

and 0.1% saponin. Sections were blocked in dilution solution

containing 10% NGS (Jackson ImmunoResearch Laboratories,

West Grove, PA). Primary antibodies were applied for either

72 hrs at 4uC (anti-CLC3–7, anti-nNOS, anti-calretinin, and anti-

PKCa), 1 hr at room temperature (anti-glutamine synthetase, anti-

HPC-1, anti-parvalbumin, and anti-SV2), or overnight at room

temperature (anti-ChAT). Secondary antibodies were applied for

1 hr at room temperature. Goat anti-rabbit antibodies conjugated

either to Cy3 (1:500, Millipore, Billerica, MA) or to Dylight 488

(1:100, Pierce) were used to localize polyclonal antibodies. Goat

anti-mouse antibodies conjugated to Cy3 or DyLight 488 were

used to localize the monoclonal antibodies (1:100).

Labeled sections were viewed on an inverted Leica TCS SP2

Spectral confocal microscope (Leica Microsystems, Wetzlar,

Germany) with 406 and 636 oil immersion objectives (1.25 and

1.4 N.A., respectively). DyLight 488 was observed with the

488 nm laser line with emission collection from 502–553 nm. Cy3

was visualized with the 543 laser line with emission collection from

572–672 nm. Images of double-labeled material were collected by

sequential scanning to minimize difficulties due to bleed through.

Images were acquired using the Leica LCS software package. All

images were collected using the same confocal laser intensity.

PMT gain was adjusted separately for each antibody except full

retinal section images of CLC single-labeled retinae where PMT

was kept the same for comparing labeling intensities of the

different CLC antibodies. For this reason, some features that are

not as clear in these images are more appreciable in later figures.

All images of single and double-labeled tissue are maximum

Figure 1. CLC H+/Cl2 antiporters are expressed in chicken
neurons. A, RT-PCR amplification of ClCs 3–7 mRNA from a mixed
population of cultured chick retinal neurons. Two primer pairs for each
transporter amplified single products of the expected size (in kb). B,
Western blots of chicken, rat, and mouse brain protein probed with
antibodies specific for mammalian ClCs 3–7 reveal labeling of bands at
the expected molecular weights for each protein. CB, chicken brain; RB,
rat brain; MB, mouse brain.
doi:10.1371/journal.pone.0017647.g001
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projections of twenty z planes except for 406 images of CLC and

PKC and CLC and HPC-1 double labeling and some higher

magnification images. Single z plane images of these conditions

are shown to provide greater resolution of doubly immunoreactive

features and are denoted ‘‘1z’’. All fluorescent confocal images

were median-filtered using the Leica confocal software. Figures

were assembled using Adobe Photoshop CS3 (Adobe Systems Inc.,

San Jose, CA).

CLC antibody specificity in tissue sections was assessed by

comparing CLC antibody labeling of retinal sections with and

without pre-incubation with their respective antigenic peptides.

Antigenic peptides were pre-incubated with primary antibody for

1–2 hrs at room temperature, with antibody: peptide ratios of

1:1(ClC7), 1:5 (ClC4), and 1:10 (ClC5 and ClC6). Peptide exposed

sections and non-peptide exposed sections were taken from the

same retinae and were processed side by side.

IPL depth was determined by dividing the distance of

immunoreactive bands from the INL/IPL border by the total

width of the IPL as measured from its border with the INL to its

border with the GCL, following the method of Fischer et al. [25].

All IPL depth measurements are based on averages of IPL depth

from at least three retinae.

Results

CLC transporters are expressed at the mRNA level in
cultured chick retinal neurons

A previous investigation by our group revealed that nitric oxide

(NO) induces a transient elevation of cytosolic Cl2 in cultured

chick amacrine cells and that this increase is due to Cl2 release

from an internal compartment and not from Cl2 crossing the

plasma membrane [24]. In an effort to identify candidate

intracellular Cl2 transporters, PCR amplification of internally-

expressed members of the CLC family of Cl2 channels and

transporters (ClCs 3–7) was conducted from a mixed population of

cultured retinal neurons. Primers were designed based on

predicted nucleotide sequences for chicken ClC3, ClC4, ClC5,

and ClC6 (Table 1). ClC7 primers were derived from the

referenced sequence for chicken ClC7 (Caldwell et al, 2005 [26],

Table 1). Transcripts for all CLC transporters examined were

amplified and verified through sequencing of the PCR product,

indicating that the mRNAs encoding these transporters are

expressed in cultured chicken retinal cells (Figure 1A).

CLC antibodies raised against mammalian targets
specifically label chicken CLC proteins

To examine CLC expression in the chicken retina, commer-

cially-available antibodies raised against mammalian ClCs 3–7

were obtained. Western blots of chicken brain and retina tissue

were probed with these antibodies to assess their specificity for

chicken CLCs (Table 2, Fig. 1B). An antibody raised against a

region of the rat ClC3 carboxy-terminus labeled a band near

160 kD in blots of chicken and rat brain protein (Fig. 1B). The

predicted molecular weight for ClC3 is 96 kD in chicken and

91 kD in rat. All internal CLC transporters are known to form

both homo- and hetero-dimers in expression systems [9,10,27]. It

is possible that the dominant band we observed in both species

represents ClC3 dimers. An antibody specific for rat ClC4

revealed a band between 75 and 105 kD which is close to the

predicted molecular weight of the chicken ClC4 protein (76 kD).

Unfortunately, in our hands, blots of rat and mouse brain

homogenates incubated with the same ClC4 antibody showed no

reactivity (data not shown). Nonetheless the position of the band in

chicken blots was in good agreement with that found in another

study of mouse tissue using two different polyclonal antibodies to

different regions of mammalian ClC4 protein [28]. Probing rat

and chicken brain homogenates with ClC5 antibody revealed a

band near 105 kD in the chicken and in between 75 kD and

Table 2. Antibody Information.

Antibody Host Source Catalog No. Immunogen
Working
Dilution

ClC3 Rabbit, pAb Alpha Diagnostics ClC31-A 18 aa synthetic peptide from rat C-terminus 1:500

ClC3 Mouse, mAb Neuromab clone N258/5 Synthetic peptide aa 98–115 derived from rat ClC3
(CKDRERHRRINSKKKESA)

1:500

ClC4 Rabbit, pAb Abgent AP6329f KLH conjugated synthetic peptide derived from within
aa670–695 of human ClC4

1:500

ClC5 Rabbit, pAb Alpha Diagnostics ClC51-A 13 aa synthetic peptide from within rat ClC5 aa 646–676 1:500

ClC6 Rabbit, pAb Alpha Diagnostics ClC61-A 19 aa synthetic peptide from within rat aa 840–870 1:500

ClC7 Rabbit, pAb Abcam Ab31264 Synthetic peptide derived from human ClC7
(RYRLGKRGLEELSLAQT)

1:500

Calretinin, Clone 6B8.2 Mouse, mAb Millipore MAB1568 Recombinant rat calretinin 1:100

Choline Acetyltransferase,
ChAT

Rabbit, pAb Dr. Miles Epstein 1465 Partially purified ChAT isolated from chicken optic lobes 1:1000

Glutamine Synthetase, Clone
GS-6

Mouse, mAb Millipore MAB302 Glutamine synthetase purified from sheep brain 1:500

Syntaxin 1, Clone HPC-1 Mouse, mAb Sigma S0664 Synaptosomal plasma membrane fraction from adult rat
hippocampus

1:100

nNOS, Clone NOS-B1 Mouse, mAb Sigma N2280 Recombinant rat brain nNOS, aa 1–181 1:500

Protein Kinase C, Clone MC5 Mouse, mAb Abcam Ab31 Purified bovine brain protein kinase C 1:100

SV2 Mouse, mAb Developmental Studies
Hybridoma Bank

SV2 Purified synaptic vesicles from Ommata electric organ supernatant

aa, amino acid.
doi:10.1371/journal.pone.0017647.t002
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105 kD in the rat. These values are in line with the respective

molecular weights of ClC5 in the two species (104 kD in chicken,

83 kD in rat) and the findings in rat are similar to what has been

described by other investigators using different ClC5-specific

antibodies [29,30,31]. It is important to note that the ClC3, ClC4,

and ClC5 antibodies bound different molecular weight proteins

despite the sequence similarity of the three proteins, supporting the

specificity of each antibody for its respective target. An antibody

raised against rat ClC6 labeled a band near 160 kD in blots of

chicken and rat brain protein. The expected molecular weight for

the protein in both species is 97 kD. It seems likely that the ClC6

antibody bound ClC6 dimers, as was seen for ClC3. Two bands,

one faint band slightly above 170 kD and another stronger band

between 75 and 90 kD, were labeled in blots of chicken and rat

brain protein probed with a ClC7 antibody (expected molecular

weights are 88 kD for chicken ClC7 and 89 kD for rat ClC7). The

higher bands could represent ClC7 homodimers [27]. It is

interesting to note that the intensity of the lower band was much

stronger in chicken brain than in rat. Western blot analyses by

other groups have described similar results for ClC7 in

mammalian systems using different polyclonal antibodies [23].

These results support the expression of ClC3, ClC4, ClC5, ClC6,

and ClC7 in chicken brain tissue and, furthermore, confirm the

specificity of these mammalian-derived antibodies for these

proteins in chicken tissue.

To determine the specificity of the CLC antibodies for CLC

proteins in intact chicken retinal tissue, we labeled vertical sections

of retina with CLC antibodies that had been pre-incubated with

their respective antigenic peptides. Figure 2 shows that, in

comparison to sections not exposed to immunogenic peptide,

pre-incubation with antigenic peptide greatly reduced the labeling

intensity of antibodies against ClC4–7. An assessment of ClC3

antibody labeling block by ClC3 peptide was not done because of

the very low labeling intensity of ClC3 antibody in the chicken

retina (see Fig. 3B). It is important to note that in the case of ClC5,

pre-incubation with antigenic peptide did not reduce antibody

labeling of ganglion cells as much as in other retinal cell types

(Fig. 2B right, arrowheads) suggesting that some of this labeling

might be nonspecific. Interpretation of ClC5 antibody labeling

results in ganglion cells must therefore be made with caution.

CLC transporter expression in adult chicken retina
To determine the distribution of CLC transporters in the avian

retina, we used the polyclonal antibodies described above to label

Figure 2. CLC antibodies specifically label CLC proteins in chicken retina. A–D, Images of vertical sections of chicken retina. Each image pair
was acquired and processed identically. A, Left, ClC4 antibody labeling. Right, Pre-incubation with ClC4 peptide (P) dramatically reduced antibody
signal. B, Labeling of retinal section by ClC5 antibody (left) was substantially diminished by exposure to ClC5 peptide (right) in retinal layers, however
a slightly disproportionate signal remained in the ganglion cell layer (GCL, arrowheads). C, ClC6 antibody labeling in the presence (right) and absence
(left) of ClC6 peptide. ClC6 antibody signal was uniformly and substantially decreased by pre-treatment with peptide. D, ClC7 antibody labeling in
tissue not exposed (left) and exposed (right) to ClC7 demonstrates near total elimination of the antibody signal. (Scale for A is 50 mm and applies for
B–D as well.)
doi:10.1371/journal.pone.0017647.g002
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Figure 3. CLC H+/Cl2 antiporters have diverse expression patterns in mature chicken retina. A–F, Images of vertical sections of chicken
retina. Images were acquired and processed identically except for F, which was acquired at a lower PMT gain to avoid saturation. A, Secondary
antibody only-labeled section shows minimal background fluorescence. Signal in photoreceptor outer segments and in oil droplets is
autofluorescence. B, Labeling of retinal tissue by ClC3 antibody is barely detectable. C, The ClC4 antibody labels all three nuclear layers of the retina

CLC Proteins in the Chicken Retina
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frozen sections of chicken retina. Examination of ClC3–7

antibody labeling in the mature chicken retina revealed

differences in expression patterns among internally expressed

CLC transporters. The micrographs in Figure 3A–F were all

obtained using the same acquisition settings and brightness

adjustments were made identically, with the exception of ClC7

which was acquired at a lower PMT gain to avoid saturation of

the fluorescent signal. Figure 3A shows a section of chicken retina

labeled only with secondary antibody. Fluorescent signal was

restricted to photoreceptor oil droplets and outer segments, which

are well-characterized auto-fluorescent features in the chicken

retina (Fig. 3A). These photoreceptor components are often lost

during tissue preparation and sectioning; as such, their presence

is variable in later figures.

ClC3
The polyclonal antibody raised against ClC3 c-terminus gave

minimal labeling in vertical sections of chicken retinal tissue.

Comparison to a control section obtained with the same

acquisition settings (secondary antibody only, Figure 3A) showed

that ClC3 antibody labeling was barely above background levels

and was mainly restricted to the nuclear layers of the retina, where

cell bodies reside (Fig. 3B, H, and N). A monoclonal antibody

specific to a region of rat ClC3 n-terminus (identical to the chicken

sequence) also minimally labeled chicken retina (Fig. S1) further

supporting a low level of ClC3 expression in chicken retina.

ClC4
A vertical section of retinal tissue labeled with ClC4 antibody

showed that ClC4 was widely expressed in the nuclear and

plexiform (synaptic) layers of the retina (Fig. 3C). Most immuno-

reactivity in the photoreceptors was limited to the outer nuclear

layer (ONL), and labeling in the inner nuclear layer (INL) was

stronger in the inner half of the INL (Figure 3C). Most cells in the

ganglion cell layer (GCL) were ClC4 positive. In the outer plexiform

layer (OPL), where photoreceptors make synapses with bipolar cells

and horizontal cells, ClC4 antibody label was diffuse (Fig. 3I). In the

inner retina, some ClC4 positive processes could be seen emanating

from the INL into the distal (furthest from GCL) inner plexiform

layer (IPL, Fig. 3O, arrows). In addition, there were two broad

bands of ClC4 labeling in the IPL at 20–35% and 55–75% IPL

depth as well as a thinner third band at approximately 95% IPL

depth (Fig. 3O, 1–3, see Methods). Finally, very faint ClC4 antibody

labeling was detected in the nerve fiber layer (NFL), which is

primarily composed of ganglion cell axons (Fig. 3C).

ClC5
Of all of the CLC antibodies examined in the adult chicken

retina, the ClC5 had the broadest expression pattern. Similar to

ClC4, the ClC5 antibody labeled tissue in all of the synaptic and

nuclear layers of the adult chicken retina (Fig. 3D). However, the

intensity of the labeling was much greater than that of ClC4. ClC5

expression was widespread in both photoreceptor inner segments

and the outer nuclear layer, and there was particularly intense

labeling of the outer limiting membrane (OLM, Fig. 3D, arrow).

In the INL, the ClC5 labeling pattern was similar to that of ClC4,

with more antibody signal in that layer concentrated in the inner

half of the INL. As with anti-ClC4, ClC5 antibody labeled most

cells in the GCL. ClC5 was expressed in the synaptic layers of the

retina. ClC5 labeling was diffusely distributed throughout the OPL

and was also found in scattered processes (Fig. 3J, arrowheads). In

the inner retina, some isolated, thin ClC5-positive processes were

observed extending vertically from the INL into varying depths of

the IPL (Fig. 3P, arrows). ClC5 antibody also labeled processes in

the distal IPL in a broad band extending from 0–25% IPL depth

(Fig. 3P, 1) as well as three thin bands located at approximately

50% (Fig. 3P, 2), 60% (Fig. 3P, 3), and .90% (Fig. 3P, 4) IPL

depths, with a fifth band at 70% IPL depth discernable in some

sections (Fig. 3P, arrowhead). Finally, many process in the NFL

were intensely labeled by the ClC5 antibody (Fig. 3D).

ClC6
Like ClC3, the labeling intensity of the ClC6 antibody in the

retina was much weaker than that of ClC4 and ClC5, though

expression was faintly discernable in all of the nuclear and

plexiform layers (Fig. 3E). Interestingly, however, ClC6 antibody

labeling was more intense in photoreceptors and in puncta in the

OPL (Fig. 3K, arrows). Furthermore, the photoreceptor labeling

was restricted to vertical elements distributed diffusely in the

proximal portion of photoreceptor inner segments and the distal

portion of the ONL (Fig. 3E, arrowheads). This labeling was very

different in appearance from the labeling of the OLM by the ClC5

antibody (Fig. 3D). Though the labeling intensity of the ClC6

antibody was weak in the IPL, three faint bands of immunore-

activity could be observed at approximately 20%, 65%, and

.90% IPL depth (Fig. 3Q, 1–3). Panel brightness was enhanced to

bring out ClC6 IPL expression (Fig. 3M and N showing no

primary and ClC3 labeling were adjusted the same way). ClC6

antibody labeling was not observed in the NFL.

ClC7
ClC7 antibody labeling was strong in most layers of the retina,

but the labeling pattern was more punctate than that of the other

CLCs (Fig. 3F). In photoreceptors, ClC7 labeling was distributed

in bright puncta in photoreceptor inner segments as well as in

vertical elements (Fig. 3F, arrowheads) around the inner segment/

ONL border. However, ClC7 signal was very weak in the rest on

the ONL (Fig. 3F). ClC7 immunoreactivity was strong in the outer

and inner INL, but there was a band in roughly the center of the

layer nearly devoid of labeling (Fig. 3F, white arrow). Bright

punctate labeling was more or less evenly distributed in the outer

INL whereas in the inner INL, ClC7 signal appeared to be

particularly concentrated in some triangular cell bodies at the

INL/IPL border (Fig. 3F, asterisks). Some of these triangular cells

had puncta of ClC7 labeling in thick processes projecting into the

IPL (Fig. 3F, yellow arrows). ClC7 labeling was observed in most

and the IPL. D, ClC5 antibody labeling in nuclear and synaptic layers. Arrow indicates ClC5 expression in the OLM. E, The ClC6 antibody labeled
vertical elements in photoreceptors (arrowheads). F, Punctate ClC7 signal in nuclear and synaptic layers. Asterisks and yellow arrows indicate ClC7+
cells at INL/IPL border. White arrow indicates INL band lacking ClC7. G–L, Zoom of CLC antibody labeling in the OPL from the same sections shown in
A–F. Images have been individually adjusted to highlight immunoreactive features. ClC5 expression is widespread and diffuse and in scattered
processes (arrowheads) whereas ClC6 antibodies label discrete puncta. ClC4 and ClC7 antibody signals are fainter, and ClC3 signal is absent from the
OPL. M–R, Zoomed images of anti-CLC labeling in the IPL. Images have been individually adjusted. IPL labeling by ClC3 antibody was minimal. ClC4
antibody labels horizontal processes in outer IPL (arrows) and three distinct bands (1–3). ClC5 is expressed in vertical processes projecting to central
IPL (arrows) and four (1–4) to five (arrowhead) bands. Three bands of ClC6 immunoreactivity (1–3) are distinguishable. ClC7 antibody labels one band
in outer IPL (1) and one band in inner IPL (2). 3 indicates a thin IPL band lacking ClC7. (Scale bar in A is 50 mm and applies to B–F. Scale bar in G is
5 mm and applies to H–L. Scale bar in M is 50 mm and applies to N–R.)
doi:10.1371/journal.pone.0017647.g003
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Figure 4. ClC4 is expressed in calretinin-positive horizontal cells and PKC-positive bipolar cells. A–C, Vertical section of mature chicken
retina double-labeled with antibodies specific for ClC4 and calretinin. ClC4 antibody labeling co-localizes with anti-calretinin labeling in horizontal
cells and amacrine cells (arrow) and cells in the GCL. White arrowheads indicate IPL bands immunoreactive for both antibodies. Yellow arrowheads
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cell bodies of the ganglion cell layer. ClC7 expression was diffusely

distributed in the outer plexiform layer (Fig. 3L). In the IPL, there

was a band of ClC7 immunoreactivity at approximately 15%

depth (Fig. 3R, 1) and a thicker band between 30% and 90%

depth (Fig. 3R, 2). Visible in some sections, including the one

shown in Figure 3, was a narrow strip within this thicker band

lacking ClC7 antibody label at approximately 70% IPL depth

(Fig. 3R, 3). Interestingly, no ClC7-positive band was ever

observed near the GCL (.90% IPL depth), a feature shared by

ClC4–6. Scattered processes in the NFL were faintly ClC7-positive

(Fig. 3F).

To determine the retinal cell types expressing different CLC

transporters, we double labeled retinal tissue with the CLC

transporter antibodies and antibodies raised against cell-type

specific markers. Due to the low level of ClC3 antibody labeling in

the chicken retina (see Fig. 3), we focused on characterizing the

expression patterns of ClC4–7.

Cell-type specific markers for chicken retina
From the literature, we identified a suite of marker proteins with

established cell-type specific expression in chicken retina. Exposing

retinal sections to monoclonal antibodies raised against these

proteins gave results in good agreement with what has been

previously reported by other groups using in the chicken retina.

Below, we describe the labeling patterns of these antibodies and

the cell-type specific expression of their target proteins in the

chicken retina.

Calretinin is a calcium-binding protein expressed in a majority

of horizontal cells as well as in subsets of bipolar cells, amacrine

cells, and ganglion cells in the chicken retina [32,33]. We used a

monoclonal calretinin antibody raised against recombinant rat

calretinin (.80% identity with chicken calretinin protein) to label

calretinin expressing cells in vertical sections of chicken retinal

tissue. Here, we used a monoclonal calretinin antibody to identify

horizontal cells.

A monoclonal antibody specific for the alpha and beta isoforms

of protein kinase C (PKC) has been shown to label two populations

of chicken bipolar cells [34,35], and our results with this antibody

were similar to descriptions of PKC expression in the retina in

these studies and in one using a different PKC antibody [36].

The HPC-1 monoclonal antibody binds syntaxin 1, a protein

known to be expressed in amacrine cells and not in ganglion cells

or bipolar cells [37,38]. This antibody has been extensively used as

a specific marker for amacrine cells in a number of different

species, including the chicken [39].

Glutamine synthetase (GS) converts ammonia and glutamate

into glutamine and is a useful glial cell marker in the central

nervous system. In the chicken retina, GS is expressed by Müller

glial cells [40,41] and possibly by another population of astrocyte-

like glial cells in the GCL and NFL [42]. We used a monoclonal

antibody specific for glutamine synthetase to selectively label

Müller cells in the chicken retina.

Our interest in understanding the role of CLCs in the NO-

dependent release of Cl2 from internal stores motivated us to

examine the relative distribution of CLC transporters and the

neuronal isoform of nitric oxide synthase (nNOS), an enzyme

responsible for catalyzing the synthesis of NO in the presence of

calcium and calmodulin in the CNS. In a previous investigation of

nNOS expression in chicken retina, Fischer et al [43] described

four distinct types of nNOS positive amacrine cells using two

different polyclonal nNOS antibodies. They also observed nNOS

expression in efferent target cells (ETCs), in several bands of the

IPL, in the OPL, and in a subset of ganglion cells and

photoreceptors. Using a different polyclonal nNOS antibody in

a later study, we found a similar expression pattern [44]. Here, we

used a monoclonal nNOS antibody that strongly co-localized with

the polyclonal nNOS antibody from the 2003 study (data not

shown) to label nNOS-expressing cells in the retina.

SV2 is expressed in photoreceptor terminals, but not in

horizontal cells in the chicken retina [45] and a monoclonal

SV2 antibody has been used as a marker for photoreceptor

terminals in chicken retina [46,47]. In the current work, we used

the monoclonal antibody specific for SV2 to examine the

localization of ClC6 expression in the OPL.

The labeling pattern of a polyclonal choline acetyltransferase

(ChAT)-specific antibody has been well characterized in the

chicken retina [25,48]. Here, we used the same ChAT antibody to

examine the expression of CLC transporters in cholinergic

amacrine cells.

ClC4 is expressed in calretinin-positive horizontal cells
Figures 4B and E show that horizontal cell labeling with the

monoclonal calretinin antibody was in good agreement with the

findings of Fischer et al [33] and Ellis et al [32]. In Figure 4E, a

high magnification image, acquired at a lower gain than the

image shown in 4B, shows intensely-labeled, calretinin-positive

horizontal cells as well as diffuse immunoreactivity in 2–3 strata

of the OPL. Labeling of putative bipolar cells, amacrine cells, and

ganglion cells was also similar to that found in these previous

investigations, but certain elements in the IPL were less well-

resolved, perhaps due to the monoclonal nature of the antibody.

ClC4 antibody labeling co-localized with the calretinin signal in

horizontal cells (Fig. 4D–F, asterisks) as well as in strongly

calretinin-positive cell bodies near the INL/IPL border (Fig. 4A–

C, white arrow) and in more weakly immunoreactive cells in the

inner half of the INL and in the GCL. Note that ClC4 was

expressed in calretinin-negative horizontal cells as well (Fig. 4D–

F, white arrow). The calretinin antibody also labeled processes

projecting from the INL to a narrow band of immunoreactivity

centered on 55% IPL depth (Fig. 4B, yellow arrowheads) as well

as two much fainter, broad bands in the IPL, one centered

around 25% and one centered around 90% IPL depth (Fig. 4B,

white arrowheads). There was some overlap of ClC4 and

calretinin expression in the distal and proximal IPL, but not,

interestingly, in the middle band (55% IPL depth) of calretinin

immunoreactivity, which, in Figure 4B and C is the most clearly

resolved calretinin-positive IPL band (yellow arrowheads). Co-

localization of ClC4 and calretinin in the OPL was minimal

(Fig. 4D–F).

indicate an IPL band immunoreactive only for the calretinin antibody. D–F, Lower gain, higher magnification images of horizontal cell labeling by
ClC4 and calretinin antibodies show that ClC4 is expressed in both calretinin-positive (asterisks) and calretinin-negative (arrow) horizontal cells. G–I,
Chicken retinal tissue labeled with the ClC4 antibody and with an antibody specific for PKC reveal overlapping ClC4 and PKC expression. Arrowheads
indicate that PKC-positive bands in the IPL overlap with ClC4 IPL immunoreactivity. Boxes indicate ClC4-negative, PKC-positive bipolar cell terminals.
J–L, Higher magnification, single z plane images of a different PKC and ClC4 antibody labeled section. Co-localization of ClC4 and PKC antibody in the
OPL supports expression of ClC4 in bipolar cell dendrites (arrows). M–O, Images from a single z plane from the same z stack as in G–I. P–R, Zoomed
in images of the blue-bordered area in M–O confirm that ClC4 is expressed in PKC-positive bipolar cell bodies (asterisks) in the chicken retina. (Scale in
A–C, G–I, and M–O, 50 mm; in D–F, J–L, and P–R, 10 mm.)
doi:10.1371/journal.pone.0017647.g004
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ClC4 is expressed in PKC-positive bipolar cells
To determine whether ClC4 is expressed in bipolar cells of the

chicken retina, we double labeled retinal sections with ClC4

antibody and PKC antibody. Figures 4H (projection image of a

stack of twenty z planes through the retinal cross-section) and 4N

and Q (images of a single z plane from the same stack) show that

the PKC antibody strongly labeled a small number of cell bodies in

the middle of the INL with projections to the OPL and IPL and

more faintly labeled a larger number of cell bodies in the distal half

of the INL (Fig. 4H). A few scattered cell bodies close to the INL/

IPL border were also faintly PKC positive, possibly representing

PKC-expressing amacrine cells (Fig. 4H, [36]). In the OPL, two

bands of PKC immunoreactivity were observed (Fig. 4K, high

magnification image of a single plane from a different retinal

section). In the IPL, there were three distinct layers of PKC

positive bipolar cell terminals at approximately 0–10%, 45%, and

80% IPL depth (ovals, Fig. 4H) as well as three much weaker

bands of immunoreactivity at 30%, 70%, and 92% IPL depth

(arrowheads, Fig. 4H). Figures 4P–R show that the brightly

labeled, PKC positive cell bodies in the INL were also labeled with

ClC4 antibody (asterisks). ClC4 antibody signal was typically

surrounded by PKC antibody signal in these cells. PKC and ClC4

displayed some overlapping expression in the OPL although the

ClC4 antibody labeling there was more diffuse than the PKC

labeling (Fig. 4J–L, white arrows). In the IPL, ClC4 did not co-

localize strongly with PKC in bipolar cell terminals (Fig. 4G–I,

boxes). However, the two antibodies did appear to overlap in the

more weakly PKC-positive IPL bands (Fig. 4G–I, arrowheads).

Taken together, these results suggest that ClC4 is expressed in at

least two populations of bipolar cells in the chicken retina as well

as in PKC-positive bands in the IPL.

ClC4 is expressed in retinal amacrine cells
The labeling of the proximal half of the INL (closest to the IPL)

by the ClC4 antibody (Fig. 3C) suggests that this protein may be

expressed in retinal amacrine cells. To examine the expression of

ClC4 in amacrine cells, we double-labeled chicken retinal sections

with ClC4 antibody and the antibody specific for syntaxin 1 (HPC-

1). Figures 5B and 5E (asterisks) show HPC-1 antibody labeling in

the cell membranes of cell bodies in the inner half of the INL.

There was also extensive labeling throughout the IPL as well as

fainter labeling in the OPL in putative horizontal cell terminals

[49]. Scattered cell bodies in the GCL, representing displaced

amacrine cells, were also labeled (Fig. 5H, asterisk). All HPC-1

expressing cells in the INL and GCL also appeared to express

ClC4, confirming that ClC4 is expressed in retinal amacrine cells

(Fig. 5C, F, and I).

ClC4 is expressed in glial cells in the chicken retina
Figures 5J–L show a retinal tissue section double labeled with

ClC4 antibody and the monoclonal antibody specific for

glutamine synthetase (GS). In Figure 5K, a projection image of

a retinal section labeled with a GS-specific monoclonal antibody

showed the expected pattern of labeling in Müller cells [41], with

GS expression in processes stretching from the OLM to the inner

limiting membrane (ILM, not shown) that thickened in putative

perikarya in the center of the INL. ClC4 and GS antibody signals

co-localized in some areas of the INL and outer retina, specifically

in Müller cell perikarya (Fig. 5J–L, white arrows) and in glial

processes in the OPL and ONL, indicating that ClC4 is expressed

in Müller cells of the chicken retina.

ClC4 transporters are present in nNOS-expressing cells in
the retina

To examine ClC4 expression in retinal cells containing nNOS,

we double-labeled retinal tissue with monoclonal nNOS antibody

and ClC4 antibody (Fig. 5M–R). ClC4 antibody signal co-

localized with that of nNOS in the ONL, putative horizontal cells

(Fig. 5M–O, yellow arrows), Müller cells (Fig. 5P–R, arrowheads),

some amacrine cell bodies and processes at the INL/IPL border

(Fig. 5O and R, white asterisk and arrows) and putative efferent

target amacrine cells (ETCs, [43], Fig. 5O, yellow asterisk). ClC4

and nNOS expression also overlapped in the ClC4 positive band

closest to the GCL (Fig. 5M–O, arrowheads). ClC4 and nNOS

were also both expressed in the GCL. Taken together, these

results support the possibility of interaction between ClC4

proteins and NO produced in nNOS-expressing cells in the

chicken retina.

ClC5 is expressed in calretinin-positive horizontal cells
To begin to examine ClC5 expression in the outer retina, we

double-labeled retinal tissue with ClC5 and calretinin antibodies.

All calretinin-positive horizontal cell bodies were also ClC5-

positive, and processes in the OPL were labeled by both

antibodies, confirming that ClC5 was expressed in most horizontal

cells in the chicken retina (Fig. 6A–F). In addition, images of a

retinal cross section labeled with the ClC5 and calretinin

antibodies (Fig. 6A–C) demonstrated co localization of ClC5 and

calretinin in cell bodies in the inner half of the INL and in the

GCL. INL cell bodies brightly labeled with calretinin antibody

were also faintly labeled with ClC5 antibody (Fig. 6A–C, white

arrows). Calretinin and ClC5 antibodies also overlapped in

putative glial cell processes and perikarya in the INL, OPL, and

ONL (Fig. 6A–C). ClC5 antibody labeling co-localized with

calretinin expression in the outer and inner calretinin-positive IPL

bands (Fig. 6A–C, white arrowheads), but not as much in the

central IPL band (Fig. 6A–C, yellow arrowheads). However, some

individual neuronal processes projecting to the middle of the IPL

were labeled with both antibodies (Fig. 6A–C, yellow arrows).

Finally, we observed co-labeling of the two antibodies in many

ganglion cell axons as well.

Figure 5. ClC4 is expressed in amacrine cells, Müller glia, and nNOS-positive cells. A–C, Single z plane images of chicken retinal tissue
sections double-labeled with antibodies specific for ClC4 and the amacrine cell marker, HPC-1 reveal that ClC4 is expressed in the HPC-1-positive cells.
D–F, Zoom images of ClC4 and HPC-1 antibody labeling of the blue box region in A–C. ClC4 is expressed in amacrine cells, predominantly at cytosolic
locations (asterisks). G–I, Zoomed images of the purple box region in A–C show that ClC4 is expressed in displaced amacrine cells in the retina
(asterisk). J–L, Retinal tissue double-labeled with ClC4 antibody and an antibody specific for the Müller cell marker, glutamine synthetase (GS). Arrows
indicate examples of ClC4 expression in Müller glia. M–O, Retinal sections double-labeled with ClC4 antibody and a nNOS-specific antibody. The
nNOS antibody labels cells in all layers of the chicken retina, with strong labeling of horizontal cells (yellow arrows), a subset of amacrine cells and
processes (white asterisk) as well as putative Müller cells, efferent target cells (ETCs, yellow asterisk), IPL processes (white arrows) and bands, ganglion
cells, and scattered processes in the NFL. ClC4 is expressed in almost all nNOS-expressing cells. Note co-localization of ClC4 and nNOS in an
immunoreactive band near to the IPL/GCL boundary (arrowheads). P–R, Single z plane zooms of ClC4 and nNOS antibody labeling confirms co-
labeling of glial cells (arrowheads) and IPL processes (white arrows). (Scale in A, 50 mm, applies to B–C, J–L, and M–O; Scale D–F, 15 mm; Scale G–I,
15 mm; Scale P–R, 15 mm.)
doi:10.1371/journal.pone.0017647.g005
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Figure 6. ClC5 is expressed in calretinin-positive horizontal cells and PKC-positive bipolar cells. A–C, Retinal tissue sections double-
labeled with ClC5 and calretinin antibodies. ClC5 antibody labeling co-localizes with that of calretinin in horizontal cells and amacrine cells (cell body,
white arrow; process, yellow arrow). White arrowheads indicate IPL bands immunoreactive for both antibodies. Yellow arrowheads indicate an IPL

CLC Proteins in the Chicken Retina

PLoS ONE | www.plosone.org 12 March 2011 | Volume 6 | Issue 3 | e17647



ClC5 is present in PKC-expressing bipolar cells
Consistent with ClC5 expression in chicken bipolar cells, double

labeling of retinal sections with ClC5 and PKC antibodies

revealed overlapping expression of the two proteins in bipolar

cell bodies in the outer half of the INL (Fig. 6L and R, asterisks).

PKC-positive cell bodies in the inner INL were also labeled with

ClC5 antibody, suggesting that amacrine cells that express PKC

also express ClC5 (Fig. 6G–I, white arrow). In single plane images

of the OPL (Fig. 6J–L), the ClC5 antibody signal co-localized with

that of PKC in bipolar cell dendrites. ClC5 and PKC antibody

labeling also overlapped in Müller cell processes projecting to the

OLM (Fig. 6J–L, arrowhead). In the IPL, in contrast to our ClC4/

PKC co-labeling observations, overlapping ClC5 and PKC

antibody labeling was only observed in the immunoreactive band

nearest to the GCL (arrowheads). The other PKC- and ClC5-

positive bands were intercalated in the IPL, and ClC5 was not

present in bipolar cell terminals (Fig. 6G–I, boxes).

ClC5 transporters are expressed in retinal amacrine cells
In order to confirm ClC5 expression in retinal amacrine cells,

we used the HPC-1 antibody to selectively label amacrine cells.

Figures 7A–I show single z plane images of tissue sections doubled-

labeled with HPC-1 antibody and ClC5 antibody. HPC-1 signal

enveloped ClC5 signal in cell bodies in the INL and GCL,

indicating that, as with ClC4, ClC5 was expressed by amacrine

cells in the INL and displaced amacrine cells in the GCL.

ClC5 transporters are expressed in Müller glia
To determine whether ClC5 is expressed in glial cells, glutamine

synthetase antibody was used to selectively label Müller cells in

chicken retinal cross sections (Fig. 7J–L). In this section, ClC5

antibody labeling co-localized with that of glutamine synthetase,

indicating that ClC5 is expressed in Müller cells (Fig. 7J–L, white

arrows). ClC5 and glutamine synthetase antibody labeling also

strongly overlapped in the OLM (Fig. 7J–L, arrowheads).

nNOS expressing cells also express ClC5
We have demonstrated widespread overlapping ClC4 and

nNOS expression in the adult chicken retina. Is ClC5 localized to

nNOS-expressing cells in the retina as well? Figures 7M–O show

ClC5 antibody labeling in nNOS-positive amacrine cells (aster-

isks), in Müller cells (yellow arrowheads), in scattered processes and

puncta near the INL/IPL border (arrows), and in ganglion cells. In

the IPL, CLC5 immunoreactive bands were also immunoreactive

for nNOS (white arrowheads). Taken together, these results

support the possibility of interaction between ClC5 transporters

and NO produced in nNOS-expressing cells.

ClC6 is expressed in photoreceptor terminals
In comparison to other CLC transporters, ClC3 and ClC6 did

not appear to be widely expressed in the avian retina (Fig. 3). ClC3

antibody labeling was uniformly weak in all regions of the chicken

retina. However, ClC6 antibody labeling, though low in most

parts of the retina, was intense in vertical elements in

photoreceptors and somewhat more modestly present in the

OPL. To further examine ClC6 expression in the OPL, retinal

tissue sections were double labeled with ClC6 antibody and the

monoclonal antibody to the synaptic vesicle protein SV2. Figure 8

shows SV2 antibody labeling in the OPL and IPL in cross-sections

of retinal tissue. A higher magnification image revealed SV2

antibody labeling in the OPL is restricted to crescent-shaped

elements consistent with photoreceptor terminals (Fig. 8E). Some

of these SV2 positive elements overlapped with ClC6 antibody

label (Fig. 8F, arrows), suggesting that ClC6 is expressed in

photoreceptor terminals in the chicken retina.

ClC7 is not expressed in calretinin-positive horizontal
cells

Images of tissue sections double-labeled with antibodies specific

for calretinin and ClC7 show that, unlike ClC4 and ClC5, ClC7 is

not expressed in calretinin-positive horizontal cells (Fig. 9D–F,

asterisks). In addition, there was virtually no labeling of calretinin-

expressing amacrine cells by the ClC7 antibody (Fig. 9A–C,

arrowheads). However, calretinin-positive ganglion cells were also

ClC7-positive. Finally, the labeling patterns of the two antibodies

did not overlap appreciably in Müller cells or in the synaptic layers

of the retina.

ClC7 is expressed in PKC-positive bipolar cells at putative
membrane locations

To further characterize ClC7 expression in the retina, we next

examined ClC7 antibody labeling in bipolar cells labeled with the

antibody specific for PKC. In Figures 9P–R, PKC-positive bipolar

cells were faintly labeled by ClC7 antibody (asterisk), indicating

that at least a subset of bipolar cells in chicken retina expresses

ClC7. However, in these cells, ClC7 antibody label was confined

to the margins of the cell body, perhaps in close association with

the plasma membrane, an observation that differed from the

internal cell body expression observed with ClC4 and ClC5.

Furthermore, ClC7 antibody did not label PKC-expressing

bipolar cell projections to the OPL or PKC-positive puncta in

the OPL (Fig. 9J–L). In the inner retina, ClC7 expression did not

overlap with PKC expression in the IPL (Fig. 9G–I), but ClC7-

positive cells in the ganglion cell layer were also labeled by the

PKC antibody.

ClC7 is expressed in retinal amacrine cells
Figures 10A–I show retinal tissue double-labeled with ClC7

antibody and with the amacrine cell marker antibody, HPC-1.

Zoomed-in images of the INL (Fig. 10D–F) and the GCL

(Fig. 10G–I) revealed ClC7 antibody labeling in amacrine cell

bodies, confirming ClC7 expression in retinal amacrine cells.

ClC7 is not widely expressed in retinal glial cells
Using an antibody specific for GS to selectively label glial cells,

we observed some co-localization of ClC7 and GS antibodies in

band that is only immunoreactive for the calretinin antibody. D–F, Lower gain, higher magnification images from a different double-labeled tissue
section show that ClC5 is expressed in calretinin-positive horizontal cell bodies (asterisks) and processes (arrowheads). G–I, Retinal sections labeled
with the ClC5 antibody and an antibody specific for PKC reveal overlapping ClC5 and PKC expression. Arrowheads indicate that PKC-positive bands in
the IPL overlap with ClC5 IPL immunoreactivity only in the band nearest the GCL. White arrow indicates putative PKC-positive amacrine cell. Boxes
indicate ClC5-negative, PKC-positive bipolar cell terminals. J–L, Higher magnification, single z plane images of ClC5 and PKC antibody labeling in the
OPL and outer INL in a different tissue section. ClC5 and PKC antibody signals are co-localized in bipolar cell bodies (asterisks) and OPL projections
(arrow) as well as in glial projections (arrowhead). M–O, Images from a single z plane from the same z stack as in G–I. P–R, Zoom in of the blue-
bordered area in M–O confirms that ClC5 is expressed in PKC-positive bipolar cell bodies (asterisk) in the chicken retina. (Scale A–C, 50 mm, applies for
G–I and M–O as well; Scale D–F, 10 mm; Scale J–L, 15 mm; Scale P–R, 10 mm.)
doi:10.1371/journal.pone.0017647.g006
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putative Müller cell perikarya in the adult chicken retina (Fig. 10J–

L, arrows), but the ClC7 antibody labeling was very discrete and

punctate and could have represented ClC7 expression in closely

associated amacrine cells. Furthermore, ClC7 and glutamine

synthetase antibody signals did not overlap in glial processes.

Thus, ClC7 may be expressed in Müller glia in the chicken retina,

but its expression pattern in these cells is much more restricted

than that of ClC4 and ClC5.

ClC7 is not widely expressed in nNOS-positive cells in the
retina

To examine ClC7 transporter expression in nNOS-expressing

cells, retinal tissue sections were double-labeled with antibodies to

nNOS and ClC7. Figures 10M–O show that compared to ClC4

and ClC5, co-localization of ClC7 and nNOS was not very striking.

This apparent difference was partially due to more restricted ClC7

expression in glial cells and partially due to the more discrete nature

of the ClC7 signal. ClC7 antibody sparsely labeled nNOS-

expressing photoreceptors, putative ETCs, and cells in the GCL

(Fig. 10M–O). nNOS-positive processes and bands in the IPL were

not labeled by ClC7 antibody. The triangle-shaped, strongly ClC7-

positive cells at the INL/IPL border were not nNOS-positive.

ClC5 and ClC7 are expressed in cholinergic cells in the
retina

We have shown that both ClC5 and ClC7 were expressed in

amacrine cells near the INL/IPL border and in displaced

amacrine cells in the GCL (Fig. 7A–I, Fig. 10A–I). We have also

shown that both antibodies labeled thin bands in the distal IPL

(Fig. 3D and F). To further examine which types of amacrine cells

express ClC5 and ClC7, we double-labeled chicken retinal tissue

sections with antibodies to ChAT and the two CLC proteins. In

our hands, the polyclonal ChAT antibody gave the expected

labeling pattern in the inner retina, with two layers of widely

spaced, brightly labeled cell bodies in the inner half of the INL and

a layer of cells in the GCL sending projections out to IPL bands at

approximately 20% and 65% depth, respectively (Fig. 11B and E).

Because the ClC7 antibodies and the ChAT antibody were all

raised in rabbit and because the only commercially available

monoclonal ChAT antibody that we were able to find did not label

bands in the IPL (Clone 1e6, data not shown), we performed

sequential double labeling experiments in which the double

labeled tissue was compared to side-by-side single-labeled controls.

Figures 11A–C show that all ChAT-positive cells were also ClC5-

positive (arrows) and that two of the ClC5 antibody-labeled bands

in the IPL overlapped with the two ChAT-positive bands

(arrowheads). These results are not surprising given that ClC5

seemed to be present to some degree in virtually all amacrine cells

(See Figure 7A–I). Interestingly, however, ClC7 antibody labeling

appeared to be particularly intense in ChAT-positive amacrine

cells (arrows, Fig. 11D–F), suggesting that the protein might have a

particular function in these cells. The thin outermost ClC7-

positive IPL band was also labeled with ChAT antibody

(arrowheads).

Figure 7. ClC5 is expressed in amacrine cells, Müller glia, and nNOS-positive cells. A–C, Single z-plane images of chicken retinal tissue
sections double-labeled with ClC5 and HPC-1 antibodies reveal that ClC5 is expressed in the HPC-1-positive cells. D–F, Zoom of ClC5 antibody
labeling of blue box region in A–C shows that ClC5 is expressed cytosolically in amacrine cells (asterisks). G–I, Zoom of purple box region in A–C
shows ClC5 antibody labeling in the ganglion cell layer, indicating that ClC5 is expressed in displaced amacrine cells in the retina (asterisk) as well as
in neighboring, HPC-1 negative ganglion cells. J–L, Sections of retinal tissue double-labeled with ClC5 and GS antibodies show that GS and ClC5 co
localize in Müller cells (arrows) and in the OLM (arrowheads). M–O, Retinal sections double-labeled with ClC5 and nNOS antibodies reveal expression
of ClC5 in nNOS-expressing cells. Yellow arrowheads and asterisks indicate overlapping signal in Müller cells and amacrine cells, respectively. Arrows
indicate co-expression in puncta near the INL/IPL border, and white arrowheads indicate co-localization in three bands in the IPL. (Scale A–C, 50 mm,
applies to J–L and M–O as well; Scale D–F, 15 mm; Scale G–I, 15 mm.)
doi:10.1371/journal.pone.0017647.g007

Figure 8. ClC6 is expressed in photoreceptor terminals in the OPL. A–C, A vertical section of adult chicken retina double-labeled with ClC6
and a monoclonal antibody specific for the synaptic vesicle protein, SV2 (Scale, 50 mm). Note ClC6-positive vertical elements near the OLM as well as
ClC6-positive puncta in the OPL. D–F, Higher magnification images of the OPL. Arrows indicate expression of ClC6 in photoreceptor terminals. (Scale
D–F, 15 mm).
doi:10.1371/journal.pone.0017647.g008
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Discussion

Our investigation of CLC transporter expression revealed

distinctive differences in the expression pattern of these proteins

in the chicken retina (Fig. 12). Though there is evidence for CNS

expression of all five CLC family members examined

[15,17,20,28,50], this is the first study, to our knowledge, of

relative CLC expression by different cell types within a single

nervous system tissue.

Retinal expression of ClC3 and ClC6
Our results suggest that ClC3 expression is weak and ClC6

expression is primarily localized to a restricted region of

photoreceptors. This was a surprising result because ClC6 is

known to be widely expressed in the nervous system [17] and

ClC3 is necessary for normal retinal development [19] in mouse

retina. In the case of ClC6, existing studies examining CNS

expression of this protein did not look at retinal expression

explicitly so it is possible that ClC6 distribution in the retina differs

from that of other areas of the CNS. ClC3, however, has been

shown to be expressed in synaptic layers of the mouse retina

[19,50] in contrast to our finding of low apparent ClC3 expression

in chicken retina. It is possible that this difference reflects a true

species difference. It is also possible that our ClC3 antibody did

not have the same level of affinity for the protein. Arguing against

this interpretation, a monoclonal antibody specific for a different

region of the ClC3 protein also minimally labeled the chicken

retina. Furthermore, this monoclonal antibody was raised against

the same region of rat ClC3 as the polyclonal antibody that

strongly labeled the synaptic layers of mouse retina in refs.19 and

50. The antigens used to synthesize both ClC3 antibodies were

derived from portions of the rat protein sequence that are 100%

identical to the predicted chicken amino acid sequence for ClC3.

Diverse CLC expression patterns in photoreceptors
There is a high degree of variability in photoreceptor expression

among ClCs 4–7. ClC7 is expressed in photoreceptor inner

segments but is virtually absent from the ONL, whereas ClC4 is

only expressed in the ONL. ClC5 is expressed throughout

photoreceptors. Photoreceptor expression of ClC6 is restricted to

synaptic terminals in the OPL and to vertical elements near the

OLM. These vertical elements also appear to express ClC7 and

could correspond to protein located near or within regions of the

cilium and/or the ellipsoid of the photoreceptors. The different

anatomical compartments of the vertebrate photoreceptor (outer

segment, inner segment, and presynaptic) subserve different

cellular functions (phototransduction, metabolism and gene

expression, and synaptic transmission). Perhaps the variation in

photoreceptor CLC expression is due to the specificity of different

CLC transporters for the membranes of particular organelles.

However, if that were solely the case, one would expect that ClC4

expression would be more similar to that of ClC5 because both

localize to early endosomal compartments. Yet the expression of

both ClC6 and ClC7 in vertical elements at the junction between

the outer and inner segments may support a specific role for late

endosomes and/or lysosomes at that location.

ClC5 expression in the outer limiting membrane
The outer limiting membrane is a specialized retinal structure

that serves as a semi-permeable boundary between the ONL and

photoreceptor inner segments. It is not a membrane per se, but is

composed of close appositions of the apical processes of Müller

cells and photoreceptors. These appositions express proteins and

structures characteristic of both tight junctions and adherens

junctions and are thought to be important for maintaining retinal

structure and potentially for regulating diffusion of material into

the inner retina [51]. Though Müller cell and ONL expression of

both ClC4 and ClC5 was pronounced, only ClC5 was expressed at

the OLM. ClC4 and ClC5 are generally targeted to similar

subcellular compartments. The presence of ClC5 (and not the

closely related ClC4) in the OLM suggests a specific role for this

transporter in OLM function.

Retinal ClC7 expression is more restricted than ClC4 and
ClC5

Our results show that ClC4 and ClC5 are fairly ubiquitously

expressed in the nuclear and plexiform layers of the retina whereas

the distribution of ClC7 is much more limited and specific.

Calretinin-positive horizontal cells express ClC4 and ClC5, but

not ClC7. In the chicken, all horizontal cells express either

calretinin or TrkA, with calretinin-expressing cells comprising the

majority [33]. We cannot rule out ClC7 expression in TrkA-

positive horizontal cells because punctate ClC7 antibody label was

present in the extreme outer portion of the INL, where horizontal

cell bodies are located.

ClC7 expression in bipolar cells was more ambiguous. PKC is

expressed by two populations of bipolar cells in the chicken retina

[36,52]. ClC4 and ClC5 were expressed in cell bodies and

projections to the OPL from both populations. ClC4 and ClC5

signal in these cells was interior to that of PKC, supporting a

cytosolic location for ClC4 and ClC5. Interestingly, though some

PKC-expressing bipolar cells appeared to also express low levels of

ClC7, the ClC7 antibody labeling co-localized with PKC on the

margins of the cell body, consistent with plasma membrane

localization. ClC7 expression is generally cytosolic, but there are

examples of plasma membrane expression in some specialized cell

types, such as osteoclasts [23].

In Müller cells, though there was some co-labeling by the ClC7

and glutamine synthetase antibodies, we could not discern whether

this was due to close apposition of Müller processes to ClC7

puncta in neighboring amacrine cells or to true ClC7 expression in

these retinal glial cells. Nonetheless, ClC7 signal was much less co

localized with glutamine synthetase in comparison to ClC4 and

ClC5, indicating that ClC7 expression by Müller cells, if any, is

much less prevalent.

All CLC transporters examined were expressed in the inner

third of the INL, consistent with expression by amacrine cells.

Further examination of ClC4, 5, and 7 in double labeling

Figure 9. ClC7 is narrowly expressed in PKC-positive bipolar cells, and is absent from calretinin-positive horizontal cells. A–C, Retinal
sections double-labeled with ClC7 and calretinin antibodies show that ClC7 antibody labeling is not strong in calretinin-positive cells. Arrowheads
indicate strongly calretinin-positive amacrine cells that do not express ClC7. D–F, ClC7 is not expressed in calretinin-positive horizontal cells
(asterisks). G–I, Retinal section labeled with ClC7 and PKC antibodies reveal minimal co-localization of the two antibodies. J–L, Higher magnification,
single z plane images of a different tissue section show no co-expression of ClC7 and PKC in the OPL. M–O, Images from a single z plane from the
same z stack as in G–I. P–R, Zoomed images of the blue-bordered area in M–O show little overlap in the signals of the two antibodies, although the
asterisks indicate examples of ClC7 expression in the membrane of a PKC-positive cell. (Scale in A, 50 mm, applies to B–C, G–I, and M–O as well; Scale
D–F, 15 mm; Scale J–L, 10 mm; Scale P–R, 15 mm.)
doi:10.1371/journal.pone.0017647.g009
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experiments with the amacrine cell-specific marker, HPC-1

(syntaxin 1) confirmed expression of those transporters by

amacrine cells. Strongly calretinin-positive amacrine cells ex-

pressed both ClC4 and ClC5, but not ClC7. The few amacrine

cells that were PKC-positive were also positive for ClC4 and

ClC5. Due to the highly punctate distribution of ClC7 antibody

label, ClC7 expression by these cells was more ambiguous. More

strikingly, ClC4 and ClC5 expression in amacrine cell bodies was

highly co-localized with that of nNOS whereas very little overlap

was seen between nNOS and ClC7. In contrast, ClC7 expression

in ChAT-positive cells was very conspicuous. ClC5 was also

expressed by cholinergic amacrine cells, but the co localization

with ChAT was less prominent. Though this investigation of CLC

transporter expression by different subtypes of amacrine cells is far

from complete, it does suggest that these proteins may be

preferentially expressed by amacrine cells that mediate different

functions, especially in the case of ClC7. ClC4 and ClC5 appeared

to be expressed in some degree by all amacrine cells whereas

ClC7, despite some admitted uncertainty caused by the highly

punctate nature of the signal, was clearly expressed in cholinergic

amacrine cells. Whether this especially strong expression is based

on an as yet un-described requirement for a greater number of

lysosomes by starburst amacrine cells or on another unknown

ClC7-mediated function is not clear at this time. However, it is

interesting to note that other Cl2 transport proteins, NKCC and

KCC cation-Cl2 co-transporters, have been found to be selectively

expressed in different regions of cholinergic amacrine cells, where

they actively maintain different local cytosolic Cl2 concentrations

with important implications for cell function [53].

CLC expression in ganglion cells
The ganglion cell layer is comprised of the cell bodies of

ganglion cells and displaced amacrine cells. All CLC transporters

examined were expressed in the GCL, and there was no great

variation in their expression patterns in these cells. However, due

to the persistence of ClC5 antibody signal in the GCL after pre-

incubation with ClC5 peptide, we cannot rule out that some of the

ClC5 labeling there is nonspecific. Interestingly, only ClC5 was

strongly expressed in the NFL, and ClC5 antibody labeling there

did not overlap with that of glutamine synthetase (Fig. 7O),

suggesting that ClC5 is preferentially expressed in ganglion cell

axons.

CLC expression in the synaptic layers of the retina
ClC5 was widely expressed in the outer plexiform layer with

expression located in the processes of horizontal cells, bipolar cells,

and Müller cells. In contrast, ClC4 and ClC7 OPL expression was

more diffuse, and individual ClC4 and ClC7 positive processes

were rarely discernable. ClC4 antibody labeling in the OPL co-

localized with PKC, but not with calretinin, suggesting that the

Figure 10. ClC7 is expressed in amacrine cells, but not widely expressed in Müller or nNOS-positive cells. A–C, Single z plane images of
chicken retinal tissue sections double-labeled with ClC7 and HPC-1 antibodies show that ClC7 is expressed in HPC-1-positive cells. D–F, Zoom of blue
box region in A–C shows that ClC7 is expressed in amacrine cells (asterisks), particularly those with cell bodies close to the IPL. G–I, Zoom of purple
box region in A–C shows ClC7 antibody labeling in displaced amacrine cells of the ganglion cell layer (asterisk) as well as in neighboring, HPC-1
negative ganglion cells. J–L, Sections of retinal tissue double-labeled with ClC7 and GS antibodies. GS and ClC7 co-expression is limited to Müller cell
margins in the center of the INL (arrows). M–O, Retinal sections double-labeled with ClC7 and nNOS antibodies (maximum projection images) reveal
that, except for in the GCL, ClC7 is minimally expressed in nNOS-expressing cells. (Scale A–C, 50 mm, applies to J–L and M–O as well; Scale D–F, 15 mm;
Scale G–I, 15 mm.)
doi:10.1371/journal.pone.0017647.g010

Figure 11. ClC5 and ClC7 are expressed in cholinergic cells of the chicken retina. A–C, Vertical section of chicken retinal tissue double-
labeled with ClC5 antibody and a polyclonal antibody specific for ChAT. ChAT-positive amacrine cells express ClC5 (arrows). IPL bands
immunoreactive for ChAT are also immunoreactive for ClC5 (arrowheads). D–F, Retinal tissue double-labeled with ClC7 and ChAT antibodies shows
that ClC7 expression in the INL is highly co-localized with ChAT (arrows). ClC7 is also highly expressed in the GCL and in the outermost ChAT-
immunoreactive IPL band (arrowheads). (Scale for A is 50 mm and applies for B–F as well.)
doi:10.1371/journal.pone.0017647.g011
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transporter is expressed in bipolar cell postsynaptic terminals, but

not in calretinin-expressing horizontal cell processes. ClC7

antibody labeling did not co-localize with either PKC or

calretinin. ClC6 was moderately expressed in the OPL. The

ClC6 signal in this layer showed a high degree of overlap with

SV2, a specific marker of photoreceptor terminals. These

observations suggest that the role of CLC transporters in signaling

in the outer retina is most likely cell-type and transporter specific.

Another key locus for CLC transporter expression diversity in

the chicken retina was the inner plexiform layer. All CLC

transporters examined, except for ClC3, showed some degree of

expression in both the ON and OFF sublamina of the IPL, and

these expression patterns are summarized in Figure 12B. All four

family members with discernable IPL expression were observed in

both the inner and the outer regions of the IPL. ClC5 was the only

CLC transporter with banding in the outermost section of the IPL

(0–15% IPL depth), whereas ClC4 and ClC7 extended horizontal

and vertical processes, respectively, and ClC6 was not expressed at

all. In the innermost section of the IPL (90–100% IPL depth), an

area thought to be particularly important for rod-driven signaling,

antibodies specific for ClC4, 5, and 6 labeled a thin, well-defined

PKC, nNOS, and calretinin immunoreactive band that was

consistently negative for ClC7. In the central IPL, the expression

of the different CLC transporters appeared to overlap to a higher

degree. However, double label experiments with different markers

revealed some subtle differences in their IPL expression patterns.

IPL bands immunoreactive for ClC4 and ClC5 antibodies were

also immunoreactive for calretinin, except at one calretinin-

positive band at the center of the IPL. In contrast, ClC4 antibody

co-localized with all PKC-positive IPL bands (but not bipolar cell

Figure 12. CLC H+/Cl2 antiporter expression in the chicken retina. A, Illustration of CLC transporter expression in the chicken retina. Filled
blocks represent CLC expression. Unfilled blocks indicated with dashed lines represent weak CLC antibody labeling. B, CLC transporter expression in
the inner plexiform layer.
doi:10.1371/journal.pone.0017647.g012
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terminals) in the outer IPL, whereas ClC5 only co-localized with

PKC in the innermost immunoreactive IPL band. It is intriguing

that ClC4 and ClC5 appeared to be expressed at dendrites but not

terminals of bipolar cells, at least at the resolution level of light

microscopy. Further examination of this apparent differential

synaptic distribution at the electron microscope level would be of

interest. ClC4 and ClC5 also co-localized with nNOS in the IPL

although the overlap was less intense in the case of ClC4. ClC7

expression did not overlap with that of calretinin, PKC, or nNOS

in the IPL, but the outermost band of ClC7 antibody

immunoreactivity strongly co-localized with the outermost band

of ChAT expression. ClC5 IPL expression overlapped with both

bands of ChAT antibody labeling. Taken together, these

observations suggest that the CLCs have synapse-specific func-

tions, and it will be important to test their physiological functions

in the context of synaptic transmission.

Are CLCs differentially expressed in other tissues?
Most previous investigations of CLC transporter expression

have focused on either organ level expression or organellar

expression in various cell types. There has been comparatively

little examination of the relative expression levels of various CLC

proteins in different cell types, especially in the nervous system.

Although there is evidence that all of the Cl2/H+ antiporters in

the CLC protein family display similar biophysical properties and

that they are fairly broadly expressed, they have been shown to

mediate different functions. For example, knockout studies

revealed that, in the kidney, ClC5 is essential for normal

endocytosis in the proximal tubule whereas ClC7, also expressed

in the proximal tubule, is necessary for normal lysosomal protein

degradation [54]. Further, though both ClC3 and ClC7 gene

disruption results in pronounced neurodegeneration, the neuro-

degenerative process is different for the two transporters [15].

It is likely that the observed differences in CLC transporter

function stem at least in part from their different cellular addresses

[55] and this localization pattern is fairly consistent across tissues.

Little is known, however, about the functional significance of cell-

type specific expression within a tissue. Jentsch and colleagues

demonstrated a correlation between ClC5 expression and

expression of the vacuolar proton pump in different kidney cell

types [30]. Two splice variants of ClC4 are expressed in taste

receptor cells, where they are hypothesized to mediate different

functions, but are not expressed in neighboring taste-insensitive

epithelial cells [56]. In the rat vas deferens and epididymus, ClC5

is located in narrow and clear cells with strong proton pump

expression whereas ClC3 is expressed in principal cells with little

proton pump expression, and ClC4 is not expressed at all [57].

The numerous knockout and expression studies done on the CLC

Cl2/H+ exchangers have been extremely valuable in elucidating

the biophysical characteristics of these transporters as well as in

providing clues to their normal cellular function. The challenge

remains, however, to examine the physiological role of these

transporters in their native cellular context. The distinctive

expression patterns of CLC Cl2/H+ exchangers in different

retinal cell types and in the synaptic layers of the retina makes that

endeavor compelling.

Supporting Information

Figure S1 Minimal ClC3 expression in chicken retina
revealed by monoclonal antibody to ClC3 n-terminus. A,

Tissue section labeled only with secondary antibody. B, Retinal

section labeled with monoclonal ClC3 antibody reveals a low level

of labeling, if any. (Scale for A is 50 mm and applies for B as well.)

(TIF)
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