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The mitogenome of common snipe, Gallinago gallinago gallinago Linnaeus, 1758
and evolutionary implications for the family Scolopacidae
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ABSTRACT
The mitochondrial genome (mitogenome) of Gallinago gallinago gallinago Linnaeus, 1758 was deter-
mined by the high-throughput data. The assembled mitogenome was 16,919bp in length, with a
58.7% Aþ T content and GC skew of �0.3850. Among 13 PCGs, an unusual start codon (GTG) was
identified for the COX1 gene, and incomplete stop codons (T-) were found in the COX3, ND2 and ND4
genes. The function of a cytosine insertion at site 174 in the ND3 gene and its phylogenetic signifi-
cance are worthy of further scrutiny. In the control region (CR), thirteen 15-bp simple sequence repeats
were found in G. g. gallinago. Phylogenetic analysis indicated that Gallinago was clustered at the basal
position of the Scolopax clade and that the monophyly of Gallinago was also recovered. The mitoge-
nome data of G. g. gallinago provides useful resources for further studying the evolution of
Scolopacidae.
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The common snipe, Gallinago gallinago, is a medium-sized,
ground-nesting shorebird that feeds by probing in mud or
soil to locate invertebrates with its long bill. This species
occurs on all continents except Antarctica and Australia, but
populations have been declining in Europe because of the
drainage of bogs and marshy grassland (Cramp and Simmons
1983). Most species of birds separate molting from other
energy-demanding activities, such as migration or reproduc-
tion. G. gallinago is an exception, as during the first autumn
migration, many young snipe initiate their post-juvenile molt,
which includes the replacement of body feathers, lesser and
median wing coverts, tertials, and rectrices (Podlaszczuk et al.
2017). G. gallinago is a grassland waterbird characteristic of
agricultural meadows and a member of one of the most
threatened bird guilds (Regos et al. 2020). As an indicator
species of the ecological environment, research on G. galli-
nago has mostly focused on macroscopic ecology (Green
1988; Henderson et al. 2002; Włodarczyk et al. 2018). Limited
molecular data hamper phylogenetic and evolutionary stud-
ies in G. gallinago. Here, the complete mitogenome of G. g.
gallinago has been reported with general features. These
results are used to explore the potential for improving breed-
ing success by habitat management.

G. g. gallinago in this study was a female adult that died
naturally during the breeding season from Lantian County,
Xi’an (34�2007ʺN, 109�22054ʺE). The specimen (voucher num-
ber: SWSZ01) was collected and identified by C. Yang, and
deposited in the animal specimen museum of Shaanxi

Institute of Zoology, Xi’an, Shaanxi Province, China (contacts:
Chao Yang, chaoy819@xab.ac.cn).

DNA was extracted by Qiagen columns (DNeasyVR Blood &
Tissue kit; Qiagen, Hilden, Germany) and prepared with a
paired-end (2� 150 bp) library strategy followed by next-
generation sequencing (NGS) on the Illumina HiSeq Xten
platform (Illumina, San Diego, CA). A total of 9,219,657
paired-end raw reads were produced. After removing regions
with a Phred score of <10, 9,111,941 clean reads were
obtained after quality and ambiguity controls. The clean data
were assembled using MITOBim v1.9 (Hahn et al. 2013) with
the mitogenome of G. stenura (GenBank accession no.
KY056596) as a reference. Assembly of the clean reads and
gene annotation were performed by Geneious 10.1.3 (Kearse
et al. 2012) and tRNAscan-SE 2.0 (Lowe and Chan 2016), with
a total of 210,657 mitochondrial reads mapped to the refer-
ence mitogenome, giving an average coverage of 1820.1�.

The assembled G. g. gallinago mitogenome (GenBank
accession no. MZ157405) was a 16,919 bp long circular DNA
with overall nucleotide frequencies of A¼ 32.5%, T¼ 26.2%,
C¼ 28.6%, and G¼ 12.7% and an Aþ T content of 58.7%.
The GC skew was �0.3850, which showed a remarkable C
skew and was similar to the mitogenomes of other
Charadriiformes species (Yu et al. 2014; Yang et al. 2016).
With the exception of COX1, which started with GTG, all PCGs
had typical ATN start codons, and all PCGs ended with a
complete triplet codon (TAA, AGG, AGA, or TAG), except for
COX3, ND2, and ND4, which ended with an incomplete T. All
transfer RNA (tRNA) genes had typical cloverleaf secondary
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structures, with the exception of tRNA-Ser (AGY), in which the
dihydrouridine arm formed a simple loop. The length of 12S
ribosomal RNA (rRNA) was 972 bp, and that of 16S rRNA was
1598bp, both were located between tRNA-Phe and tRNA-Leu
(UUR) and separated by tRNA-Val. The CR was 1364 bp long
and was located between tRNA-Glu and tRNA-Phe.

The newly sequenced species with 99.3% sequence simi-
larity to G. gallinago (GB: MW865755), and the nucleotide dif-
ferences between of them occurred mainly in the CR: length
of poly-C block in domain I and number of repeat units in
domain III (Figure 1(A)). In the CR, 13 (positions:
16,691–16,885) and 8 (positions: 16,680–16,799) simple
sequence repeats of 50-AAACAAACAATCAAC-30 existed in G.
g. gallinago (GB: MZ157405) and G. gallinago (GB:
MW865755), respectively (software: tandem repeats finder
(TRF) v4.09; Benson 1999). This is the main reason for the dif-
ferent lengths of the two sequences. More molecular

sequence data generated may be applied to elucidate the
population genetics of this bird species.

The length of the ND3 gene was 351 bp, which was similar
to most of the known Scolopacidae mitogenomes in
GenBank. One cytosine insertion at site 174 was revealed in
the ND3 gene (nucleotide position: 9703). Classic inference
suggests that this extra nucleotide may be removed by RNA
editing during translation, and the function of the ND3 gene
may be recovered, effectively avoiding the premature stop-
page of transcription due to a frameshift mutation (Mindell
et al. 1998). The latest hypotheses expounded that relaxed
selection pressure may have allowed frameshift insertions to
be tolerated for hundreds of millions of years, possibly a
result of the rapid adaptive radiation of birds due to pro-
grammed translational frameshifting (Rosengarten et al. 2008;
Russell and Beckenbach 2008; Haen et al. 2014). Species with-
out cytosine insertion in the ND3 gene of Scolopacidae have

Figure 1. (A) Main nucleotide trait differences between G. gallinago (GenBank accession no. MW865755, MZ157405). (B) Maximum-likelihood tree obtained using
RAxML v7.0.3 with 1000 nonparametric bootstrap replicates. GenBank accession numbers are indicated following species names. Numbers on the nodes are boot-
strap values. ‘�’ represents no cytosine insertion.
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been labeled with ‘�’ (Figure 1(B)). At the order level, species
with cytosine insertion in the ND3 gene (Struthioniformes)
were clustered into one branch and species without cytosine
insertion in the ND3 gene clustered into another branch
(Passeriformes). Species with cytosine insertion in the ND3
gene were so antiquated that they were divided out earlier.
Species with/without cytosine insertion in the ND3 gene
(Tinamiformes, Falconiformes, Charadriiformes,
Sphenisciformes, Ciconiiformes, Galliformes, Anseriformes,
etc.) clustered at the neutral position of the avian mitoge-
nomic tree (Slack et al. 2007; Tamashiro et al. 2019). But at
the family level, it seems that the clustering of related spe-
cies are not hindered by cytosine insertion in the ND3 gene
(Figure 1(B)). The mechanism of the extra ’C’ in the ND3 gene
and its phylogenetic significance on avian adaptive radiation
need to be studied further.

To validate the phylogenetic position of G. g. gallinago,
maximum-likelihood (ML) methods were employed to con-
struct phylogenetic tree using RAxML v7.0.3 (Stamatakis
2006) based on 13 PCGs of 29 mitogenomes. The 13 PCGs
sequences were aligned using Clustal v2.1 after manually
removed the stop codons, and then concatenated into a
combined dataset using SequenceMatrix v1.7.8. The best par-
titioning scheme and optimal model (models GTRþ IþG and
GTRþG) were analyzed in Partitionfinder v1.1.1 (Lanfear et
al. 2012), and the robustness of the phylogenetic result was
tested through bootstrap analysis with 1000 replicates (Yang
et al. 2017). Larus brunnicephalus (GenBank accession no.
JX155863) was selected as an outgroup. The topological
structure showed that the monophyly of Gallinago was recov-
ered, with the phylogeny ((G. gallinago (GB: MW865755), G. g.
gallinago (GB: MZ157405)) (G. stenura (GB: KY888681), G. sten-
ura (GB: KY056596))) (Figure 1(B)) (Gibson and Baker 2012).
We also confirmed that Gallinago was clustered at the basal
position of the Scolopax clade (Figure 1(B)), which was con-
sistent with the results of previous studies (Hu et al. 2017).
This mitogenome would provide an important resource for
further exploring the taxonomic status of
Scolopacidae species.
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