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ABSTRACT

Phage therapy is progressively being recognized as a viable alternative to conventional 
antibiotic treatments, particularly in the context of multi-drug resistant bacterial 
challenges. However, the intricacies of the pharmacokinetics and pharmacodynamics 
(PKPD) pertaining to phages remain inadequately elucidated. A salient characteristic of 
phage PKPD is the inherent ability of phages to undergo replication. In this review, I proffer 
mathematical models that delineate the intricate dynamics encompassing the phage, the host 
organism, and the immune system. Fundamental tenets associated with proliferative and 
inundation thresholds are explored, and distinctions between active and passive therapies 
are accentuated. Furthermore, I present models that aim to illuminate the multifaceted 
interactions amongst diverse phage strains and bacterial subpopulations, each possessing 
distinct sensitivities to phages. The synergistic relationship between phages and the immune 
system is critically examined, demonstrating how the host’s immunological function 
can influence the requisite phage dose for an optimal therapeutic outcome. A profound 
understanding of the presented modeling methodologies is paramount for researchers in 
the realms of clinical pharmacology and PKPD modeling interested in phage therapy. Such 
insights facilitate a more nuanced interpretation of dose-response relationships, enable the 
selection of potent phages, and aid in the optimization of phage cocktails.

Keywords: Phage Therapy; Mathematical Model; Population Dynamics

INTRODUCTION

Phage therapy - using bacteriophages (viruses that target bacteria) to counter bacterial 
infections - has seen a revitalized interest lately [1]. This uptick in attention arises chiefly 
from the escalating antibiotic resistance dilemma, emphasizing the need for innovative 
therapeutic approaches [2]. Bacteriophages, often abbreviated to phages, are highly specific, 
self-amplifying, and adaptable, showing promise in fighting bacterial infections.

Found ubiquitously in nature, there is an estimated 1031 phages on Earth, outnumbering 
bacteria by tenfold [2]. Their remarkable specificity often limits their target to a particular 
bacterial species or strain. Such specificity has a double-edged effect: it ensures phage 
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therapy scarcely impacts the host's microbiota, preserving beneficial bacteria. However, it 
also necessitates exact bacterial pathogen identification and the creation of tailored phage 
cocktails for effective therapy [3].

When it comes to drug development, evaluating the pharmacokinetic-pharmacodynamic 
(PKPD) properties is paramount. But for phages, their inherent ability to reproduce makes their 
PKPD assessment distinct from antibiotics. Mathematical models have emerged as invaluable 
in studying phage-bacteria dynamics, paving the way for predicting phage therapy outcomes. 
Leveraging equations that delineate the involved biological processes, these models delve deep 
into the intricate interactions amongst phages, bacteria, and the host immune defense.

Previous works have been rooted in in vitro time-kill studies [4], animal in vivo PKPD 
investigations [5], or a combination thereof [6]. Both the synergistic interactions of phage 
with the immune system [5,7] and with antibiotics [8] have been rigorously scrutinized 
through quantitative mathematical frameworks. Furthermore, both web-based [9] and 
standalone software applications [10] have been devised to predict the intricate dynamics 
of phage infections. Theoretical explorations have been meticulously conducted to address 
the co-evolutionary dynamics intertwining bacteria and bacteriophage [11], strategies 
for optimizing phage cocktails [12], and the emergence of phenotypic resistance [13], 
among other pertinent subjects. Current endeavors in mathematical modeling persistently 
illuminate myriad dimensions inherent to phage therapy. This realm undoubtedly represents 
an avant-garde and burgeoning field of pharmacometrics and systems pharmacology.

Despite ongoing research, no human PKPD studies have been published to date. Currently, 
11 trials have been completed, with some findings already published [14-16], and there 
are six active clinical trials investigating various facets of phage therapy, as recorded on 
ClinicalTrials.gov. Although there are no FDA-approved phage therapy products, the leading 
product is in Phase 2 of clinical development. Nevertheless, there are numerous clinical case 
reports on phage therapy outcomes under emergency or treatment IND conditions [17-20]. 
The outcomes thus far have been varied, and the safety and efficacy of phage therapy in 
humans have not yet been conclusively established. Consequently, significant efforts are 
required to transition phage therapy into routine clinical practice.

In this review, I will introduce the basic principles of phage-bacteria interactions, spotlight 
the important concepts associated with proliferative and inundative thresholds, distinguish 
between active and passive phage therapies, and present mathematical models that elucidate 
phage-host-immune system dynamics. I will then demonstrate how these models can be 
harnessed to elucidate dose-response relationships and fine-tune phage dosages.

BASIC PRINCIPLES OF PHAGE-BACTERIA INTERACTIONS

For bacteriophages (phages) to kill bacterial cells, they must first adhere to the host bacteria, 
injecting their genetic content into the cell. From a pharmacokinetic (PK) standpoint, phages 
are expended after this adsorption. Consequently, the phage loss rate correlates with the 
bacterial kill rate. This parallels the concept of target-mediated drug disposition (TMDD), 
where target engagement precedes receptor-mediated endocytosis. Nevertheless, phages 
have an added ability: replication. There are two core phage replication mechanisms: the lytic 
and lysogenic cycles [21].
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During the lytic cycle, a phage commandeers the host cell's functions to duplicate its DNA 
and create new virus parts. Once the cell is saturated with phage offspring, it ruptures, 
dispersing the newborn phage particles to infect other bacteria. This lytic action, which leads 
to the bacterial host's destruction, is pivotal for therapeutic phages.

Conversely, the lysogenic cycle involves the phage DNA integrating into the bacterial DNA, 
generating a prophage. This prophage remains latent and duplicates with the host DNA. 
Under specific triggers, like DNA damage, the prophage may revert to the lytic cycle. While 
lysogenic phages occasionally have therapeutic applications, they are generally avoided due to 
risks, such as transferring antibiotic resistance genes to other bacteria. For this discourse, we 
will primarily concentrate on lytic phages.

MODELING PHAGE INFECTION DYNAMICS

The infection commences with adsorption, where phages attach to receptors on the bacterial 
cell. The adsorption rate hinges on phage and bacteria concentrations and the phage’s 
receptor affinity. The constant representing this rate, denoted as k in this article, is vital in 
mathematical phage-bacteria interaction models.

Following successful adsorption and genome insertion, phage replication ensues, 
culminating in bacterial cell rupture and progeny release. The term “burst size,” henceforth 
denoted as b, signifies the number of phages released post-infection, while “latent period” 
indicates the duration from infection to cell rupture.

Several methods exist to model phage-bacteria dynamics. The predominant technique 
employs ordinary differential equations (ODEs). However, ODE-based models carry 
assumptions that can affect their validity:

1.  Homogeneous Distribution: Such models often propose a uniform spread of phages and 
bacteria, a scenario not always reflective of intricate biological systems.

2.  Static Parameters: Most models lean on constant values like adsorption rates (k) or 
burst sizes (b). However, these might fluctuate due to bacterial mutations or shifting 
environmental conditions.

3.  Continuum Assumption: Similar to numerous pharmacokinetic-pharmacodynamic 
models, these models presuppose that phage and bacteria concentrations are 
continuous. But, phages and bacteria are distinct units, making these models 
potentially flawed when phage and bacteria counts are minimal.

Presuming these assumptions are accurate, a rudimentary model delineating phage-host 
dynamics can be outlined as follows:

(Model I)
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𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑟𝑟 ∙ 𝑑𝑑𝑑𝑑 ∙ �1 −
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
� − 𝑘𝑘𝑘𝑘 ∙ 𝑃𝑃𝑃𝑃 ∙ 𝑑𝑑𝑑𝑑 (1) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝑏𝑏𝑏𝑏 − 1) ∙ 𝑘𝑘𝑘𝑘 ∙ 𝑑𝑑𝑑𝑑 ∙ 𝐵𝐵𝐵𝐵 − 𝑤𝑤𝑤𝑤 ∙ 𝑑𝑑𝑑𝑑 (2) 



where B represents the bacterial density, P the phage density, r the bacterial growth rate, k the 
adsorption rate constant, b the burst size, Bmax  the carrying capacity, and w the phage decay rate.

To account for the latent period between phage infection and host cell lysis, Model I can be 
modified into a system of delay differential equations (DDEs).

(Model II)

B = S + I  (6)

where S and I represent sensitive (i.e., uninfected) and infected bacteria. PL and SL denote P 
and S that existed L time units in the past, with L being the length of the latent period.

Alternatively, transit compartments can be used to approximate the time delay.

(Model III) 

     ...

    B = S + I1 + … + In  (10)

For practical purposes, Model I is often sufficient since latent periods of phages used in 
phage therapy seldom exceeds 1 hour.

UNDERSTANDING PROLIFERATIVE AND INUNDATION 
THRESHOLDS
Grasping phage PKPD hinges on the notions of proliferative and inundation thresholds [22]. The 
proliferative threshold is the critical bacterial concentration necessary for a net phage density 
increase. Conversely, the inundation threshold is the essential phage concentration for a net 
bacterial density decrease.
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𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑟𝑟 ∙ 𝑑𝑑𝑑𝑑 ∙ �1 −
𝐵𝐵𝐵𝐵

𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
� − 𝑘𝑘𝑘𝑘 ∙ 𝑃𝑃𝑃𝑃 ∙ 𝑑𝑑𝑑𝑑 (3) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑘𝑘 ∙ 𝑃𝑃𝑃𝑃 ∙ 𝑆𝑆𝑆𝑆 − 𝑘𝑘𝑘𝑘 ∙ 𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿 ∙ 𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 (4) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑏𝑏𝑏𝑏 ∙ 𝑘𝑘𝑘𝑘 ∙ 𝑑𝑑𝑑𝑑𝐿𝐿𝐿𝐿 ∙ 𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿 − 𝑘𝑘𝑘𝑘 ∙ 𝑑𝑑𝑑𝑑 ∙ 𝐵𝐵𝐵𝐵 − 𝑤𝑤𝑤𝑤 ∙ 𝑑𝑑𝑑𝑑 (5) 

𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼1
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑘𝑘 ∙ 𝑃𝑃𝑃𝑃 ∙ 𝑆𝑆𝑆𝑆 − 𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∙ 𝐼𝐼𝐼𝐼1 (7) 

𝑑𝑑𝑑𝑑𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∙ 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛−1 − 𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∙ 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 (8) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑏𝑏𝑏𝑏 ∙ 𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∙ 𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛 − 𝑘𝑘𝑘𝑘 ∙ 𝑑𝑑𝑑𝑑 ∙ 𝐵𝐵𝐵𝐵 − 𝑤𝑤𝑤𝑤 ∙ 𝑑𝑑𝑑𝑑 (9) 



To delve into these concepts quantitatively, we refer to a streamlined version of Model I, which 
overlooks the logistic growth constraint. This model is applicable primarily when B << Bmax.

 
For a net decrease in bacterial concentration, 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

  < 0 must be true. Assuming B > 0, this 
equates to r > k · P, or P < 𝑟𝑟𝑟𝑟

𝑘𝑘𝑘𝑘
 . Therefore, 𝑟𝑟𝑟𝑟

𝑘𝑘𝑘𝑘
  is the inundation threshold.

Likewise, the condition for phage replication is gleaned by ensuring 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

  > 0 in Eq. (2). Given 
P > 0, rearranging Eq. (2) leads to (b − 1) · k · B > w. This makes 𝑤𝑤𝑤𝑤

(𝑏𝑏𝑏𝑏 − 1) ∙ 𝑘𝑘𝑘𝑘
 the proliferation 

threshold essential for phage propagation.

Fig. 1 illustrates the typical temporal trajectories of lytic phages and their host bacteria. 
Initially, the bacterial concentration rises as phage density lingers below the inundation 
threshold. When bacterial density hits the proliferative threshold, there is a sharp 
uptick in phage density. Over time, as phage density eclipses the inundation threshold, 
bacterial numbers dwindle. However, the depletion of host bacteria triggers a dip in phage 
concentration beneath the inundation threshold, reinitiating the cycle.

The inundation threshold in phage therapy bears conceptual resemblance to the minimum 
inhibitory concentration (MIC) observed with antibiotics. However, in phage therapy, 
even if the initial phage dose does not surpass the inundation threshold, it can still be 
effective provided there is an adequate bacterial density to foster phage proliferation. This 
proliferation can eventually elevate the phage density beyond the inundation threshold.

This dynamic sets phage therapy apart from traditional antibiotics: the initial dose is not the 
sole determinant of the steady-state phage concentration. Instead, phage therapy emphasizes 
the replicative potential of phages in conjunction with host bacterial density, both of which 
play pivotal roles in dictating the final phage concentration.

EXPLORATORY SIMULATIONS

Dose-response relationship
Using Model I as a foundation, we explore the dose-response relationship in phage therapy. 
Fig. 2A and B illustrate that a higher phage dose corresponds to an earlier inhibition of 
bacterial growth – a predictable outcome. However, what is surprising is that for doses less 
than or equal to 107 PFU/mL, a higher dose results in a diminished peak phage concentration 
(Fig. 2A) and an elevated minimum bacterial density (Fig. 2B).

For doses surpassing 107 PFU mL−1, the relationship shifts. Higher doses align with a superior 
peak phage concentration and a subsequent reduction in bacterial density by t = 6 (Fig. 2B). 
 The U-shaped dose response is a result of rapid bacterial growth inhibition combined 
with reduced phage multiplication at elevated doses. An essential threshold emerges when 
the phage dose exceeds a particular point. As depicted in Figure 2B, starting with a phage 
concentration over 107 PFU mL−1 initiates a dose-dependent bacterial reduction. Therefore, 
with adequately high doses, the outcome is less reliant on phage multiplication, making the 
initial dose the primary determinant of final bacterial count.
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𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑟𝑟 ∙ 𝑑𝑑𝑑𝑑 − 𝑘𝑘𝑘𝑘 ∙ 𝑃𝑃𝑃𝑃 ∙ 𝑑𝑑𝑑𝑑 (1’) 



This pivotal finding suggests 2 distinct therapeutic approaches with phages: active and passive 
therapy [4]. Active therapy capitalizes on phage multiplication to surpass the inundation 
threshold, while passive therapy provides a phage dose that already exceeds the threshold. 
The chosen approach significantly influences the dosing strategy, and the optimal dosage 
must strike a balance between immediate efficacy and long-term outcomes.

The role of host density
An intriguing facet of phage therapy is its efficacy’s dependence on host density. Elevated 
host density corresponds with a more substantial peak phage concentration, facilitating more 
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Figure 1. A schematic diagram illustrating the infection cycle of a typical lytic phage. The bottom graph depicts 
the expected temporal trajectories of phages and host bacteria, generated using Model I. Parameters used for 
the simulation are: B(0) = 104 CFU mL−1, P(0) = 104 PFU mL−1, r = 1 h−1, k = 10−7 mL CFU−1 h−1, b = 100, w =1 h−1, and 
Bmax = 1010 CFU mL−1.



efficient bacterial elimination (Fig. 3A). Theoretically, this means phage therapy is more potent 
during severe infections, and more effective at infection sites with denser bacterial populations.

Influence of phage pharmacokinetics
A shorter phage half-life results in an elevated minimum bacterial density and a reduced 
span of the predator-prey cycle (Fig. 3B). Given this, longer-lived phages are more desirable. 
It is essential to note, however, that a phage’s half-life in its target area might differ from its 
plasma half-life. Therefore, during preclinical development, it is crucial to measure phage 
concentrations from the targeted site to acquire accurate data on the phage’s half-life and its 
precise location of action.

Influence of phage characteristics
Two primary phage parameters – the adsorption rate constant (k) and burst size (b) – play 
pivotal roles in determining treatment efficacy. Enhancing either k or b leads to a decrease in 
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B(0) = 104 CFU mL−1, r = 1 h−1, k = 10−7 mL CFU−1 h−1, b = 100, w =1 h−1, and Bmax = 1010 CFU mL−1.



peak bacterial density. Yet, their implications vary. For simplification, when we exclude phage 
elimination, simulations indicate a higher k, owing to more rapid bacterial elimination, 
results in a reduced equilibrium phage titer (Fig. 4A). In contrast, an elevated b produces a 
heightened equilibrium phage titer (Fig. 4B). Consequently, the rate of bacterial reduction, 
influenced by the phage titer, diminishes with an increase in k and amplifies with a boost in b.

This data suggests that when sourcing phages, priority might be given to those with a 
more considerable burst size (b). Nonetheless, an expanded burst size invariably implies a 
prolonged latent period [23].
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MODELS FOR MULTI-BACTERIA INTERACTIONS

Our assumptions thus far have centered around a uniform bacterial population susceptible to 
phage. In real-world scenarios, there always exists a subset of bacteria resistant to the phage. To 
reflect this complexity, bacteria B can be categorized into sensitive (S) and resistant (R) strains:

(Model IV)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑟𝑟𝑆𝑆𝑆𝑆 ∙ 𝑑𝑑𝑑𝑑 ∙ (1 − 𝑐𝑐𝑐𝑐𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∙ 𝑑𝑑𝑑𝑑 −  𝑐𝑐𝑐𝑐𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆 ∙ 𝑅𝑅𝑅𝑅) − 𝑘𝑘𝑘𝑘 ∙ 𝑃𝑃𝑃𝑃 ∙ 𝑑𝑑𝑑𝑑 (11) 

B = S + R  (13)
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𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑟𝑟𝑅𝑅𝑅𝑅 ∙ 𝑑𝑑𝑑𝑑 ∙ (1 − 𝑐𝑐𝑐𝑐𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅 ∙ 𝑆𝑆𝑆𝑆 −  𝑐𝑐𝑐𝑐𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∙ 𝑑𝑑𝑑𝑑) (12) 

Ph
ag

e 
(P

FU
/m

L)

Time (hr)

A

0 4 5

106

107

108

6321

1010

109

Ph
ag

e 
(P

FU
/m

L)

Time (hr)

C

0 4 5

107

6321

108

106

Ba
ct

er
ia

 (C
FU

/m
L)

Time (hr)

B

10−1

0 4 5

101

103

105

6321

107

10−3

10−5

Ba
ct

er
ia

 (C
FU

/m
L)

Time (hr)

D

10−1

0 4 5

101

103

105

6321

10−3

10−5

10−9 mL/CFU h
Adsorption rate

10−8.5 mL/CFU h
10−8 mL/CFU h
10−7.5 mL/CFU h

25
Burst size

50
100
200

Figure 4. The effects of (A) adsorption rate constant (k) and (B) burst size (b) on the dynamics of P and B based on Model I. Default parameters used for the 
sensitivity analysis were: B(0) = 106 CFU mL−1, P(0) = 106 PFU mL−1, r = 1 h−1, k = 10−7 mL CFU−1 h−1, b = 100, w =0 h−1, and Bmax = 1010 CFU mL−1.



where rS and rR depict the growth rate constants of S and R, respectively, and cxy represents the 
competition coefficient that delineates x’s inhibitory effect on y.

A captivating dynamic emerges, especially when cSR is significantly high (Fig. 5A). An elevated 
phage dose predominantly eliminates S, prompting S’s reduced inhibition on R. This shift 
means that higher phage dosages can accelerate the rise of resistance. Such potential 
outcomes mandate careful consideration during phage dose optimization.

Expanding on Model IV, an extension can accommodate n subpopulations, each displaying 
varied phage sensitivities:

(Model V)
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Fig. 5B illustrates the simulation results when n equals 3 subpopulations. Intriguingly, 
the number of peak bacterial concentrations matches the number of subpopulations 
incorporated into the model. This characteristic provides information regarding the number 
of different subpopulations when constructing phage therapy PKPD models.

MULTI-PHAGE INTERACTION MODELS

In multi-phage interaction models, two or more phage strains target the same bacterial 
strain. These models can help researchers understand how phage strains interact and 
compete for limited bacterial resources, as well as how phage diversity can impact therapy 
outcomes. The general form of the multi-phage interaction model is:

(Model VI)

where i represents each phage strain, Pi its density, ki the adsorption rate constant, and wi the 
decay rate of phage strain i.

MULTI-PHAGE, MULTI-BACTERIA INTERACTION MODELS

Model VI can be combined with Model V to yield n subpopulations that differ in sensitivity to 
the different phages. Such models could be used when modeling the PKPD of phage cocktails.

(Model VII)

where k represents each bacterial subpopulation, Bk its concentration, kik the adsorption rate 
constant, bki the burst size of phage strain i on bacterial subpopulation k.

The afore-mentioned models have numerous applications in phage therapy research, including:
1)  Designing phage cocktails: By simulating the dynamics of multiple phage strains 

targeting different bacterial strains, these models can help identify the most effective 
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� −�𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 ∙ 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 ∙ 𝐵𝐵𝐵𝐵𝑘𝑘𝑘𝑘  (19) 
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combinations of phages for treating complex bacterial infections.
2)  Predicting phage therapy outcomes: Understanding how multiple phages and bacteria 

interact can improve predictions of therapy outcomes and inform treatment strategies.
3)  Investigating coevolutionary dynamics: These models can be used to study the 

coevolution of phages and bacteria, shedding light on the emergence of bacterial 
resistance and the potential for phage adaptation in response to resistant bacterial strains.

4)  Evaluating the impact of phage therapy on microbiota: By simulating the interactions 
between multiple phages and bacteria, researchers can assess the potential impact of 
phage therapy on the overall microbial community and develop strategies to minimize 
unintended consequences on the host microbiota.

THE HOST IMMUNE SYSTEM AND PHAGE THERAPY

The host immune system is a complex network of cells, tissues, and signaling molecules that 
work together to protect the body against invading pathogens, including bacteria and viruses. 
In the context of phage therapy, the immune system can influence the outcome of treatment 
in several ways:

1)  Direct interactions with phages: The immune system can recognize and neutralize 
phage particles, potentially reducing their efficacy in clearing bacterial infections.

2)  Modulation of bacterial clearance: The immune system contributes to bacterial 
clearance by phagocytosis, the production of antimicrobial peptides, and the activation 
of other immune cells. The effectiveness of phage therapy can be enhanced or 
diminished by the host immune response against bacteria.

3)  Inflammation and tissue damage: The immune response to bacterial infections can lead 
to inflammation and tissue damage, which may impact phage therapy outcomes.

To incorporate the host immune system into phage therapy models, researchers can add 
additional equations and parameters that represent various aspects of the immune response, 
such as:

1)  Phage neutralization: An additional term can be added to the phage dynamics equation 
to account for the immune system’s capacity to neutralize phage particles. This term 
may be dependent on the density of phages, as well as the immune cell population.

2)  Immune cell dynamics: Equations describing the dynamics of immune cell populations, 
such as macrophages or neutrophils, can be included in the model. These equations 
may involve factors such as immune cell recruitment, activation, and proliferation.

3)  Interactions between immune cells, phages, and bacteria: The model can be extended 
to include interactions between immune cells, phages, and bacteria, such as 
phagocytosis of bacteria by immune cells or the impact of immune cell activation on 
phage efficacy.

Several mathematical models have been developed that incorporate the host immune system 
in phage therapy simulations, including:

1)  Models investigating the impact of phage neutralization on therapy outcomes: These 
models can help researchers understand how the host immune system’s ability to 
recognize and neutralize phage particles can influence the success of phage therapy.

2)  Models exploring the synergistic effects of phages and immune cells in bacterial clearance: 
By simulating the combined action of phages and immune cells against bacteria, these 
models can provide insights into the optimal conditions for successful phage therapy.
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3)  Models studying the role of inflammation and tissue damage in phage therapy: These 
models can help identify strategies to minimize the potential negative effects of 
immune responses on phage therapy outcomes.

The basic model with phage neutralization
In this model, we explore the neutralization of phage particles by the host’s immune system. 
We introduce a new variable, I, symbolizing the density of immune cells (like antibodies or 
phagocytes) that can neutralize phages. The term α · I · P is added to denote the rate of phage 
neutralization:

(Model VIII)

Here, α is the neutralization rate constant, while f (B, P, I) describes how immune cell 
production shifts in response to bacteria (B) and phages (P). δ signifies the decay rate of 
immune cells.

In the following model, we address the behavior of immune cells, such as neutrophils and 
macrophages, when faced with bacterial infections. An extra term, g(B, I), embodies the 
bacterial clearance rate due to immune cells:

(Model IX)

Here, g(B, I) denotes the interaction between bacteria and immune cells, such as 
phagocytosis. Meanwhile, h(B, P, I) encapsulates the recruitment, activation, and 
multiplication of immune cells reacting to bacteria (B) and phages (P). δ remains as the decay 
rate of immune cells.

Diverse dynamic patterns can emerge based on the functional forms assumed for g(B, I) 
and h(B, P, I). Leung and Weitz [7], under the premise of saturable immune cell killing and 
immune saturation and assuming δ to be negligible, set the functions as:
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In the above, ε reflects the killing rate of innate immune response, KD the bacterial 
concentration at which innate immune response is half saturated, α the maximum growth rate 
of innate immune response, KI the maximum capacity of innate immune response, and KN the 
bacterial concentration when innate immune response growth rate is half its maximum.

With this setup, three theoretical outcomes were identified: 1) Joint action of phage and the 
immune system eradicates bacteria, 2) Phages and bacteria achieve a stable coexistence, 3) 
Phages get eliminated, leading to the maximal growth of bacteria.

Here, we deal with the simplified version of the model by assuming a steady state level I for 
the immune system. Saturable bacterial elimination by the immune system is also assumed, 
in line with Leung and Weitz:

(Model X)

Without phages, the B equation simplifies to an equation with a constant ε′ (defined as ε · I).

By setting the change in B over time to zero and comparing the two growth and death 
functions for B, 𝑓𝑓𝑓𝑓(𝐵𝐵𝐵𝐵) =  𝑟𝑟𝑟𝑟 ∙ 𝐵𝐵𝐵𝐵 ∙ �1 −
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𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷
� , respectively, several 

insights emerge about bacterial population dynamics and the roles of the immune system 
and phage.

The function f(B) is an inverted parabola intersecting the abscissa at B = 0 and B = Bmax. 
The function g(B), on the other hand, is a Michaelian curve approaching the asymptotic 
maximum of ε · KD as B → ∞. At small B, f(B) ≈ r · B and g(B) ≈ ε′ · B. Hence, when r > ε′, the two 
functions always intersect at 2 points with B invariably converging to the higher, nonzero 
solution (Fig. 6A). On the other hand, with ε′ ≥ r, the 2 functions either intersect at a single 
point (Fig. 6B) or 3 points (Fig. 6C).

Biological interpretation suggests that under insufficient immune cell kill characterized by 
ε′ < r, bacteria grow until stabilizing at a certain steady state level BSS with BSS < Bmax. On the 
other hand, with ε′ ≥ r, death rate always dominates growth rate at small B. In this case, the 
magnitude of KD determines whether f(B) and g(B) intersect at a single point or three points.

In essence, the dynamics can exhibit “bi-stability,” meaning the steady state level depends on 
the system’s initial state. The system can also undergo a “saddle-node bifurcation” at a critical 
value of KD (Fig. 6D). When KD is above the threshold, zero is the only fixed point of B and is 
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𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
� − 𝜖𝜖𝜖𝜖′ ∙ 𝑑𝑑𝑑𝑑/(1 +

𝑑𝑑𝑑𝑑
𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷

) (29′) 

ℎ(𝐵𝐵𝐵𝐵,𝑃𝑃𝑃𝑃, 𝐼𝐼𝐼𝐼) = 𝛼𝛼𝛼𝛼 ∙ 𝐼𝐼𝐼𝐼 ∙ (1 −
𝐼𝐼𝐼𝐼
𝐾𝐾𝐾𝐾𝐼𝐼𝐼𝐼

) ∙
𝐵𝐵𝐵𝐵

𝐵𝐵𝐵𝐵 + 𝐾𝐾𝐾𝐾𝑁𝑁𝑁𝑁
 (28) 



globally stable. Otherwise, 2 additional fixed points emerge, with a lower unstable fixed point 
(dotted line in Fig. 6D) and a higher stable fixed point (solid line in Fig. 6D). In this case, 
the initial bacterial density determines the steady state of the system. If the initial bacterial 
density is lower than the unstable fixed point, B converges to the lower fixed point of zero. 
However, if the initial bacterial density is higher that the unstable fixed point, bacteria grow 
and converges to the higher fixed point.

The findings suggest that minor infections with low bacterial density are typically managed 
by the immune system, while severe infections are not. This matches clinical observations 
that mild infections often resolve on their own.

Reintroducing the phage, it is assumed that phage is administered at the beginning (t = 0), 
and the immune system activation has not started. Phages reduce bacterial density. At a 
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certain point, if the bacterial density falls below a critical threshold, the immune system can 
eliminate the bacteria on its own.

This brings up a thought-provoking question: Why has not our immune system evolved to 
always have a ε′ value larger than r when activated? While this is complex and cannot be easily 
answered, excessive inflammation can lead to organ damage or even death. Balancing the 
immune system is crucial, as emphasized by various studies.

In conclusion, incorporating the host immune system into phage therapy mathematical 
models allows for a more comprehensive understanding of the complex interactions between 
phages, bacteria, and the host during treatment. These models can help improve predictions 
of therapeutic outcomes and guide the development of personalized and effective phage 
therapy strategies.

OPTIMIZATION OF PHAGE DOSE

Upon a comprehensive scrutiny of diverse elements pertaining to the dynamics among 
phages, their hosts, and the immune system, our focus now shifts to the determination of 
the minimum phage dosage essential for successful bacterial eradication, contingent upon 
immune system functionality. We shall employ an interaction model, tailored from the Leung 
and Weitz construct [7], to simulate these interactions. This adjusted model accounts for 
resistant bacterial subpopulations and presumes an innate turnover of baseline immune cells.

(Model XI) 

          B = S + R  (35)

Herein, S and R signify phage-sensitive and resistant bacterial populations, respectively. δ 
represents the immune cell elimination rate constant, with I0 as the baseline immune cell 
concentration. We postulate that at the outset, a fraction 0 < φ < 1 of the total bacterial 
population exhibits resistance. Remaining parameters align with those defined in the 
sections describing Eq. (27)-(28).

Model simulations reveal a pivotal phage dose threshold beneath which therapeutic 
endeavors are ineffectual. A diminished efficacy in immune system activation 
correspondingly elevates this critical dose, as visualized in Fig. 7A in comparison to Fig. 7B. 
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𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑟𝑟 ∙ 𝑑𝑑𝑑𝑑 ∙ �1 −
𝐵𝐵𝐵𝐵

𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
� − 𝑘𝑘𝑘𝑘 ∙ 𝑃𝑃𝑃𝑃 ∙ 𝑑𝑑𝑑𝑑 − 𝜖𝜖𝜖𝜖 ∙ 𝐼𝐼𝐼𝐼 ∙ 𝑑𝑑𝑑𝑑/ (1 +

𝐵𝐵𝐵𝐵
𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷

) (31) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑟𝑟 ∙ 𝑑𝑑𝑑𝑑 ∙ �1 −
𝐵𝐵𝐵𝐵

𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
� − 𝜖𝜖𝜖𝜖 ∙ 𝐼𝐼𝐼𝐼 ∙ 𝑑𝑑𝑑𝑑/(1 +

𝐵𝐵𝐵𝐵
𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷

) (32) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝑏𝑏𝑏𝑏 − 1) ∙ 𝑘𝑘𝑘𝑘 ∙ 𝑑𝑑𝑑𝑑 ∙ 𝑆𝑆𝑆𝑆 − 𝑤𝑤𝑤𝑤 ∙ 𝑑𝑑𝑑𝑑 (33) 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝛼𝛼𝛼𝛼 ∙ 𝑑𝑑𝑑𝑑 ∙ �1 −
𝑑𝑑𝑑𝑑
𝐾𝐾𝐾𝐾𝐼𝐼𝐼𝐼
� ∙

𝐵𝐵𝐵𝐵
𝐵𝐵𝐵𝐵 + 𝐾𝐾𝐾𝐾𝑁𝑁𝑁𝑁

+  𝛿𝛿𝛿𝛿 ∙ (𝑑𝑑𝑑𝑑0 − 𝑑𝑑𝑑𝑑) (34) 



This corroborates previous studies [5,24] that indicated diminished therapeutic efficacy of 
phage interventions in neutropenic hosts.

Furthermore, phage pharmacokinetic dynamics critically influence therapeutic outcomes. 
Fig. 8 delineates simulation outcomes resulting from modulation of the phage elimination 
rate constant (w) at doses of 106 PFU mL−1 and 108 PFU mL−1. Remarkably, accelerated phage 
elimination correlates directly with therapeutic failures.

Central to the success of phage therapy lies the phage’s intrinsic capability to swiftly curtail 
bacterial concentrations beneath the crucial limit susceptible to immune system regulation. 
To ascertain rapid bacterial elimination, an adequately high phage dose becomes imperative. 
Thus, a meticulous exploration of phage pharmacokinetics becomes indispensable in 
prognosticating therapeutic outcomes.
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PHAGE PHARMACOKINETICS

Studies regarding absorption, distribution, metabolism, and excretion (ADME) and dose-
ranging have been carried out in animal models; however, a consensus on the optimal route 
of administration remains elusive and seems to depend heavily on the specific disease being 
treated. Theoretically, the route should allow phages to proliferate sufficiently to attain the 
inundation threshold in the target organ.

Research indicates the presence of non-linear pharmacokinetics in phages. While Chow et 
al. [25] found a dose-proportional surge in phage exposure with doses of 107 and 109 PFU/
head administered intratracheally in healthy mice, a separate study conducted by Lin et al. 
[26] demonstrated diminishing phage clearance with escalating doses when administered 
intravenously to rats at levels of 106, 109, and 1011 PFU/head. Phages are reportedly eliminated 
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by the innate immune system through the reticuloendothelial system [27], a process that 
potentially gives rise to nonlinear pharmacokinetics due to the system’s finite capacity.

Predominantly, research posits a rapid clearance of phages from plasma within a 48-
hour frame, with a preferential distribution to the liver and spleen, followed by a lesser 
extent to the lungs. It is plausible that systemic inflammation facilitates accelerated phage 
clearance [27]. Personal accounts from preclinical developments affirm the non-linear 
pharmacokinetics in phages, highlighting a considerable variation in pharmacokinetics 
between different phages. It becomes imperative, therefore, to engage in detailed studies to 
understand the variable pharmacokinetic behaviors across different phage entities.

THE NECESSITY FOR ADMINISTERING MULTIPLE DOSES

Theoretically speaking, the administration of successive doses in active phage therapy is deemed 
unnecessary due to the replicative nature of phages, a concept often described with the term 
“autodosing.” Nonetheless, a considerable number of past clinical case studies have documented 
the utilization of multiple phage doses [17,19,20,28], a strategy presumably derived from the 
conventional belief that repeated doses could potentially enhance drug exposure.

However, simulations indicate that in scenarios involving active therapy with phage doses 
below the inundation threshold, the strategy of administering multiple doses might indeed 
be detrimental (Fig. 9A). While intermittent phage dosing diminishes host bacterial density, 
it fails to achieve total eradication. This results in diminished phage multiplication owing to 
periodic bacterial reduction, an outcome that negatively impacts the ultimate clinical result. 
Conversely, in passive therapy, employing recurrent administration of doses exceeding the 
inundation threshold is anticipated to function as presumed, where increased frequency of 
administration facilitates greater suppression of bacterial populations (Fig. 9C).

These findings emphasize the critical role of selecting an appropriate dosing regimen 
grounded on dose potency. Generally, passive therapy offers a more straightforward 
treatment strategy, permitting more predictable outcomes without the necessity to factor in 
the phage proliferation threshold. However, delineating between active and passive therapy 
is not always straightforward, as it is predicated upon the comparative magnitude of phage 
concentration against the inundation threshold at the target site, which establishes the 
therapy’s active or passive nature. Ultimately, the choice to employ multiple dosages should 
invariably be founded on meticulous examination of the phage’s PKPD characteristics.

ADVANCED MODELING TECHNIQUES AND FUTURE 
DIRECTIONS IN PHAGE THERAPY RESEARCH
In this last section, we will discuss advanced modeling techniques and future directions in 
phage therapy research, including the integration of spatial effects, stochasticity, and multi-
scale modeling approaches. We will also explore how these advanced techniques can further 
improve our understanding of phage-bacteria interactions and guide the development of 
more effective phage therapy strategies.
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Spatial effects in phage-bacteria interactions
While the models discussed so far have largely focused on well-mixed systems, in reality, 
phage-bacteria interactions often occur in spatially structured environments, such as biofilms 
or host tissues. Spatial heterogeneity can have a significant impact on phage-bacteria dynamics, 
affecting the spread of phages, the development of bacterial resistance, and the overall success 
of phage therapy. To incorporate spatial effects, researchers can use techniques such as:

1.  Partial differential equations (PDEs): PDE models can capture the spatial distribution of 
phages and bacteria by adding diffusion terms to the basic model equations, allowing 
researchers to study the impact of spatial heterogeneity on phage-bacteria interactions. 
PDE models can be implemented using various software libraries in different 
programming languages – such as py-pde in Python or MATLAB.
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2.  Agent-based models (ABMs): ABMs are computational models that represent individual 
phages, bacteria, and host cells as discrete agents, allowing researchers to simulate 
spatially explicit interactions between these entities and explore the effects of local 
interactions on the dynamics of the system. NetLogo (https://ccl.northwestern.edu/
netlogo/) is a free software that provides a user-friendly interface for creating ABMs.

Stochastic effects and intrinsic noise
Real-world phage-bacteria systems are often subject to stochastic effects due to the inherent 
randomness of biological processes, such as phage adsorption, bacterial replication, or the 
host immune response. To account for stochastic effects, researchers can employ techniques 
such as:

1.  Stochastic differential equations (SDEs): SDEs incorporate noise terms into the basic 
model equations to capture the random fluctuations in phage and bacterial populations, 
allowing researchers to study the impact of stochastic effects on phage-bacteria dynamics.

2.  Gillespie algorithm: The Gillespie algorithm is a widely used stochastic simulation 
algorithm that can model the discrete, random nature of molecular interactions in phage-
bacteria systems, providing a more realistic representation of the underlying processes.

Multi-scale modeling
Phage-bacteria interactions occur at various scales, from the molecular and cellular levels 
to the population and community levels. To capture the complexity of these interactions 
across multiple scales, researchers can develop multi-scale models that integrate processes at 
different levels of organization. Examples of multi-scale modeling approaches include:

1.  Coupling ODE/PDE models with ABMs: Researchers can combine ODE/PDE models, 
which describe population-level dynamics, with ABMs, which capture individual-level 
interactions, to create a more comprehensive representation of phage-bacteria systems.

2.  Hierarchical models: Hierarchical models can be used to represent the relationships 
between processes occurring at different scales, such as the impact of phage-bacteria 
interactions on host tissue dynamics or the role of the microbiome in shaping phage 
therapy outcomes.

Future directions in phage therapy research
The continued development and application of advanced modeling techniques will 
undoubtedly lead to new insights into the complex dynamics of phage-bacteria systems and 
help guide the development of more effective phage therapy strategies. Some promising 
future directions in phage therapy research include:

1.  Personalized phage therapy: Developing models that incorporate patient-specific data, 
such as the composition of their microbiome or the characteristics of their immune 
system, to design personalized phage therapy strategies.

2.  Synthetic biology and engineered phages: Exploring the use of synthetic biology 
techniques to engineer phages with improved therapeutic properties, such as enhanced 
bacterial specificity, reduced immunogenicity, or the ability to overcome bacterial 
resistance mechanisms.

3.  Phage-bacteria coevolution: Studying the coevolutionary dynamics of phages and 
bacteria, which can influence the long-term success of phage therapy by shaping the 
emergence of resistance and the evolution of phage infectivity. Developing models that 
account for these coevolutionary processes can help optimize phage therapy strategies 
and improve their efficacy over time.
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4.  Phage cocktails and community-level interactions: Investigating the use of phage 
cocktails, which are mixtures of multiple phages, to target a broader range of bacterial 
pathogens and prevent the development of resistance. Developing models that capture 
the community-level interactions between multiple phages and bacterial species can 
provide insights into the design of more effective phage cocktails.

5.  Integrating experimental and modeling approaches: Combining experimental data with 
advanced modeling techniques can improve the accuracy and predictive power of phage 
therapy models. This integration can help bridge the gap between in vitro, in vivo, and 
clinical studies, ultimately leading to more effective and personalized phage therapy 
strategies.

In conclusion, advanced modeling techniques and future research directions in phage 
therapy hold great promise for deepening our understanding of phage-bacteria interactions 
and improving the effectiveness of phage therapy. By incorporating spatial effects, 
stochasticity, and multi-scale approaches, researchers can develop more comprehensive and 
realistic models that better capture the complex dynamics of phage-bacteria systems. These 
models can guide the development of novel phage therapy strategies, including personalized 
treatments, engineered phages, and phage cocktails, ultimately contributing to the successful 
application of phage therapy in clinical settings.

DISCUSSION

The intricate dynamics between phages, host bacteria, and the immune system have long 
held scientific intrigue. As this review demonstrates, understanding these interactions 
can significantly influence the application and success rate of phage therapy, especially 
in the face of bacterial resistance. Mathematical models offer valuable insights into the 
mechanisms underpinning the interplay among these systems, underscoring the importance 
of meticulous PKPD evaluations in predicting therapeutic outcomes.

In particular, this article focused on the pivotal role that the immune system plays in 
determining the efficacy of phage therapy. Model simulations accentuated a critical phage 
dose threshold, beneath which therapeutic endeavors are rendered ineffectual. This 
threshold’s sensitivity to immune system efficiency, as depicted in Fig. 7A and B, echoes 
previous reports which alluded to the diminished therapeutic efficacy in neutropenic hosts. 
The immune system’s capacity to effectively respond and cooperate with phage interventions 
has proven paramount in achieving favorable outcomes.

This review also accentuated the importance of the pharmacokinetic characteristics of 
phages, unveiling that the rapidity of phage elimination directly correlates with the outcome 
of the therapy. Fig. 8, for instance, elucidates that expediting phage elimination corresponds 
to therapeutic failures. This revelation underscores the necessity for optimized phage 
dosage, ensuring not only immediate bacterial eradication but also establishing a bacterial 
concentration conducive to immune system control.

Furthermore, the article provides an enriched perspective on the existing mathematical 
models. The incorporation of resistant bacterial subpopulations and assumptions on 
baseline immune cell turnover in the modified model, adapted from Leung and Weitz 
[7], enhances the robustness and applicability of the model in real-world scenarios. Such 
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refinements in mathematical constructs propel our comprehension of phage dynamics and 
can significantly guide future research and therapeutic designs.

In conclusion, phage therapy, despite its promising prospects, is riddled with complexities, 
most notably its interplay with the host’s immune system and bacterial resistance 
mechanisms. This review has charted pivotal thresholds and dynamics that inform the 
application of this therapy, reinforcing the necessity for rigorous PKPD studies and careful 
therapeutic designs. As bacterial resistance to antibiotics intensifies globally, ensuring 
the efficacy of alternative treatments like phage therapy becomes even more crucial. 
Mathematical modeling of phage PKPD not only contribute to the academic discourse but 
also provide tangible insights for clinicians and pharmacologists aiming to harness the 
potential of phage therapy effectively. Future endeavors might focus on expanding the current 
models to consider a broader spectrum of bacterial infections and host responses, solidifying 
the foundation for phage therapy’s widespread clinical implementation.
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