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A B S T R A C T   

The development of immune checkpoint inhibitors (ICIs) has significantly advanced cancer 
treatment. However, their efficacy is not consistent across all patients, underscoring the need for 
personalized approaches. In this study, we examined the relationship between activated CD4+

memory T cell expression and ICI responsiveness. A notable correlation was observed between 
increased activated CD4+ memory T cell expression and better patient survival in various cohorts. 
Additionally, the chemokine CXCL13 was identified as a potential prognostic biomarker, with 
higher expression levels associated with improved outcomes. Further analysis highlighted 
CXCL13’s role in influencing the Tumor Microenvironment, emphasizing its relevance in tumor 
immunity. Using these findings, we developed a deep learning model by the Multi-Layer Ag-
gregation Graph Neural Network method. This model exhibited promise in predicting ICI treat-
ment efficacy, suggesting its potential application in clinical practice.   

1. Introduction 

The advent of immune checkpoint inhibitors (ICIs) has ushered in a transformative phase in oncological treatments. Despite their 
promising potential, their effectiveness is restricted to a limited subset of cancer patients [1,2]. This discrepancy underscores an 
imperative for refined, patient-specific therapeutic strategies. 

The tumor microenvironment (TME) represents a multifaceted environment populated by tumor cells, immune cells, and assorted 
components. Within this intricate landscape, tumors have developed strategies to evade immune detection. This evasion is precisely 
what ICIs target, aiming to bolster the body’s natural defensive mechanisms against these malignancies [3]. At the heart of this 
complex interplay lies the CD4+ T cell. Specifically, those CD4+ T cells that produce CXCL13 take on a crucial role in sculpting the 
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TME, most notably by impacting the tertiary lymphoid structure (TLS) [4]. The significance of these cells goes beyond mere existence; 
their interactions, especially with dendritic cells, are instrumental in determining the success of immunotherapeutic interventions [5]. 
Furthermore, the contribution of CD4+ memory T cells to the preservation of immunological memory is vital for both mounting potent 
defenses against tumors and preventing their re-emergence [6]. 

The pivotal role of CD4+ T cells within the immunological framework is well-established. However, the intricate dynamics gov-
erning their differentiation and subsequent functional manifestations within the TME remain subjects of ongoing scholarly investi-
gation. In the specific realm of colorectal cancer, emerging research underscores the significance of distinct subsets of CD4 TH1-like 
cells [7,8]. Notably, those cells manifesting elevated expression levels of CXCL13 are garnering attention for their potential as pre-
dictive biomarkers of responsiveness to Immune Checkpoint Inhibitor (ICI) therapies [9,10]. Complementing this, recent scientific 
endeavors have illuminated novel molecular pathways, with the IGFLR1/IGFL3 axis being a case in point [11]. The identification and 
exploration of such pathways not only enhance our molecular understanding but also signal potential therapeutic innovations in the 
ever-evolving landscape of cancer immunotherapy. 

This study aimed to elucidate the differential roles of activated CD4+ memory T cells and CXCL13 in the TME by examining their 
presence and effects across various tumor immunotherapy cohorts. By identifying distinctions between ICI-responsive and non- 
responsive groups, we strive to underscore the predictive significance of these markers. Leveraging the power of deep learning 
models, we further endeavor to unveil the potent predictive capability of activated CD4+ memory T cells in gauging ICI treatment 
outcomes. This study holds the potential to introduce these cells as an invaluable tool for pre-treatment assessment in immunotherapy 
patients. 

2. Results 

In this study, a comprehensive analysis was conducted on a population comprising 681 patients at the individual patient level, 
employing rigorously validated mRNA and genomic data as stipulated by the TRIPOD guidelines. The graphical representation 
encapsulating the essence of this research can be found in Fig. 1. The focal demographic under scrutiny encompassed 436 patients 

Fig. 1. Overview of the Study 
This figure created with BioRender.com illustrates the comprehensive research workflow, divided into three main parts, focusing on the correlation 
between activated CD4+ Memory T Cells and Immune Checkpoint Inhibitor (ICI) efficacy, the relationship of CXCL13 with ICI efficacy, and the 
proposed MLA-GNN ICI Prediction Model. 
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diagnosed with metastatic urothelial carcinoma from the IMvigor210 and GSE176307 cohorts, alongside an additional 115 patients 
afflicted with metastatic melanoma sourced from the GSE78220 and PRJEB23709 cohorts. Furthermore, from the GSE35640 dataset, 
we collected 65 melanoma patients who took part in two Phase II trials. Similarly, data from GSE91061 included information on 65 
melanoma patients who received anti-PD-1 therapy. The clinical attributes of these patients have been summarized (Table 1). 

2.1. Correlation between activated CD4+ memory T Cell Expression and Immunotherapy Response 

Initially, we explored the correlation between activated CD4+ memory T cell expression and overall survival (OS) improvement in 
patients receiving Immune Checkpoint Inhibitors (ICIs) in the IMvigor210 Cohort. We observed a strong correlation (P = 0.0025, 
Hazard ratio = 0.668, 95%CI: 0.514–0.869) between increased expression of activated CD4+ memory T cells and improved OS 
(Fig. 2A). 

Furthermore, we conducted survival analyses on activated CD4+ memory T cells in mUC-Cohort2 and Melanoma Cohort. Across all 
cohorts, higher expression levels of activated CD4+ memory T cells were consistently associated with improved prognosis. Notably, 
mUC-Cohort2 exhibited a significant survival advantage (P = 0.013, Hazard Ratio = 0.441, 95% CI: 0.228–0.856) (Fig. 2B), and mUC- 
Cohort2 displayed a similar trend in progress-free survival (P = 0.022, Hazard Ratio = 0.539, 95% CI: 0.315–0.923) (Fig. 2C), and 
Melanoma Cohort demonstrated the most pronounced survival benefit (P = 0.002, Hazard Ratio = 0.320, 95% CI: 0.150–0.682) 
(Fig. 2D). 

To further investigate the cellular composition, we employed the CIBERSORT algorithm to perform cell annotation on the IMvi-
gor210 Cohort. Heatmaps were generated for the responsive and non-responsive groups. The results revealed significant differences in 
the abundance of activated CD4+ Memory T Cells and Macrophages M1 between the responsive and non-responsive groups (Fig. 2E). 
To validate these findings, we conducted an analysis on an additional melanoma dataset (GSE35640+GSE91061), which confirmed 
the persistent differences in activated CD4+ Memory T Cells between the responsive and non-responsive groups (Lower part of Fig. 2E). 

In terms of treatment response, activated CD4+ memory T cell expression was significantly higher (p-value <0.01) in patients who 
responded to ICIs compared to non-responders (Fig. 2F). Furthermore, the high-expression group of activated CD4+ memory T cells 
demonstrated a substantially higher objective response rate (ORR) than the low-expression group (33% vs. 14%) (Fig. 2G). 

These results highlight the significance of activated CD4+ memory T cells in the context of immunotherapy and their potential as a 
biomarker for treatment response prediction. Further research is warranted to elucidate the underlying mechanisms by which acti-
vated CD4+ memory T cells influence the tumor immune microenvironment and interact with immune checkpoint molecules. 

2.2. Associations of activated CD4+ memory T cell with immune phenotype 

We aimed to elucidate the critical role of activated CD4+ memory T cells in determining the responsiveness to immune checkpoint 
inhibitors (ICIs) within the Tumor Immune Microenvironment (TIME). We evaluated the association between activated CD4+ memory 
T cells and immune phenotypes in the IMvigor210 trial. Based on the three previously defined immune phenotypes [23] revealed that 
activated CD4+ memory T cells exhibited the highest expression in the immune-inflamed phenotype and the lowest expression in the 

Table 1 
The clinical characteristics of the patients were included in this study.  

Cohorts IMvigor210 GSE176307 GSE78220 PRJEB23709 GSE35640 GSE91061 

Cancer type metastatic urothelial 
carcinoma 

metastatic urothelial 
carcinoma 

metastatic 
melanoma 

metastatic 
melanoma 

metastatic 
melanoma 

metastatic 
melanoma 

Number of patients 348 88 27 88 65 65 
Age (median, SD), years – 70.50 ± 10.26 61.00 ± 15.17 57.00 ± 12.50  – 
Gender 
Male 272 (78.2%) 55 (62.5%) 19 (70.4%) 53 (60.2%) – – 
Female 76 (21.8%) 33 (37.5%) 8 (29.6%) 35 (39.8%) – – 
Median Overall Survival 

Time, Months 
8.05 ± 7.65 5.72 ± 6.88 14.43 ± 10.00 20.02 ± 7.26 – – 

Median Progression-Free 
Survival Time, Months 

– 2.07 ± 5.38 – 16.92 ± 9.21 – – 

Survival Status 
Alive 116 (33.3%) 31 (35.2%) 15 (55.6%) 71 (80.7%) – – 
Deceased 232 (66.7%) 57 (64.8%) 12 (44.4%) 17 (19.3%) – – 
Response 
CR/PR 68 16 14 56 22 13 
SD/PD 230 71 13 32 34 43 
NA 50 1 – – 9 2 
Stage 
I 118 – – – – – 
II 95 – – – – – 
III 69 – – – – – 
IV 66 – – – – – 
Therapy anti-PD-L1 anti-PD-1/PD-L1 anti-PD-1 anti-CTLA4 or 

anti-PD-1 
anti-PD-1 anti-PD-1  

W. Ouyang et al.                                                                                                                                                                                                       



Heliyon 10 (2024) e27151

4

(caption on next page) 

W. Ouyang et al.                                                                                                                                                                                                       



Heliyon 10 (2024) e27151

5

immune-desert phenotype (P < 0.01) (Fig. 3A). Moreover, PD-L1 expression level on infiltrating immune cells (ICs) positively 
correlated with activated CD4+ memory T cells expression levels (P < 0.001) (Fig. 3B). The expression level of activated CD4+ memory 
T cells lacked a significant relationship with PD-L1 expression level on infiltrating tumor cells (TCs) (Fig. 3C). By employing four 
distinct immune phenotypes based on long non-coding RNA (lncRNA) and tumor-specific cytotoxic T lymphocytes (CTL) combinations 
[24], we found that activated CD4+ memory T cell expression was significantly higher in the immune-active phenotype compared to 
immune-excluded, immune-desert, and immune-dysfunction phenotypes (all P-values <0.05) (Fig. 3D).To investigate the role of 
activated CD4+ memory T cells in determining the crucial TIME (Tumor Immune Microenvironment) for ICI responsiveness, we 
examined the association between activated CD4+ memory T cells and immune checkpoint molecules in the IMvigor210 trial. Our 
findings revealed that patients with elevated PD-L1 expression exhibited higher levels of activated CD4+ memory T cell expression. 
Additionally, we identified a co-expression pattern between activated CD4+ memory T cells and other immune checkpoint molecules, 
including CTLA4, PD-1, IDO1, and LAG3. Compared to the low-expression group, the high-expression group of activated CD4+

memory T cells showed significantly higher expression levels of these immune checkpoint molecules (Fig. 3E). 
Moreover, our data indicated a positive correlation between the expression levels of these immune checkpoint molecules and 

activated CD4+ memory T cells (Fig. 3F). This finding suggests a possible synergistic effect in modulating the tumor immune response 
when these molecules are co-expressed with activated CD4+ memory T cells. To validate the robustness of our observations, we 
replicated the analysis in two additional immunotherapy cohorts, and the results were consistent with those from the IMvigor210 trial 
(Fig. 3G–J). 

The association of activated CD4+ memory T cells with immune phenotypes and IC immune scores suggests their involvement in 
shaping the immune landscape and response to ICIs. Further investigations are warranted to decipher the specific mechanisms by 
which activated CD4+ memory T cells modulate the immune response and explore their potential as predictive biomarkers for ICI 
treatment outcomes. 

2.3. Identification of Key Biomarkers associated with ICI responsiveness 

In this study, we aimed to provide a comprehensive description of the heterogeneity of activated CD4+ memory T cells within the 
Tumor Immune Microenvironment (TIME). To achieve this, we conducted a thorough analysis of the IMvigor210 trial, focusing on 
identifying key marker genes highly correlated with activated CD4+ memory T cell infiltration and responsiveness to Immune 
Checkpoint Inhibitors (ICIs). 

Initially, we stratified the samples into high and low expression groups based on CD4 expression levels and performed a differential 
gene expression analysis. This analysis led to the identification of 19 downregulated genes and 321 upregulated genes (Fig. 4A). 

To gain insights into the functional implications of these differentially expressed genes (DEGs), we conducted Gene Ontology (GO) 
pathway enrichment analysis. The results revealed significant associations of these DEGs with immune processes, including leukocyte- 
mediated immunity, cell-cell adhesion, activated T cell regulation, immune receptor activity, immunological synapse, and MHC 
protein complex (Fig. 4B). Furthermore, KEGG pathway enrichment analysis highlighted enrichment in cell adhesion molecules and 
cytokine-cytokine receptor interaction processes (Fig. 4C). 

Next, we focused on identifying genes that could distinguish immunotherapy responders from non-responders and genes that 
differed significantly between the high activated CD4+ memory T cell and low activated CD4+ memory T cell groups. Among these, 9 
genes (CXCL10, ALDH1L1, CXCL13, ANXA10, AREG, UBD, CXCL9, CA12, KLRC2) were found to be overlapping DEGs (Fig. 4D). To 
assess the relationship of activated CD4+ memory T cells with these intersecting genes, we analyzed their correlation (Fig. 4E). 
Notably, CXCL13 exhibited the highest correlation and was identified as the most critical gene for subsequent analyses. Additionally, 
CXCL9, KLRC2, UBD, CXCL10, and AREG showed positive correlations, while CA12, ALDH1L1, and ANXA10 showed negative 
correlations. 

CXCL13 is a chemokine that is highly expressed in germinal center-associated helper T cells, and it plays a crucial role in facilitating 
B cell entry into the germinal center. We observed that among patients with high CD4 expression, 54% of them also showed high 
CXCL13 expression, whereas in the CD4 low-expression group, only 16% exhibited high CXCL13 expression. Meanwhile, in the non- 
responder group there were 69% of patients with low CXCL13 expression and 53% of patients exhibited high CXCL13 expression in the 
responder group (Fig. 4F). Likewise, CXCL13 expression was significantly higher (P = 0.01) in patients who responded to ICIs 
compared to non-responders (Fig. 4G). 

To explore its potential as a predictive biomarker for immune checkpoint inhibitor (ICI) therapy efficacy, we stratified patients 
based on CXCL13 expression levels and examined its impact on overall survival using data from the IMvigor210 trial. The results 
revealed that patients with high CXCL13 expression had a significantly better prognosis (P < 0.0001, Hazard ratio = 0.498, 95% CI: 
0.371–0.668) (Fig. 4H). The same conclusion is validated for mUC-Cohort2 in overall survival (P < 0.001, Hazard ratio = 0.367, 95% 
CI: 0.213–0.633) (Fig. 4I). mUC-Cohort2 in progress-free survival was also used to validate the conclusions above (P < 0.001, Hazard 

Fig. 2. Correlation between CD4+ Memory T Cell Expression and Immunotherapy Response (A) Overall Survival Analysis of Activated CD4+

Memory T Cells in IMvigor210 Cohort. (B) Overall Survival Analysis of Activated CD4+ Memory T Cells in mUC-Cohort2 (GSE176307). (C) Progress- 
free Survival Analysis of Activated CD4+ Memory T Cells in mUC-Cohort2 (GSE176307). (D) Overall Survival Analysis of Activated CD4+ Memory T 
Cells in Melanoma Cohort (GSE78220+PRJEB23709). (E) Distribution Heatmap of Immune Cell Populations in Responders and Non-responders. (F) 
Expression Levels of Activated CD4+ Memory T Cells in Responders and Non-responders. (G) Distribution of Objective Response Rate in Activated 
CD4+ Memory T Cells High and Low Expression Groups. 
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ratio = 0.522, 95%CI: 0.324–0.843) (Fig. 4J). 
By conducting these analyses, we have gained valuable insights into the heterogeneity of activated CD4+ memory T cells in the 

Tumor Immune Microenvironment. The identified marker genes and their correlations may have important implications for under-
standing immune responses and guiding the development of targeted immunotherapies for cancer treatment. 

3. Exploring the impact of CXCL13 on the tumor immune microenvironment 

To gain deeper insights into the potential impact of CXCL13 on the tumor immune microenvironment (TIME), we conducted a 
comparative analysis using data from the IMvigor210 trial. Specifically, we compared the gene expression profiles between the high 
CXCL13 expression group and the low CXCL13 expression group. Our analysis revealed 320 downregulated genes and 850 upregulated 
genes in the high CXCL13 expression group (Fig. 5A). 

Moreover, the Gene Ontology (GO) pathway enrichment analysis showed a significant correlation between these differentially 
expressed genes (DEGs) and immune processes, with functional enrichment resembling that of activated CD4+ memory T cells 
(Fig. 5B). Additionally, the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed enrichment in the 
cytokine-cytokine receptor interaction process and the chemokine signaling pathway (Fig. 5C). 

To further investigate the cellular composition and immune microenvironment scores, we employed the CIBERSORT algorithm. 
The comprehensive heatmap (Fig. 5D) illustrated a higher proportion of cells with elevated immune checkpoint levels, activated CD4 
memory T cells, and memory B cells in the high CXCL13 expression group. Additionally, the StromalScore and ImmuneScore were 
significantly higher in the high CXCL13 expression group compared to the low expression group, indicating increased infiltration of 
stromal and immune cells in the TIME. Notably, the high CXCL13 expression group exhibited a substantial presence of M1 
macrophages. 

Our investigation also delved into the relationship between CXCL13 expression levels and immune subtypes in tumors. The results 
indicated a significant association between high CXCL13 expression and the inflammatory subtype of tumors within the tumor immune 
three-subtype classification (P < 0.01) (Fig. 5E). Additionally, PD-L1 expression status on infiltrating immune cells (ICs) were found to 
positively correlate with CXCL13 expression levels (P < 0.001) (Fig. 5F). However, there was no significant relationship between the 
expression level of CXCL13 and PD-L1 expression status on infiltrating immune cells (P = 0.12) (Fig. 5G). These results suggest that 
CXCL13 may be more correlated with the immune checkpoint score expressed by immune cells than that expressed by tumors. Utilizing 
four distinct immune phenotypes, which were based on combinations of long non-coding RNA (lncRNA) and tumor-specific cytotoxic T 
lymphocytes (CTL) [24], CXCL13 expression was significantly higher in the immune-active phenotype compared to the 
immune-excluded, immune-desert, and immune-dysfunction phenotypes (P < 0.05) (Fig. 5H).This finding suggests a crucial role for 
CXCL13 in shaping the tumor immune microenvironment and promoting immune responses. 

Furthermore, we noted a positive correlation between CXCL13 expression and the abundance of immune checkpoints (Fig. 5I and 
J). This discovery indicates a potential link between CXCL13 expression and immune checkpoint regulation, with potential impli-
cations for the responsiveness to immune checkpoint inhibitor (ICI) therapy. Understanding the role of CXCL13 in the tumor immune 
microenvironment could contribute to the development of more effective and personalized immunotherapeutic strategies. 

3.1. A novel predictive model for ICIs Treatment Prognosis with MLA-GNN models 

In our prior research, we have gained valuable insights into the consistent correlation between elevated expression levels of 
activated CD4 memory T cells and CXCL13 and improved prognosis in the context of Immune Checkpoint Inhibitors (ICIs) therapy. 
Building upon this knowledge, we have successfully developed a pioneering predictive model for the clinical prognosis of ICIs 
treatment. This model leverages activated CD4 memory T cell-related genes and employs the MLA-GNN (Multi-Layer Aggregation 
Graph Neural Network) model, as illustrated in Fig. 6A. 

The newly developed model demonstrates promising predictive capabilities for the Objective Response Rate (ORR) in patients 
undergoing ICIs therapy. To assess its performance, we employed the IMvigor210 Cohort the training group, consisting of 298 in-
dividuals, and the mUC-Cohort2 as the test group, consisting of 87 individuals, resulting in AUC values of 0.8628 in IMvigor210 Cohort 
(Fig. 6B) and 0.7302 in mUC-Cohort2 (Fig. 6C), respectively. These results highlight the potential of our innovative model in effec-
tively predicting the response to ICIs treatment and enhancing patient outcomes. 

Fig. 3. Activated CD4+ Memory T Cells in Immunophenotype and Immune Checkpoint Relationships (A) Difference of Activated CD4+ Memory T 
Cell Expression with Immune Subtypes. (B) Difference of Activated CD4+ Memory T Cell Expression with PD-L1 level of Immune Cells (IC). (C) 
Difference of Activated CD4+ Memory T Cell Expression with PD-L1 level of Tumor Cells (TC). (D) Difference of Activated CD4+ Memory T Cell 
Expression with Related lncRNA Subtypes. (E) Difference between Activated CD4+ Memory T Cell Expression and Immune Checkpoints in the 
IMvigor210 Cohort. (F) Correlation Analysis between Activated CD4+ Memory T Cells and Immune Checkpoints in the IMvigor210 Cohort. (G) 
Difference between Activated CD4+ Memory T Cell Expression and Immune Checkpoints in mUC-Cohort2 (GSE176307). (H) Correlation Analysis 
between Activated CD4+ Memory T Cells and Immune Checkpoints in mUC-Cohort2 (GSE176307). (I) Difference between Activated CD4+ Memory 
T Cell Expression and Immune Checkpoints in the Melanoma Cohort (GSE78220+PRJEB23709). (J) Difference Analysis between Activated CD4+

Memory T Cells and Immune Checkpoints in the Melanoma Cohort (GSE78220+PRJEB23709). 
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4. Discussion 

This study elucidated the paramount importance of activated CD4+ memory T cells in mediating immunotherapy outcomes. 
Through rigorous analysis, we discerned a robust association between augmented expression of activated CD4+ memory T cells and 
enhanced clinical outcomes in patients treated with immune checkpoint inhibitors (ICIs). Notably, the gene CXCL13 emerged as a 
salient molecular marker, showing a significant correlation with the expression profiles of activated CD4+ memory T cells and ICI 
therapeutic responsiveness. Upon intricate examination of the tumor immune microenvironment, we observed that elevated CXCL13 
expression was concomitant with heightened immune activity. Importantly, leveraging advanced deep learning algorithm, we con-
structed a prognostic model predicated upon the differentially expressed genes from activated CD4+ memory T cells. This model 
exhibited exceptional efficacy in predicting ICI therapeutic responses. In total, our data robustly support the paramount prognostic 
potential of both activated CD4+ memory T cells and our bespoke model. 

Recent advancements in immunotherapy have elucidated the significance of various cellular and molecular markers in shaping 
therapeutic outcomes. Traditionally, the spotlight has been cast upon CD8+ T cells, owing to their primary effector role in tumor 
eradication [25–28]. Nonetheless, our seminal research accentuates the paramount role of activated CD4+ memory T cells within the 
tumor microenvironment. This pivotal realization originated from the observation that CD4+ T cells in melanoma cells could discern 
cancer antigens, instigating robust, long-term immunity. Such immunological responses were subsequently pinpointed across a 
spectrum of cancer types. 

In a compelling turn of events, an examination of circulating T cells from patients administered ipilimumab (anti-CTLA-4) unveiled 
a correlation: a surge in CD4+ T cells was concomitant with enhanced survival outcomes and clinical efficacy [29]. Historically 
delegated a mere helper function in immunity, burgeoning evidence now unveils the direct cytotoxic prowess of CD4+ T cells [30]. 
These cells, in the throes of acute and chronic viral onslaughts, target and eradicate cells by recognizing antigens presented on MHC 
Class II molecules [31]. Such cytotoxic CD4+ T cells, identified in various human malignancies, portend an auspicious avenue for their 
incorporation into immunotherapeutic regimens. T cell-mediated responses in tumor immunology are undeniably paramount. 
Notably, activated CD4+ T cells can augment cytotoxic T lymphocyte (CTL) reactions, serve as effector cells, and, intriguingly, manifest 
inhibitory propensities via the CD4+ CD25+ regulatory subset. Previous endeavors have underscored the enduring nature of memory 
CD4+ T cells, borne from infection or immunization, which flourish upon subsequent antigen encounters even in the absence of ad-
juvants [32,33]. Yet, the intricacies surrounding the presence and role of activated CD4+ memory T cells within tumors remain 
enigmatic. This amplifies the gravity of our discovery, establishing a positive correlation between these cells and cancer survival, 
intricately linked with the prowess of ICI therapies. 

CXCL13’s emergence as a pivotal molecular marker in the oncology domain offers novel trajectories for research. Historically, this 
chemokine has been recognized for its role in orchestrating secondary lymphoid structures and recruiting B cells [34,35]. A discernible 
association of its elevated expression with amplified immune activity within the tumor microenvironment potentially underscores its 
significance in creating conditions favorable for Immune Checkpoint Inhibitor (ICI) effectiveness. The intricate relationship between 
heightened CXCL13 expression and the vigor of activated CD4+ memory T cells posits a conceivable feedback mechanism. Upon their 
activation, these T cells might either synthesize or induce other immune cells to release CXCL13, thereby amplifying the overarching 
immune response. Recent investigations have identified the presence of CXCL13-expressing CD8+ and CD4+ T cell subsets within 
TNBC tumors [36]. Notably, these CXCL13+ T cells demonstrate substantial expansion post-combinatorial treatments and bear a close 
association with tumor reactivity. Further empirical data reinforces the correlation between CXCL13+ T cells and the efficacy of PD-L1 
blockade therapy. 

Another independent study found that the majority of high-grade serous ovarian cancer patients exhibited a limited response to 
immune checkpoint blockade, with the underlying reasons yet to be fully understood. Given the rejuvenated vitality of follicular 
cytotoxic CXCR5+ CD8+ T cells upon tumor immune checkpoint blockade, elevated CXCL13 expression within the tumor was found to 
denote a more immunogenically active microenvironment, potentially heralding an extended patient survival [37]. Additionally, 
CXCL13+ T cells have been identified to execute crucial antitumor functions via interaction with dendritic cells (DC), cementing their 
importance for antitumor responses with anti-PD-1 treatments [5]. Our findings largely concur with previous research, elucidating that 
elevated CXCL13 expression correlates positively with favorable prognoses in tumor patients under ICIs treatment. Furthermore, a 
direct correlation has been discerned between CXCL13 and the infiltration extent of activated memory CD4+ T cells. Mechanistically, 
within the tumor milieu, the expression of CXCL13 might be a response to specific stimuli, such as inflammation or other 
immune-activating factors [5]. This unique environment might foster the activation and proliferation of CD4 memory T cells [38]. 
Alternatively, the upsurge in CXCL13 might cause an influx of T cells and B cells to lymph nodes or the tumor microenvironment, 

Fig. 4. CXCL13 as the Key Biomarker of Activated CD4+ Memory T Cells (A) Differentially expressed genes between high and low Activated CD4+

Memory T Cell level groups. (B) GO analysis of differentially expressed genes between groups with high and low levels of Activated CD4+ Memory T 
Cells. (C) KEGG analysis of differentially expressed genes between groups with high and low levels of Activated CD4+ Memory T Cells. (D) The 
intersection of differentially expressed genes between groups with high and low levels of Activated CD4+ Memory T Cells and groups responsive and 
non-responsive to ICIs treatment. (E) Differential expressed gene between high and low Activated CD4+ Memory T Cell levels groups and correlation 
analysis with Activated CD4+ Memory T Cell. (F) The proportion of patients with high and low CXCL13 levels in relation to the high and low 
activated CD4+ memory T cell groups and the responsiveness to ICI treatment. (G) Difference in CXCL13 expression between ICI treatment 
responsive and non-responsive groups (H) The difference in OS between the high and low CXCL13 level groups in the IMvigor210 cohort. (I) The 
difference in OS between the high and low CXCL13 level groups in the mUC-Cohort2 (GSE176307). (J) The difference in PFS between the high and 
low CXCL13 level groups in the mUC-Cohort2 (GSE176307). 
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amplifying antigen presentation, immune cell interplay, and the overall immune response. In essence, CXCL13 may be paramount in 
modulating immune responses and, consequently, tumor reactivity to ICIs. 

Leveraging artificial intelligence in biomedical research, especially deep learning, has brought forth a paradigm shift, enabling the 
development of cutting-edge prognostic tools. Our model, built upon deep learning methodologies, extrapolates the differentially 
expressed genes of activated CD4+ memory T cells, representing a confluence of molecular biology and computational prowess. In 
previous studies [39–44], other researchers have mostly used machine learning models to predict cancer immunotherapy effects, and 
the results are encouraging, but in our study, based on Activated CD4+ Memory T Cells related genes combined with a deep learning 

Fig. 5. CXCL13 in Immunophenotype and ICIs Efficacy. (A) Differentially expressed genes between high and low CXCL13 level groups. (B) GO 
analysis of differentially expressed genes between groups with high and low levels of CXCL13. (C) KEGG analysis of differentially expressed genes 
between groups with high and low levels of CXCL13. (D) Difference in immune cell infiltration between groups with high and low CXCL13 levels. (E) 
Difference of CXCL13 Expression among Immune Subtypes. (F) Difference of CXCL13 Expression among PD-L1 level of Immune Cells (IC) (G) 
Difference of CXCL13 Expression among PD-L1 level of Tumor Cells (TC) (H) Difference of CXCL13 Expression among Immune Related lncRNA 
Subtypes. (I) Difference between CXCL13 Expression and Immune Checkpoints in the IMvigor210 Cohort. (J) Correlation between CXCL13 
Expression and Immune Checkpoints in the IMvigor210 Cohort. 
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model, there is a higher prediction of ICI treatment effects. The demonstrated ability of our model to predict ICI responses is 
instrumental for clinicians, allowing for refined, individualized therapeutic decisions in an era increasingly moving towards 
personalized medicine. 

Historically, the promise of deep learning in oncological prognosis has been illustrated in several studies. For instance, multi-modal 
deep learning models were formulated using pathological imagery from 14 distinct tumor types, combined with their matched 
genomic data [45]. Such an integrative approach paints a comprehensive picture, correlating histological and molecular features, 
thereby offering a detailed perspective into cancer patient risk and prognosis. Additionally, a recent exploration introduced a weakly 
supervised deep learning framework explicitly designed for prognostic predictions in HCC patients [46]. Utilizing digitized patho-
logical images, this framework has revealed specific prognostic features, which are encapsulated within the TRS formula and can be 
visualized using heatmaps, emphasizing the potential relationship between tumor immune infiltration and its impact on microvessel 
formation, suggesting possible repercussions on the survival rates of HCC patients. 

The imperative to delve deep into the tumor immune microenvironment arises from its pivotal role in shaping the interactions 
between malignancies and the patient’s immune response. While biomarkers are gaining traction as tools to gauge the efficacy and 
predict side-effects of immunotherapies, their solitary use has shown limitations. The overarching challenge remains identifying a 
singular predictive biomarker capable of efficiently pinpointing patients who would most benefit from the treatment. This existing gap 
underscores the value and urgency of our work, emphasizing the need to amalgamate deep learning into the realm of oncological 
prognosis and prediction. 

In conclusion, this study delineated the pivotal role of activated CD4+ memory T cells and the chemokine CXCL13 within the Tumor 
Immune Microenvironment in predicting the efficacy of Immune Checkpoint Inhibitors treatment. Through multiple cohorts and 
rigorous analyses, we observed consistent correlations between elevated expressions of these markers and improved patient prognosis. 
Notably, utilizing these insights, we introduced an innovative MLA-GNN deep learning predictive model that showcased remarkable 
potential in forecasting treatment response. Our findings underscore the promise of personalized immunotherapy strategies, estab-
lishing the groundwork for enhanced therapeutic outcomes in oncological care. 

Fig. 6. Predictive Model for ICIs Treatment Prognosis with MLA-GNN Models (A) MLA-GNN Algorithm Workflow (B) ROC Curve for the IMvigor210 
Cohort. (C) ROC Curve for the mUC-Cohort2 (GSE176307). 
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5. Materials and methods 

5.1. Study design 

The study used data from 348 metastatic urothelial carcinoma (mUC) patients treated with the PD-L1 inhibitor atezolizumab from 
IMvigor210 [12]. Another set involved 88 mUC patients from GSE176307 [13] who received anti-PD1/PD-L1 therapy as well, which 
was named as the ‘mUC-Cohort2′, as the survival verification cohorts. For the pre-treatment melanoma group on anti-PD-1 therapy, we 
sourced from GSE78220 [14] with 27 patients. 88 patients with metastatic melanoma who were treated anti-PD-1 or combined with 
anti-CTLA-4 were from PRJEB23709 [15]. These two cohorts were comprised as the ‘Melanoma Cohort’ as the survival verification 
cohorts. Additionally, 130 melanoma patients who underwent anti-PD-1 treatment, were collected from the GSE35640 and GSE91061 
contributed data. 

The main objective is to investigate the impact of ICIs on cancer patients’ outcomes and their response to treatment. Specifically, 
patients will be categorized into two groups based on their response to ICIs: the “Responder Group” comprising complete and partial 
responses, and the “Non-Responder Group” comprising stable disease and disease progression. 

5.2. Immune cell proportions 

By leveraging the ‘CIBERSORT’ R package [16], we ascertained the proportions of 22 distinct immune cell types present in each 
sample. The full reference for the LM22 gene expression signature matrix can be found in (Supplementary Table 1). These include 
naive B cells, Bm, plasma cells, CD8+ T cells, naive CD4+ T cells, resting CD4+ memory T cells, activated CD4+ memory T cells, Tfh, 
Tregs, γδT, resting and activated natural killer cells, monocytes, macrophages (M0, M1, M2), dendritic cells (both resting and activated 
DC), resting mast cells, activated mast cells, eosinophils, and neutrophils. 

5.3. Immune subsets and phenotypes 

The immune phenotype within the IMvigor210 dataset includes three distinct subtypes: inflammatory, exclusionary, and desert 
immune [17]. Specifically, the immune desert subtype is characterized by the absence of immune cells, resulting in a complete lack of 
immune response against the tumor. Conversely, the immune-exclusionary subtype exhibits an immune response, but is populated by 
peripherally invading T cells that are unable to fully suppress the tumor. In contrast, the inflammatory subtype demonstrates an active 
immune response characterized by the presence of inflammatory myeloid cells and activated CD8+ T cells within the tumor 
microenvironment. 

In addition, the assessment of PD-L1 expression status on infiltrating immune cells (ICs) and tumor cells (TCs) [18,19] in the tumor 
microenvironment, is defined based on the percentage of PD-L1-positive immune cells as follows TC0 or IC0, <1%; TC1 or IC1, ≥1% 
but <5%; TC2+ or IC2+ (≥5%). 

Moreover, in our previous study [24], we used signatures of long non-coding RNAs (lncRNAs) and cytotoxic T lymphocyte (CTL) 
infiltration to delineate four distinct immune classes in the context of clinical cancer immunotherapy. Specifically, patients classified in 
the Immune-active class exhibit a robust and functional immune response characterized by high CTL infiltration. Conversely, patients 
categorized in the Immune-exclusion class also exhibit a functional immune response, albeit with low CTL infiltration. In contrast, 
patients classified in the Immune-Dysfunctional class show immune dysfunction despite high CTL infiltration. Finally, patients in the 
Immune-desert class have both immune dysfunction and low CTL infiltration. 

5.4. Differentially expressed genes analyses 

All differential gene expression (DEG) analyses were conducted using the R package “limma” [20]. DEGs were identified utilizing 
the Wilcoxon test, with significance criteria set as absolute log2 (fold change) values greater than 0.5 and P values less than 0.05. 
Volcano plots were generated to visually depict the DEGs between the two groups. These plots provide an intuitive representation of 
the fold change and statistical significance of gene expression differences, aiding in the identification of genes that are significantly 
altered between the compared conditions. The use of the Wilcoxon test was preferred due to its robustness in handling non-normally 
distributed data and its suitability for smaller sample sizes. The choice of an absolute log2 (fold change) threshold greater than 0.5 
helps focus on genes with a meaningful change in expression, while the P value threshold of less than 0.05 ensures a controlled level of 
false positives in the analysis. 

5.5. Enhancement of functionality 

Functional enrichment was employed to assess potential functionalities of the anticipated targets. Gene ontology (GO) is frequently 
utilized to ascribe roles to genes, covering molecular functions (MF), biological processes (BP), and cellular components (CC). KEGG 
enrichment offers insights into gene roles and advanced genomic functional data. We utilized the “GOplot” and “clusterProfiler” [21] 
packages in R to scrutinize the GO roles of expected mRNAs and to amplify KEGG pathways, providing a deeper insight into the 
oncogenic significance of the target genes. Fisher’s exact test was chosen as it is a robust statistical method for analyzing categorical 
data in small sample sizes, such as gene sets associated with specific functional annotations. 
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5.6. Identification of the Key Biomarkers 

To identify crucial marker genes associated with activated CD4+ memory T cell infiltration and the response to immune checkpoint 
inhibitors (ICIs), we initiated our investigation by analyzing Differentially Expressed Genes (DEGs) between the high activated CD4+

memory T cell expression group and the low activated CD4+ memory T cell expression group. Additionally, we analyzed DEGs between 
the reactive and non-reactive groups using data from the IMvigor210 assay. Subsequently, we identified the overlapping genes be-
tween these sets of DEGs. To prioritize the importance of each gene, we employed the Random Forest classification algorithm and 
implemented it using the R software package “randomForest.” This method enabled us to rank the genes based on their relevance and 
association with activated CD4+ memory T cell infiltration and the response to ICIs. 

5.7. ICI efficacy Prediction Models constructed with GNN algorithm 

To develop a novel model for predicting immune checkpoint inhibitor (ICI) efficacy, we employed deep learning algorithms, with a 
specific focus on activated CD4+ memory T cells and factors associated with the tumor immune microenvironment (TIME). The 
IMvigor210 trial data was used as the training group, while the GEO cohort data served as the validation group. The multi-level 
attention graph neural network (MLA-GNN) [22] was utilized to construct this innovative predictive model. 

This approach involved identifying the intersection of differential genes at three key levels: gene expression, activated CD4+

memory T cell infiltration, and factors associated with the TIME. By integrating information from these levels, we aimed to capture a 
comprehensive view of the intricate interactions in the tumor microenvironment, which can influence ICI response. 

To evaluate the performance of our novel model, we utilized the ROC (Receiver Operating Characteristic) function to estimate its 
accuracy in predicting ICI efficacy. The ROC curve provides a graphical representation of the true positive rate against the false positive 
rate, enabling a comprehensive assessment of the model’s predictive capabilities. A high area under the ROC curve (AUC) would 
indicate a strong predictive power for ICI response. 

5.8. Statistical analysis 

Categorical variables were compared using either the chi-square test or Fisher’s exact test, depending on the sample size and 
distribution. For comparisons involving continuous variables, the Mann-Whitney test was employed for two-group comparisons, while 
the one-way analysis of variance with the Kruskal-Wallis test was utilized for multi-group comparisons. To assess correlation co-
efficients between variables, Spearman correlation analysis was employed, as it is suitable for non-parametric data. Overall survival 
(OS) and Progression-Free Survival (PFS) were estimated using the Kaplan-Meier method, and comparisons between survival curves 
were performed using the log-rank test. For determining optimal cutoff values for continuous variables in each dataset, we employed 
the R package “survminer”. This allowed us to define thresholds that optimize the separation of patient groups based on survival 
outcomes. 

Statistical significance was set at a two-sided P-value less than 0.05, indicating the presence of a statistically significant association 
or difference. All statistical analyses were performed using R version 4.0.0 (http://www.rproject.org/), a widely used and powerful 
statistical software environment for bioinformatics and data analysis in the field of oncology and other domains. The choice of R 
version 4.0.0 was based on its availability at the time of analysis and its compatibility with the necessary packages and functions used 
in the study. 
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