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ABSTRACT
Background: Tumor-based molecular biomarkers have redefined in the 

classification gliomas. However, the association of systemic metabolomics with glioma 
phenotype has not been explored yet. 

Methods: In this study, we conducted two-step (discovery and validation) 
metabolomic profiling in plasma samples from 87 glioma patients. The metabolomics 
data were tested for correlation with glioma grade (high vs low), glioblastoma (GBM) 
versus malignant gliomas, and IDH mutation status. 

Results: Five metabolites, namely uracil, arginine, lactate, cystamine, and 
ornithine, significantly differed between high- and low-grade glioma patients in both 
the discovery and validation cohorts. When the discovery and validation cohorts were 
combined, we identified 29 significant metabolites with 18 remaining significant after 
adjusting for multiple comparisons. Those 18 significant metabolites separated high- 
from low-grade glioma patients with 91.1% accuracy. In the pathway analysis, a 
total of 18 significantly metabolic pathways were identified. Similarly, we identified 
2 and 6 metabolites that significantly differed between GBM and non-GBM, and IDH 
mutation positive and negative patients after multiple comparison adjusting. Those 
6 significant metabolites separated IDH1 mutation positive from negative glioma 
patients with 94.4% accuracy. Three pathways were identified to be associated with 
IDH mutation status. Within arginine and proline metabolism, levels of intermediate 
metabolites in creatine pathway were all significantly lower in IDH mutation positive 
than in negative patients, suggesting an increased activity of creatine pathway in IDH 
mutation positive tumors. 

Conclusion: Our findings identified metabolites and metabolic pathways that 
differentiated tumor phenotypes. These may be useful as host biomarker candidates 
to further help glioma molecular classification.

INTRODUCTION

During the past decade, glioma classification 
has moved from histopathology only to molecular 
characterization. Allelic loss of 1p/19q and p53 gene 
mutation has been deemed as the hallmarks for low grade 
oligodendroglioma and astrocytomas, respectively [1, 2].  
The results from The Cancer Genome Atlas (TCGA) 
Research Network and several other studies have 
pinpointed phosphoinositide 3-kinase (PI3K), RTK/RAS/

PI3K, EGF receptors (EGFR), p53, retinoblastoma (RB), 
and PTEN signaling alterations as driving forces for high-
grade glioma tumorigenesis [3, 4].

The renewed interest of Warburg effect has drawn 
attention to the understanding of how underlying metabolic 
alterations may contribute to the aggressive phenotype 
in tumors [5, 6]. Although the data are still limited, 
promise has already been shown of using metabolomics 
in characterizing  gliomas [7]. For example, utilizing 
metabolomic profiling in 69 Grade II to IV glioma tumor 
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tissues, Chinnaiyan et al. identified a metabolic classifier 
that could group glioma tumors into 3 different subclasses 
with distinct prognostic relevance [7]. Metabolomic 
platforms quantify small-molecule metabolites in 
biospecimens and can be used to evaluate the role of 
metabolic alterations in chronic disease. Because it takes 
into account genetic regulation, altered kinetic activity of 
enzymes, genomics and proteomics, metabolomics reflects 
changes in phenotype, and thereby function [8, 9]. Studies 
using metabolomics in various cancers have shown that 
there are common alterations in metabolism in patients 
with cancer, but there are also disease specific alterations 
in metabolism [10–14]. 

It has recently become clear that altered metabolic 
homeostasis plays important roles in carcinogenesis. 
Recent results from limited clinical and epidemiological 
studies have suggested that metabolic disorders may 
affect the progression of high grade gliomas. For example, 
Derr et al. reported that high grade gliomas patients with 
hyperglycemia have a shortened overall survival [15]. 
Chambless et al. observed that pre-existing diabetes and 
elevated body mass index (BMI) are independent risk 
factors for high grade glioma progression [16]. However, 
to our knowledge, there have been no studies to date 
examining the role of small-molecule metabolites in the 
circulation in relation to glioma characterization. In the 
current study, utilizing targeted metabolomics analysis, we 
analyzed 224 known metabolites from 25 key metabolic 
pathways in plasma samples from 87 glioma patients. 
We hypothesized that plasma metabolite profiles could 
differentiate glioma tumor phenotypes. 

RESULTS

Basic demographic characteristics of the patient 
cohort were shown in Table 1. Briefly, the mean age was 
45 years old, and nearly 60% of the study subjects were 
male. The majority of study subjects were Caucasians 
(86.2%). About 20% of the study subjects used steroid 
during the treatment. Seizure medication use was 
prevalent (72.4%). In addition, 44.8% of the study subjects 
had dyslipidemia diagnosis. 

Targeted metabolic profiling was performed using 
LC-QQQ-MS on a total of 87 plasma samples from both 
the discovery and validation cohorts. The profiling was 
performed in two phases, discovery (N = 42) and validation 
(N = 45). From a targeted 224 metabolites, a total of 157 
metabolites were detected in both discovery and validation 
cohorts. Following log transformation and imputation with 
minimum observed values for each metabolite, we first 
attempted to identify metabolites that differed significantly 
between high- and low-grade gliomas. In the discovery 
cohort, 8 plasma metabolites differed significantly between 
high- and low-grade gliomas. They were listed in Table 2.  
Among them, 5 plasma metabolites were increased in 
high-grade gliomas; whereas 3 were decreased. The top 

two significant metabolites were uridine (P = 0.004) and 
ornithine (P = 0.016). Compared to low-grade gliomas, 
levels of plasma uridine were 2.27-fold elevated in 
high grade gliomas. However, after adjusting multiple 
comparisons, none of the metabolites was significant  
(q value ≤ 0.05). In the validation cohort, we identified 10 
metabolites that differed significantly between high- and 
low-grade gliomas. They were listed in Table 2. Among 
them, levels of 6 plasma metabolites were increased in 
high-grade gliomas and 4 were decreased. The top three 
significant metabolites elevated in high-grade gliomas 
were uracil (P = 0.007), arginine (P = 0.008), and 
pyroglutamic acid (P = 0.016). Levels of plasma uracil 
were 2.19-fold increased in high-grade gliomas relative to 
low-grade gliomas. However, after adjusting for multiple 
comparisons, none of the metabolites was significant. In 
comparison, of the top 10 significant metabolites identified 
from the discovery and validation cohorts, 5 significant 
metabolites (P ≤ 0.05) identified in the discovery cohort 
were also significant in the validation cohort. They 
were uracil, arginine, lactate, cystamine, and ornithine. 
Next, we conducted a meta-analysis by combining 
the samples from discovery and validation cohorts. 
The heatmap was shown in Supplemental Materials. A 
total of 29 significant metabolites were identified and 
top 10 are listed in Table 2. These top 5 metabolites 
were uridine (P = 6.43 × 10−6, q = 0.001), uracil  
(P = 1.87 × 10−5, q = 0.001), arginine (P = 1.07 × 10−4,  
q = 0.005), agmanite (P = 1.05 × 10−4, q = 0.005), and 
ornithine (P = 2.68 × 10−4, q = 0.005) (Figure 1A).  
Levels of plasma uridine were 4.86-fold higher in high- than 
in low-grade gliomas. On the other hand, levels of plasma 
arginine were 4.02-fold lower in high- than in low-grade  
gliomas. After adjusting multiple comparisons, there were 
still 18 significant metabolites left. In further PLS-DA  
analysis using those 18 significant metabolites, glioma 
patients could be successfully classified into high- and 
low-grade groups with 91.1% of accuracy (Figure 2A).

We next investigated whether plasma metabolites 
could differentiate GBM patients versus malignant 
glioma patients.  Due to the small sample size of GBM, 
we combined discovery and validation cohorts together  
(n = 18:4 in discovery and 14 in validation). Two 
metabolites were identified that differed significantly 
between GBM and malignant glioma patients based on 
both P and q values. They were uridine (P = 3.76 × 10−4,  
q = 0.015) and ornithine (P = 9.36 × 10−4, q = 0.038) 
(Figure 1B). Then, we explored whether plasma 
metabolites could differentiate IDH mutation status. 
Altogether, we had 36 patients whose IDH mutation 
status was known. Among them, 12 were negative and 24  
were positive. The heatmap was shown in Supplemental 
Materials. Six metabolites were identified that significantly 
differed between IDH mutation positive and negative 
tumors based on both P and q values (Table 3).  
The top 2 metabolites were N-acetylputrescine  
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(P = 9.12 × 10−4, q = 0.036) and trimethylamine-N-oxide 
(TMAO) (P = 0.006, q = 0.043) (Figure 1C). Levels of 
plasma N-acetylputrescine were 2.96-fold lower in IDH 
mutation positive relative to the negative glioma patients. 
On the other hand, levels of plasma Methionine were 2.08-
fold higher in IDH mutation positive than negative glioma 
patients. In further PLS-DA analysis using those 6 significant 
metabolites, glioma patients could be successfully classified 
by IDH-1 status with 94.4% of accuracy (Figure 2B).  

Next, we conducted a pathway analysis which 
integrates an enrichment analysis and pathway topology 
analysis. Pathway topology analysis is used to analyze 
the impact of one metabolite or a group of metabolites 
in a certain pathway. A total of 18 metabolic pathways 
were significantly differed between high- and low-grade 
glioma patients based on a combination of P and q value 
(Table 4). Although D-arginine/D-ornithine metabolism 
and pyrimidine metabolism were the two most significant 
pathways, the metabolites involved in both pathways 
have very low impact factors (0 and 0.09, respectively), 
suggesting they are unlikely to be the metabolic pathways 
contributing to the difference between high- and low-grade 

gliomas. On the other hand, arginine/proline metabolism, 
another significant metabolic pathway (P = 0.002 and 
q = 0.010), had high impact factor (0.55). A total of 16 
out of 77 metabolites possibly involved in arginine and 
proline metabolism were analyzed in this study. Among 
them, 4 differed significantly between high- and low-grade 
gliomas (P ≤ 0.05). They were arginine (P = 1.07 × 10−4),  
fumaric acid (P = 0.049), agmetine (P = 0.007), and ornithine 
(P = 2.68 × 10−4). Particularly, arginine and ornithine are key 
metabolites in the pathway and play critical roles.

Using a similar approach, we also studied whether 
metabolic pathways could differentiate GBM from 
malignant glioma patients, and IDH mutation status. For 
GBM differentiation, we didn’t observe any significant 
metabolic pathways associated with GBM based on P and 
q value. However, we did identify metabolic pathways that 
significantly differed by IDH mutation status (Table 4) such 
as, tryptophan metabolism, D-arginine and D-ornithine 
metabolism, and arginine and proline metabolism 
pathways. When further examined for impact factor, only 
the arginine and proline metabolism pathway had a high 
impact factor (0.541). As shown in Figure 3, in arginine 

Table 1: Demographic characteristics of the patient cohort
Age, mean (range) 45 (22–72)
Gender (%)
 Male 50 (57.5)
 Female 37 (42.5)
Ethnicity (%)
 Caucasian 75 (86.2)
 Others 10 (11.5)
 Unknown 2 (2.3)
 KPS, mean (range) 92 (60–100)
Steroid use (%)
 Yes 18 (20.7)
 No 69 (79.3)
Seizure Medication Use (%)
 Yes 63 (72.4)
 No 24 (27.6)
Dyslipidemia during study (%)
 Yes 22 (25.3)
 No 4 (4.6)
 Test not done 61 (70.1)
Dyslipidemia diagnosis (%)
 Yes 39 (44.8)
 No 48 (55.2)
Antiglycemic medication Use
 Yes 5 (5.7)
 No 82 (94.3)
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Table 2: List of top 10 metabolites in discovery, validation, and combined cohorts*
Discovery (n = 42) Validation (n = 47) Combined meta-analysis (n = 89)

Metabolite P value Fold 
change FDR Metabolite P value Fold 

change FDR Metabolites P value Fold 
change FDR

Uridine 0.004 2.27 0.542 Uracil 0.007 2.19 0.301 Uridine 6.43E–06 4.86 0.001

Ornithine 0.016 1.83 0.542 Arginine 0.008 2.12 0.301 Uracil 1.87E–05 4.32 0.001

Cystamine 0.019 1.80 0.542 Pyroglutamic 
Acid 0.016 1.92 0.301 Arginine 1.07E–04 4.02 0.005

Glucosamine 0.020 1.70 0.542 Lactate 0.028 1.66 0.301 Agmanite 1.05E–04 3.78 0.005

Uracil 0.020 1.73 0.542 Cystamine 0.037 1.52 0.301 Ornithine 2.68E–04 3.46 0.005

Arginine 0.025 1.66 0.542 Ornithine 0.038 1.50 0.301 Biotin 3.54E–04 3.24 0.005

Biotin 0.028 1.53 0.542 Xanthurenate 0.040 1.50 0.305 Lactate 4.27E–04 3.08 0.007

Lactate 0.039 1.42 0.599 Oxalic Acid 0.042 1.42 0.334 Cystamine 9.46E–04 3.09 0.024

Agmanite 0.046 1.45 0.334 Glucosamine 0.004 2.67 0.024

Niacinamide 0.047 1.33 0.378 Oxalic Acid 0.002 2.04 0.036

*Metabolites whose fold changes in red reflect an increase accumulation in high grade glioma cases and metabolites whose 
fold changes in blue reflect a decrease accumulation in high grade glioma cases. The analysis was adjusted by age, gender, 
ethnicity, KPS, steroid use, seizure medication use, and dyslipidemia diagnosis. 

Figure 1: Box plot of top 2 metabolites that significantly differed between tumor characteristics. (A) High and low grade 
(1 vs 0); (B) GBM and malignant gliomas (1 vs 0); (C) IDH mutation positive and negative status (1 vs 0).
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and proline metabolism pathway, 4 out of 16 analyzed 
metabolites had P value less than 0.05 (labeled in red).  
Two metabolites had P value ranging from 0.05 to 0.10 
(labeled in green), and another 2 had P value ranging 
from 0.10 to 0.20 (labeled in blue). Notably, levels of 
intermediate metabolites in the creatine pathway such 
as guanidoacetic acid, creatine, and reatinine were all 
significantly lower in IDH positive than negative patients. 
At the same time, levels of sarcosine, the downstream 
metabolite in the pathway, were higher in IDH positive 
than negative patients. 

DISCUSSION

In a recent publication by Eckel-Passow et al., 
gliomas could be classified into five principal groups on 
the basis of three tumor markers, including chromosome 
1p/19q co-deletion, IDH mutation, and TERT promoter 

mutations in tumors [17]. In another study, low-grade 
gliomas could be further classified into three molecular 
groups based on IDH, 1p/19q, and TP53 status [4]. 
Those studies show the promise of utilizing molecular 
markers for glioma classification. However, none of the 
existing studies have looked at the contribution from 
metabolic homeostasis and how individual difference 
in metabolic profiles in circulation may correlate with 
glioma phenotypes. In current study, we used plasma 
metabolomics profiling to assess the differences between 
high- and low-grade, GBM and malignant glioma, and 
IDH positive and negative gliomas. Compared to tumor 
tissues, plasma is a metabolite-rich matrix, readily 
available via minimal invasive samples techniques, and 
thereby, is highly amenable to global metabolic profiling 
studies in gliomas. 

In comparison of glioma grade, we identified a 
total of 29 metabolites in plasma samples that could 

Table 3: Significant metabolites differentiating IDH mutation status
Metabolite P value Fold change FDR

N-acetylputrescine 9.12E–04 2.96 0.036

trimethylamine-N-oxide 
(TMAO) 0.006 2.37 0.043

Nicotinate (Niacin) 0.009 2.19 0.043

Arginine 0.009 2.52 0.043

Glucosamine 0.013 1.96 0.047

Methionine 0.016 2.08 0.047

*Metabolites whose fold changes in red reflect an increase accumulation in IDH mutation positive cases and metabolites 
whose fold changes in blue reflect a decrease accumulation in IDH mutation positive cases. The analysis was adjusted by age, 
gender, ethnicity, KPS, steroid use, seizure medication use, and dyslipidemia diagnosis.

Figure 2: PLS-DA analysis to differentiate tumor grade and IDH mutation status using significant metabolites.  
(A) High vs low grade (1 vs 0); (B) IDH positive vs negative (1 vs 0).
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significantly differentiate high- from low-grade glioma 
patients. Our results suggest significant changes in 
pathways related to nucleotides (e.g. pyramidine), amino 
acids (e.g. arginine, glutathione, alanine, tryptophan), and 
carbohydrate (e.g. glycolysis and pyruvate) metabolism. 
This is consistent with the profile of tumor metabolism, 
which needs to acquire key nutrients from circulation 
for rapid ATP generation, increased biosynthesis of 
macromolecules, and maintenance of appropriate cellular 
redox status [18]. One of the most consistent metabolites 
observed in this study is arginine, whose plasma levels 
were significantly lower in high-grade than in low-grade 
glioma patients in discovery, validation, and combined 
cohorts. Arginine is a semi-essential amino acid in humans. 
It has been established that an increased dependence on 
exogenous arginine is typical for many malignant tumor 
cells both in vitro and in vivo [19–20]. Also, a growing 
number of tumors are being identified as deficient in the 
arginine anabolic enzyme argininosuccinate synthetase 
(ASS) and, thus auxotrophic for arginine [21, 22]. 
Pavlyk et al. showed that arginine deprivation could 
affect glioblastoma cell adhesion, invasiveness and 
actin cytoskeleton organization [23]. Thus, the observed 

difference in plasma arginine levels between high- and 
low-grade glioma patients could be due to the difference 
in arginine dependence. Another consistent metabolite 
is lactate, whose plasma levels were significantly higher 
in high-grade cases relative to low-grade cases. This 
is expected since lactate is one of the main metabolic 
“waste” or by-products during tumor metabolism. Lactate 
can actually be transported back to the liver to produce 
glucose (known as the Cori cycle), which imposes an 
energy burden on whole-body metabolism [24]. Increased 
flux through this pathway has been postulated to be one of 
the drivers of energy dissipation in cachexia, which is a 
contributing factor in one third of all cancer deaths. 

IDH mutation is not restricted to a specific 
histopathological type of glioma but instead was 
associated with a distinctive tumor-cell metabolism [25]. 
However, how metabolomics profiles in plasma may 
be differentiated by IDH mutation status is unknown. 
In the current study, we identified 6 plasma metabolites 
that differed significantly by IDH mutation status. 
The most significant metabolite is N-acetylputrescine. 
N-Acetylputrescine is the most abundant of all polyamines 
both in normal individuals and in patients with leukemia 

Table 4: Identification of significant metabolic pathways associated with grade and IDH mutation 
status

Pathway Name P value Fold change FDR Impact
High vs low grade

D-Arginine and D-ornithine metabolism 1.44E–06 13.45 8.19E–05 0
Pyrimidine metabolism 1.45E–05 11.14 4.14E–04 0.091
Pantothenate and CoA biosynthesis 8.67E–05 9.35 0.002 0.180
Glutathione metabolism 1.29E–04 8.96 0.002 0.002
beta-Alanine metabolism 7.18E–04 7.24 0.008 0.011
Glycolysis or Gluconeogenesis 9.34E–04 6.98 0.009 0.199
Biotin metabolism 0.001 6.73 0.01 0.203
Tryptophan metabolism 0.001 6.5 0.01 0.102
Arginine and proline metabolism 0.002 6.47 0.01 0.553
Amino sugar and nucleotide sugar metabolism 0.002 6.37 0.01 0.091
Pyruvate metabolism 0.003 5.67 0.018 0.32
Propanoate metabolism 0.007 4.93 0.034 0.002
Phenylalanine metabolism 0.011 4.54 0.047 0.198
Glyoxylate and dicarboxylate metabolism 0.012 4.46 0.048 0.162
Tyrosine metabolism 0.013 4.36 0.049 0.162
Taurine and hypotaurine metabolism 0.014 4.28 0.049 0.353
Nicotinate and nicotinamide metabolism 0.015 4.20 0.049 0.135
Methane metabolism 0.016 4.16 0.049 0.018

IDH mutation status (positive vs negative)
Tryptophan metabolism 5.12E–04 7.58 0.019 0.102
D-Arginine and D-ornithine metabolism 6.70E–04 7.31 0.019 0
Arginine and proline metabolism 0.002 6.07 0.043 0.541
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[26]. Currently, the role of plasma N-acetylputrescine 
may play in glioma tumorigenesis is unclear. In the 
pathway analysis, we found tryptophan metabolism, 
D-arginine and D-ornithine metabolism, and arginine 
and proline metabolism were significantly different based 
on IDH mutation status. Within the arginine and proline 
metabolism pathway, we found levels of intermediate 
metabolites in the creatine pathway, from guanidoacetic 
acid, creatine, and creatinine, were all significantly 
lower in IDH mutation positive than in negative patients. 
However, levels of sarcosine, the downstream metabolite 
in the pathway, were higher in IDH mutation positive 
than in negative patients. Creatine is usually detected in 
magnetic resonance imaging research of brain tumors. 
The creatine levels reflect energy buffering and transport. 
Our results may suggest an increased activity of creatine 
pathway in IDH mutation positive patients, which is in line 
with the findings that creatine tended to be low in the high-
grade tumors [27]. Among Grade II to IV glioma cases, 
IDH positive status is associated with improved survival 
[17]. Thus, although survival data are not available in this 
study yet because of short follow-up time, the plasma 
metabolites that significantly differed by IDH mutation 
status may potentially have prognostic relevance. Clearly, 
further investigation of plasma metabolites and survival in 
glioma patients will be our next step.

Mutated IDH protein leads to the generation of 
excessive amount of the metabolite 2-hydrocyglutarate 
(2-HG) in glioma tumor cells [28]. Since 2-HG is a small 

molecule it seems possible that it could reach the systemic 
circulation and that elevated 2-HG plasma levels may help 
to identify patients harboring IDH mutated gliomas. In the 
current study, 2-HG metabolite was detectable. However, 
no significant association was observed between plasma 
2-HG levels and IDH mutation status (P = 0.458) or tumor 
grade (P = 0.743). In fact, our observation is consistent 
with the reported from Capper et al. [29]. In their study of 
16 glioma patients, no correlation was observed between 
serum 2-HG levels and IDH1/2 status or tumor size. Thus, 
2-HG in circulation may not be a useful marker for glioma 
molecular classification.

One limitation for circulation metabolomics analysis 
is the vagueness of the source of the metabolites. In the 
case of gliomas, tumor cells, tumor infiltrating immune 
cells and different types of stroma cells all produce 
metabolites and some of those metabolites could be 
released and thereby enter the circulation. Currently, 
there are active studies underway performing metabolic 
profiling in various types of cancer related cells, including 
cancer stem cells [30], tumor infiltrating immune cells 
[31], and other stroma [32–34], in attempt to elucidate 
their metabolic profiles to dissect the sources of the 
circulating metabolic factors. The knowledge gained from 
those studies can help us better interpret the results from 
this study and provide guidance for circulating biomarker 
discovery. 

In summary, our study showed distinct signatures of 
plasma metabolite levels by glioma grade (high vs low) 

Figure 3: Metabolites involved in arginine and proline pathway that significantly differed by IDH mutation status. 
Metabolites in red reflect P value ≤ 0.05, metabolites in blue reflect P value between 0.05 to 0.10, and metabolites in green reflect P value 
between 0.10 to 0.20. In box-plot, red indicates IDH mutation negative and green indicates IDH mutation positive.
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and IDH mutation status. Additional weaknesses include 
small sample size, retrospective study design, incomplete 
exposure information, and the lack of matched tumor/ 
adjacent normal tissues. Nevertheless, our study provides 
the first evidence to support the role of circulating 
metabolites in glioma phenotypes. Such knowledge, if 
confirmed, could help stratify glioma patients and enable 
personalize medicine. 

MATERIALS AND METHODS

Study subjects

Case patients were recruited from The University of 
Texas M. D. Anderson Cancer Center (Houston, TX). All 
patients with either newly diagnosed or previously treated, 
histopathologically confirmed glioma who were registered 
at the Cancer Center between April 2014 and July 2015 
were eligible for our study. The exclusion criteria for 
case patients were currently undergoing chemotherapy or 
radiation therapy, prior cancer (except for non-melanoma 
skin cancer), and any blood transfusion in the 6 months 
prior to recruitment. Written informed consent was 
obtained from each study subject. A total of 87 glioma 
patients were included in the study. We divided the study 
subjects into two cohorts, discovery and validation. The 
discovery cohort included 42 glioma patients, including 
25 low-grade glioma (Grade I: n = 5; Grade II: n = 20) and 
17 high-grade glioma patients (Grade III: n = 13; Grade 
IV GBM: n = 4). The validation cohort had 45 glioma 
patients, including 17 low-grade glioma (Grade I: n = 4; 
Grade II: n = 13) and 28 high-grade glioma patients (Grade 
III: n = 14; Grade IV GBM: n = 14). The demographic 
and clinical data for the cases were obtained from medical 
record review. The study protocol was approved by the 
Institutional Review Board of The University of Texas  
M. D. Anderson Cancer Center.

Metabolic profiling

Metabolomics profiles were obtained using Liquid 
chromatography triple quadrupole mass spectrometry 
(LC-QQQ-MS) at Northwest Metabolomics Research 
Center, University of Washington. Briefly, LC-MS/MS 
was performed using an electrospray ionization source 
and the multiple-reaction-monitoring mode. A Sciex 5500 
QTRAP triple quad MS system equipped with an Agilent 
1200 ultra-high-pressure liquid chromatography system 
was utilized. The MS acquisition for each plasma sample 
(0.050 mL each) will target a list of 224 metabolites. In 
addition, 24 isotope-labeled standards were included in 
each sample run for quality control and comparisons with 
other studies or additional samples run at a different time 
(e.g. discovery vs validation). The average CV of relative 
intensities for instrument QC samples was 5.3% for the 
detected metabolites and the average CV of quantified 

metabolites using isotope-labeled internal standards 
was 3%, indicating good reproducibility. The targeted 
224 metabolites are selected from 25 key metabolic 
pathways, including alanine, aspartate, and glutamate 
metabolism; arginine and proline metabolism; butanoate 
metabolism; the citrate cycle (TCA cycle); cysteine 
and methionine metabolism; fatty acid metabolism; 
glutathione metabolism; glycine, serine, and threonine 
metabolism; glycolysis/gluconeogenesis; histidine 
metabolism; lysine biosynthesis; lysine degradation; 
nitrogen metabolism; oxidative phosphorylation; 
pentose phosphate pathway; phenylalanine metabolism; 
phenylalanine, tyrosine, and tryptophan biosynthesis; 
purine metabolism; pyrimidine metabolism; pyruvate 
metabolism; synthesis and degradation of ketone bodies; 
tryptophan metabolism; tyrosine metabolism; valine, 
leucine, and isoleucine biosynthesis; and valine, leucine, 
and isoleucine degradation. Certain metabolites are 
involved in multiple metabolic pathways. The raw data 
are processed using MultiQuant software (AB SCIEX) to 
integrate chromatographic peaks, and the data are visually 
inspected to ensure the quality of signal integration. The 
peak area will be calculated for each individual metabolite. 

Statistical analysis

Any missing values were assumed to be below the 
limits of detection, and these values were imputed with 
the compound minimum (minimum value imputation). 
Statistical analysis of log-transformed data was conducted 
using MetaboAnalyst 3.0 http://www.metaboanalyst.ca/. 
Welch t tests were conducted to compare data accounted 
for by estimating false discovery rate (FDR) using q 
values. Logistic regression analysis was applied to assess 
the relationship between individual metabolite and tumor 
grade, GBM status, or IDH mutation status. Covariates, 
including age, gender, ethnicity, KPS, steroid use, seizure 
medication use, and dyslipidemia diagnosis, were adjusted 
in the analysis. Principal component analysis (PCA) and 
partial least squares–discriminant analysis (PLS-DA) 
were carried out using log-transformed data. Metabolic 
pathway analysis was conducted to identify the enriched 
metabolite sets and significant metabolic pathways 
that could differentiate glioma grade (high vs low),  
GBM versus malignant glioma, and IDH mutation status 
(positive vs negative). The latest version of The Human 
Metabolome Database (HMDB) 3.0 was used in metabolic 
pathway analysis [35]. In addition, pathway topology 
analysis was used to estimate the impact of a certain 
metabolite or a group of metabolites in a certain metabolic 
pathway, and relative-betweeness centrality test was used 
to estimate the impact. 
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