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Background: Genomic instability is considered as one of the hallmarks of hepatocellular

carcinoma (HCC) and poses a significant challenge to the clinical treatment. The

emerging evidence has revealed the roles of long non-coding RNAs (lncRNAs) in

the maintenance of genomic instability. This study is aimed to develop a genomic

instability-related lncRNA signature for determining HCC prognosis and the suitability

of patients for immunotherapy.

Methods: In this study, data related to transcriptome profiling, clinical features, and

the somatic mutations of patients with HCC were downloaded from The Cancer

Genomic Atlas (TCGA). Bioinformatics analysis was performed to identify and construct

a somatic mutation-derived genomic instability-associated lncRNA signature (GILncSig).

Single-sample gene set enrichment analysis (ssGSEA) was applied to estimate the levels

of immune cell infiltration. A nomogram was constructed, and calibration was performed

to assess the effectiveness of the model.

Results: In the study, seven genomic instability-related lncRNAs were identified and

used to define a prognostic signature. Patients with HCC were stratified into high- and

low-risk groups with significant differences in the survival (median survival time = 1.489,

1.748 year; p = 0.006) based on the optimal cutoff value (risk score = 1.010) of the risk

score in the training group. In addition, GILncSig was demonstrated to be an independent

risk factor for the patients with HCC when compared to the clinical parameters (p <

0.001). According to the receiver operating characteristic (ROC) curve, nomogram, and

calibration plot, the signature could predict the survival rate for the patients with HCC in

the 1st, 3rd, and 5th years. Furthermore, ssGSEA revealed the potential of the signature

in guiding decisions for administering clinical treatment.

Conclusions: In this study, we developed a novel prognostic model based on the

somatic mutation-derived lncRNAs and validated it using an internal dataset. The

independence of the GILncSig was estimated using univariate and follow-up multivariate

analyses. Immunologic analysis was used to evaluate the complex factors involved in the

HCC progression.
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BACKGROUND

Hepatocellular carcinoma (HCC) is a malignant tumor with
a high rate of recurrence and poor prognosis, constituting
the fourth major cause of cancer-associated deaths worldwide
(1). Surgical resection, transplantation, and radiofrequency
ablation are the most effective treatment methods for patients
with early-stage liver cancer (1). For a decade, sorafenib, an
antiangiogenic tyrosine kinase inhibitor, is the only treatment
strategy recognized by the Food and Drug Administration (FDA)
for advanced liver cancer (2). However, the therapeutic efficacy
of sorafenib is gradually weakening or restricting owing to the
chemical resistance and recurrence (3, 4). Early diagnosis is
essential for improving patient outcomes (4). The Liver Cancer
Staging System, described in the eighth edition of the American
Joint Committee on Cancer (AJCC 2017), is one of the most
recognized staging systems globally (5). However, the accuracy of
AJCC staging in predicting prognosis in patients with liver cancer
requires improvement.

Genomic instability attributed to the somatic mutations is
a hallmark of cancer cells (6). Genomic instability is observed
frequently in HCC (6, 7). It is also a significant prognostic
parameter, and an increase in the genomic instability ratio
indicates a worse outcome (8–10). Although the mechanisms
underlying genomic instability are not entirely clear, aberrant
transcription and post-transcriptional modifications play
important roles (11).

Non-coding RNAs with a length of more than 200 nucleotides,
termed long non-coding RNAs (lncRNAs), are characterized
as non-coding transcripts and do not encode proteins (12).
The abnormal regulation, involving processes such as deletion
or mutation, of lncRNA has been associated with many
human diseases, including cancer (13). More importantly,
lncRNAs are involved in chromatin interactions, transcriptional
regulation, mRNA post-transcriptional regulation, and
epigenetic regulation. New evidence has illustrated the vital
roles of lncRNAs in regulating genomic stability (14–17).
For example, Lee et al. (17) identified a specific non-coding
RNA, NORAD, which alters genomic stability through the
sequestration of PUMILIO proteins. Although several lncRNAs
are associated with genomic instability, the regulatory role
of lncRNAs associated with genomic instability in cancers
remains elusive.

In this study, we developed a novel promising prognostic
signature that is more effective than the AJCC staging system.
In addition, our research showed the immunemicroenvironment
and immune functions of patients with HCC.

Abbreviations: HCC, hepatocellular carcinoma; LncRNA, long non-coding RNA;

TCGA, The Cancer Genomic Atlas; K-M, Kaplan-Meier; ROC, receiver operating

characteristic; FDA, Food and Drug Administration; GU, genomic unstable; GS,

genomic stable; GILncSig, genomic instability-related lncRNA signature; FDR,

false discovery rate; OS, overall survival; C-index, the concordance index; SNP,

single nucleotide polymorphism; AUC, the area under the curve; AFP, alpha-

fetoprotein; PD-1, programmed cell death protein-1; PD-L1, programmed cell

death protein ligand 1; MHC, major histocompatibility complex; ICI, immune

checkpoint inhibitors.

METHODS

Data Source
RNA-seq expression data (FPKM), somatic mutation
information, and the related clinical variables of 343 patients
with liver cancer were obtained from The Cancer Genomic
Atlas (TCGA, http://cancergenome.nih.gov/, accessed July 20,
2020). The lncRNA expression profile was extracted from the
mRNA expression profile data based on the GTF file information
downloaded from the GENECODE website.

Identification and Construction of the
Genomic Instability-Associated lncRNA
Signatures
Information on somatic variants observed in patients with HCC
stored in the format of mutation annotation downloaded from
TCGAwas analyzed using the “maftools” R package (17). In order
to identify the genomic instability-associated lncRNAs, first, after
calculating the total number of mutations per patient, they
were ranked in descending order (Figure 1). Second, according
to a previous study (18), the top 25% and the last 25% were
characterized as the genomic unstable (GU) group and genomic
stable (GS) group, respectively. Third, the Wilcoxon test was
employed for the comparison of the lncRNA expression matrix
between the GU and GS groups. Finally, according to the
definition, differentially expressed lncRNAs [log2 fold change
>|1| and false discovery rate (FDR) adjusted p < 0.05] were
considered as the genomic instability-related lncRNAs.

Among the genomic instability-related lncRNAs, lncRNAs
associated with the overall survival (OS) of patients with HCC
were screened by employing univariate Cox regression analyses
(p < 0.05). Next, the genomic instability-associated lncRNA
signature (GILncSig) was constructed by performingmultivariate
Cox regression analysis. The risk score was determined for every
patient by applying the following formula: GILncSig score =

coeflncRNA1
∗ exprlncRNA1 + coeflncRNA2

∗ exprlncRNA2 + . . .
+ coeflncRNAn

∗ exprlncRNAn, based on a previous study (18).
Linear integration of the expression levels of lncRNAs weighted
by regression coefficients (coef) was used to assign the risk
score. Log transformation of the hazard ratio (HR) from the
multivariate Cox regression analysis was employed to calculate
the coef value. Patients enrolled in the training group were
divided into high and low-risk groups using the median score as
a cutoff value. The Kaplan-Meier method was used to compare
the survival rates between the high-risk and low-risk groups.
The independence of the risk signature was estimated from other
clinical features using the multivariate Cox regression.

ssGSEA Analysis
The immune-related term enrichment score was established by
exploring the associations between the risk score of GILncSig
and components of the immune system, such as innate or
adaptive immune cell types, immune functions, or pathways
using the ssGSEA program. The levels of immune infiltration
were estimated using the “gsva” R package (19). Quantitative
indicators of immune infiltration were determined for each
patient with HCC. In addition, different distributions of immune
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FIGURE 1 | The process of screening genomic instability-associated lncRNAs.

cell types or functions between the high and low-risk groups
in the TCGA cohort were visualized using the “vioplot” R
package (20).

Construction and Assessment of a
Predictive Nomogram
A nomogram was constructed based on the clinical factors
using multivariate regression analysis in the training group. The
discrimination and calibration of the predictive nomogram were
assessed by applying the concordance index (C-index) and the
calibration curve. The construction of nomogram and calibration
was performed using the “rms” package (21). The effectiveness
of the signature was assessed by constructing a time-dependent
receiver operating feature (ROC) curve using the “survivalROC”
packages (22).

Statistical Analysis
All statistical analyses were performed using the RStudio
(v.1.4.1106). Continuous data are presented as medians or mean
± SD. Statistical significance was set at P < 0.05.

RESULTS

Identifying the Genomic Instability-Related
lncRNAs in Patients With HCC
Liver cancer is highly heterogeneous with respect to the mutated
genes (23, 24). In Figures 2A,B, we illustrate the landscape
of the HCC mutation profile including variant classification,
type of variants, single nucleotide polymorphism (SNP) class,
variants per sample, and the top 10 mutated genes. As shown in
Figure 2B, SNPwas themost common variant type. TP53 was the

Frontiers in Surgery | www.frontiersin.org 3 August 2021 | Volume 8 | Article 724792

https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org
https://www.frontiersin.org/journals/surgery#articles


Guo et al. Prognostic Signature for HCC

FIGURE 2 | Identification of genomic instability-related lncRNAs in patients with HCC. (A) Waterfall summarized mutational data from patients with HCC. (B)

Mutational frequencies in the top 10 genes in the training and testing cohorts. (C) Differentially expressed lncRNAs between GS group and GU group. (D) Hierarchical

cluster analyses of TCGA patients with liver cancer based on the expression pattern of 82 genomic instability-related lncRNAs. (E) Boxplots of somatic mutations in

the GU-like and GS-like groups. (F) Boxplots of TP53 expression level in the GU-like and GS-like groups.

most mutated gene in the HCC, with an average of 30%mutation
frequency. To identify lncRNAs related to the genomic instability,
differential lncRNA expression profiles of patients with HCC
between the GU andGS groups determined by different mutation
patterns were compared. Wilcoxon’s test was used to screen
82 lncRNAs with significant differences (log2 fold change >

|1| and FDR regulated P < 0.05; Supplementary Table 1). The
expression of 53 of 82 lncRNAs was upregulated and that of the
remaining lncRNAs was downregulated. The profiles of the top
20 lncRNAs with upregulated and downregulated expressions are
shown in Figure 2C. In addition, all the patients were divided
into two clusters based on the differential expression profiles of
the 82 lncRNAs (Figure 2D). The group with higher somatic
mutation frequency was regarded as the GS-like group, while
the other group was regarded as the GU-like group. The somatic
mutation patterns of the two groups were significantly different.
Cumulative somatic mutations in the GS-like group were
significantly lower than those in the GU-like group (Figure 2E,
p < 0.001). In addition, the TP53 expression was significantly
higher in the GS-like group than that in the GU-like group
(Figure 2F, p < 0.001).

Construction of the Genomic
Instability-Related lncRNA Signature
To investigate the prognostic effectiveness of these genomic
instability-related lncRNAs, 343 patients with liver cancer from
the TCGA database were randomly assigned to the training
group (n = 172) and the testing group (n = 171). The inclusion
standard included patients with complete prognostic information
and pathologically confirmed HCC. The exclusion criterion
was patients with equal to or <30 days of survival because
they were more likely to die from non-tumor factors, such as
post-operative bleeding or infection. No statistically significant
differences were observed with respect to age (p= 0.855), gender
(p = 0.538), AJCC stage (p = 0.170), histologic grade (p = 1),
T (p = 0.239), M (p = 1), and N (p = 1) using the chi-square
test (Table 1).

The association between the expression profiles of 82
genomic instability-related lncRNAs and the OS of patients
with liver cancer in the training group was analyzed using
the univariate Cox proportional hazard regression. The results
revealed that 11 lncRNAs influenced the prognosis of patients
with HCC (p < 0.05; Supplementary Table 2). These lncRNAs
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TABLE 1 | Clinical information of the 343 patients with liver cancer.

Variables Type Entire group (n = 343) Testing group (n = 172) Training group (n = 171) p-value

Age <=65 216 (62.97%) 109 (63.74%) 107 (62.21%) 0.8554

>65 127 (37.03%) 62 (36.26%) 65 (37.79%)

Gender Female 110 (32.07%) 58 (33.92%) 52 (30.23%) 0.5382

Male 233 (67.93%) 113 (66.08%) 120 (69.77%)

Histologic grade G1-2 214 (62.39%) 106 (61.99%) 108 (62.79%) 1

G3-4 124 (36.15%) 62 (36.26%) 62 (36.05%)

Unknown 5 (1.46%) 3 (1.75%) 2 (1.16%)

AJCC stage Stage I–II 238 (69.39%) 112 (65.5%) 126 (73.26%) 0.1695

Stage III–IV 83 (24.2%) 47 (27.49%) 36 (20.93%)

Unknown 22 (6.41%) 12 (7.02%) 10 (5.81%)

T T1-2 252 (73.47%) 120 (70.18%) 132 (76.74%) 0.2386

T3-4 88 (25.66%) 49 (28.65%) 39 (22.67%)

Unknown 3 (0.87%) 2 (1.17%) 1 (0.58%)

M M0 245 (71.43%) 121 (70.76%) 124 (72.09%) 1

M1 3 (0.87%) 1 (0.58%) 2 (1.16%)

Unknown 95 (27.7%) 49 (28.65%) 46 (26.74%)

N N0 239 (69.68%) 118 (69.01%) 121 (70.35%) 1

N1 2 (0.58%) 1 (0.58%) 1 (0.58%)

Unknown 102 (29.74%) 52 (30.41%) 50 (29.07%)

were then incorporated into a multivariate Cox proportional
hazards regression model to identify an optimal risk signature
model without the risk of overfitting using the “glmnet” R
package. Finally, 7 of 11 lncRNAs were used to construct
the GILncSig based on the maximum value of the Akaike
information criterion (AIC, AIC = 446.94) (Table 2). The
GILncSig score was calculated using the following formula:
value of LINC01287∗0.035+ value of AC004540.1∗0.259+ value
of AC096996.2∗0.338+ value of PRRT3-AS1∗0.202+ value of
AC004862.1∗(−0.188) + value of AC245041.2∗0.063+ value
of AC010205.1∗(−0.782). The coefficients of these lncRNAs
represent the contribution of lncRNAs to the prognostic risk
score obtained from the regression index of multivariate
Cox analysis. The aforementioned formula was adopted to
obtain the risk score of patients with liver cancer in the
training group, and the median risk score (value = 1.010)
was used as the cutoff value to cluster these patients into
different groups. The group with a higher score was called
the high-risk group, and the other group was called the
low-risk group. The Kaplan-Meier analysis indicated that
patients in the low-risk group showed better outcomes than
those in the high-risk group (p = 0.006; p = 0.008; p <

0.001) (Figure 3).
The expression profiles of lncRNAs, the distribution of

somatic mutation frequency, and TP53 expression in different
cohorts are illustrated in Figures 4A–C. TP53 expression was
significantly higher in the high-risk group than that in the
low-risk group in the testing cohort as well as the entire
cohort (p < 0.001; Figures 4E,F). Although the level of TP53
was not significantly different between the high-and low-
risk groups in the training cohort, the p-value was close to
0.05 (Figure 4D).

TABLE 2 | Seven lncRNAs identified using the Cox regression model.

LncRNA Coefficient Hazard ratio (95% CI) p-value

LINC01287 0.035 1.036 (1.002–1.071) 0.039

AC004540.1 0.259 1.296 (1.029–1.632) 0.028

AC096996.2 0.338 1.403 (1.065–1.847) 0.016

PRRT3-AS1 0.202 1.224 (1.091–1.374) 0.001

AC004862.1 −0.188 0.828 (0.663–1.035) 0.098

AC245041.2 0.063 1.066 (0.993–1.414) 0.076

AC010205.1 −0.782 0.457 (0.206–1.018) 0.055

Independence of the GILncSig From Other
Clinical Parameters
The independence of the GILncSig in patients with HCC was
assessed by performing Cox regression analyses. The univariate
and follow-up multivariate analyses showed that AJCC stage
(p = 0.002; p = 0.002; p < 0.001) and GILncSig risk scores
(p < 0.001; p < 0.001; p = 0.002) were significantly related to
OS and were independent factors for patients with liver cancer
in the three groups (Table 3). In addition, according to the time-
dependent ROC curve analysis, the area under the curve (AUC)
for the risk score was 0.730, which was higher than the AUC
values for age (AUC = 0.494), gender (AUC = 0.505), grade
(AUC = 0.516), and stage (AUC = 0.704) in the training group
(Figure 5A). The testing set and the entire set showed similar
outcomes (Figures 5B,C).

Moreover, we investigated the association between the
independent signature and clinical parameters by using the chi-
square test. Tumor grade (p < 0.05), AJCC stage (p < 0.01), and
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FIGURE 3 | Survival curve analysis between the high-risk and low-risk groups in the training group (A), the testing group (B), and the entire group (C).

FIGURE 4 | Identification of the genomic instability-related lncRNA signature for outcome prediction. Heatmap of LncRNAs and the distribution of somatic mutation

and TP53 expression with increasing risk score in the training group (A,D), in the testing group (B,E), and the entire group (C,F).

T stage (p < 0.05) were significantly related to GILncSig in the
training group (Figure 5D). Notably, the AJCC stage and the
T stage were significantly associated with the GILncSig in the
training, testing, and overall groups (Figures 5D–F).

Association Between the GILncSig and
Immune Cell Infiltration
In the study, immune cell types, immune functions, or pathways
were evaluated to assess immune cell infiltration among patients
with HCC in an integrated fashion via ssGSEA analysis of the

transcriptome profiles of patients with liver cancer. As shown
in Figures 6A,B, GILncSig scores showed a significantly positive
association with immune cell types, including various types of
dendritic cells, T-helper cells, Treg cells, follicular helper T cells,
macrophages, and tumor-infiltrating lymphocytes. In addition,
patients in the high-risk group showed a higher proportion
of APC co-stimulation, APC co-inhibition, CCR, check-point,
HLA,MHC class I, para inflammation, T-cell co-stimulation, and
T-cell co-inhibition. In addition, seven of the 13 types of immune
functions were significantly higher in high-risk patients than in
low-risk patients, while the expression of type II IFN response
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TABLE 3 | The univariate and multivariate Cox regression analyses in the training, testing, and entire groups.

Variable Univariate analysis Multivariate analysis

HR HR.95L-HR.95H p HR HR.95L-HR.95H p

Training set (n = 172)

Age (<=65/>65) 1.005 0.983–1.027

Gender (Female/male) 0.870 0.480–1.578

Grade (G1–G4) 0.802 0.535–1.204

Stage (I–IV) 1.776 1.293–2.440 <0.001 1.665 1.205–2.300 0.002

Risk score 1.131 1.087–1.177 <0.001 1.123 1.077–1.170 <0.001

Testing set (n = 171)

Age (<=65/>65) 1.006 0.986–1.026

Gender (Female/male) 0.696 0.413–1.174

Grade (G1–G4) 1.460 1.037–2.056

Stage (I–IV) 1.783 1.339–2.375 0.030 1.609 1.160–2.205 0.002

Risk score 1.009 0.980–1.038 <0.001 1.229 1.172–1.280 <0.001

Entire set (n = 343)

Age (<=65/>65) 1.005 0.991–1.020

Gender (Female/male) 0.758 0.513–1.118

Grade (G1–G4) 1.121 0.865–1.454

Stage (I–IV) 1.808 1.463–2.234 <0.001 1.775 1.436–2.194 <0.001

Risk score 1.028 1.010–1.047 0.003 1.025 1.005–1.046 0.002

HR, hazard ratio. Bold value means p < 0.05.

was the opposite. More importantly, the expression of HLA
family genes and programmed cell death protein-1 (PD-1) in
the high-risk group was significantly higher than that in low-risk
patients with HCC (Figures 6C,D). The aforementioned results
showed that abnormal immune infiltration and differences in
the expression of immune checkpoints can be adopted as
prognostic indices for patients with liver cancer with respect to
immunotherapy with significant clinical implications.

Nomogram Construction and Validation
A nomogram was constructed by combining the age, gender,
tumor grade, AJCC stage, and risk score (Figure 7). Each
parameter in the nomogram was assigned a score. Based on
the parameters of each patient, the score related to each
prognostic element was added to obtain the total score,
which corresponds to the corresponding scale. The survival
rates of the patients were obtained at the 1st, 3rd, and
5th years.

The predictive ability of the nomogram model could be
evaluated and quantified by measuring the extent of fit between
the C-index forecast by the nomogram in the standard curve
and the baseline time. The C-index in the training group
was 0.770 (95% CI: 0.708–0.832), while that for the testing
group and the whole group was 0.680 (95% CI: 0.610–0.750)
and 0.686 (95% CI: 0.635–0.737), respectively. The calibration
curves of the nomogram were remarkably consistent between
the predicted OS rates and actual observations made at the 5th
year in different groups (Figures 8A–C). Simultaneously, the
ROC curve analysis showed that AUC was 0.735 after 1 year,
0.672 after 2 years, and 0.695 after 5 years in the training group
(Figure 8D). The testing group and the whole group showed
similar outcomes (Figures 8E,F).

DISCUSSION

Hepatocellular carcinoma is a malignant tumor with a highly
heterogeneous immune microenvironment, gene expression
profile and associated genetic variations, signal transduction
pathways, and cancer stem cells (1, 25). The high heterogeneity
of liver cancer poses a significant challenge for clinical treatment
(6, 7). Tumor heterogeneity may result from genomic instability
(26). Genomic instability is a common feature of most cancers
and can act as a mutator, enhancing the frequency of mutations
that extend the ability of the primary tumor to adapt, escape, and
metastasize, ultimately contributing to tumor-specific immune
response and resistant phenotypes (27, 28). Thus, genomic
instability leads to tumor heterogeneity, which may act as a target
for prognosis, prevention, and treatment (29). However, the
quantitative analysis of genomic instability is a major problem.
An emerging study illustrated that abnormal transcriptional
or epigenetic changes may lead to genomic alterations (29,
30). LncRNAs exert a significant effect on the progression
of liver cancer, such as regulating proliferation, migration,
apoptosis, cell cycle, tumorigenesis, and metastasis (30, 31).
An examination of the functional mechanism of lncRNA has
shown that lncRNAs are also essential for genomic stability
(30, 31).

In this study, the clinical outcomes of the patients with
HCC were predicted by exploring the GILncSig. Patients with
HCC, whose data are included in the TCGA database, can be
distinguished effectively into high-risk and low-risk cohorts by
applying the prognostic model risk scores. The Cox analysis
showed that the prognostic GILncSig was an independent
factor that could effectively predict HCC prognosis better
than other clinical factors. A nomogram model was built for
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FIGURE 5 | The association of GILncSig and clinical features. (A–C) ROC curve analysis of the training group, the testing group, and the entire group. (D–F)

Differential analysis between GILncSig and clinicopathological features. *p < 0.05; **p < 0.01.

the training group. The outcomes of the C-index and time-
dependent ROC curves illustrated satisfactory discrimination
capacity. The calibration curves showed that the prognosis
for the patients with HCC could be predicted by the
nomogramwith satisfactory performance. Therefore, GILncSig is
a promising biomarker for forecasting outcomes in patients with
liver cancer.

Specific genes can regulate immune pathways and
interactions between immune cells, leading to changes in
the microenvironment, allowing tumors to evade immune
checkpoints. For instance, a recent study revealed that a
specific lncRNA, ALAL-1, associated with genomic instability,
mediates evasion of the immune system in the lung cancer
cells (32). Here, the relationship between the genomic
instability-associated risk model and the main immune

system-associated factors was estimated using the ssGSEA
analysis. A total of 21 out of 29 patients were significantly
altered between patients with low- and high-risk. The terms
associated with immune checkpoints, APC co-inhibition and
co-stimulation, HLA expression, and Tregs were of particular
interest. HLA is a gene cluster encoding the human major
histocompatibility complex (MHC) (33). If the peptides
provided by HLA proteins are altered due to diseases, they can
act as autoantigens that target cellular immune rejection. As
shown in Figure 8C, most HLA family genes were expressed
significantly in high-risk patients with liver cancer than in
low-risk patients. Overexpression of HLA proteins in tumor
cells could undermine recognition by the immune system, which
accounts for these differences in the survival results among these
patient groups.
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FIGURE 6 | The relationship among the risk scores, immune cell infiltration, and immune functionality in patients with liver cancer. The relative enrichment of immune

cell infiltration (A) and immune functionality (B) in the patients with high- and low-risk liver cancer. HLA family gene (C) and PD-1 expression (D) in patients with high-

and low-risk liver cancer. *p < 0.05; **p < 0.01; ***p < 0.001.

Administration of immune checkpoint inhibitors (ICIs) is
by far the most promising immunotherapeutic strategy (34).
Immune checkpoint proteins act as biomarkers that could
identify whether patients with liver cancer are suitable for
immunotherapy (34). Typically, immune checkpoint molecules
can suppress immune responses (35). However, many patients
with cancer cannot benefit from immune checkpoint suppression
due to abnormal immune checkpoint protein expression
(36). The expression of immune checkpoint proteins was
significantly higher among patients with high-risk than low-
risk patients. The immune response may be suppressed if the
immune checkpoint proteins are overexpressed. At the same
time, insufficient expression of immune checkpoint inhibitors
may result in unconstrained harmful immune responses
(37, 38).

More importantly, the increase in the expression of PD-
1 in tumor-infiltrating lymphocytes is always associated
with poor prognosis among patients with HCC (37, 38).
PD-1 is a potential biomarker that aids in determining
the suitability of immunochemical checkpoint therapy
for patients (39). Recent evidence suggests that PD-(L)1
overexpression and genomic instability in tumors are
associated with immune checkpoint inhibitor responses
(40–42). In the study, the findings demonstrate the
promising potential of immunotherapy for patients
with HCC.

The current analysis had some limitations. On the one
hand, all the data supplied in this research were derived from
the TCGA database; on the other hand, although patients
were randomly divided into training and testing queues, the
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FIGURE 7 | A predictive nomogram for OS in the training group.

FIGURE 8 | The calibration curve of OS and ROC curve in the training group (A,D), testing group (B,E), and entire group (C,F).
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contribution of this internal verification method is limited.
Further external validation is critical to identify and extend these
outcomes as a potential method for developing clinically valuable
prognostic signatures.

CONCLUSIONS

In summary, GILncSig showed satisfactory efficiency for HCC
prognosis. Furthermore, the association between the risk model
and immune infiltration was explored. The data suggest that this
predictive model may provide effective markers for evaluating
patients with HCC and immunotherapeutic strategies.
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