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Simple Summary: Androgen receptor splice variant 7 (AR-V7) has always been considered a key
driver for triggering enzalutamide resistance of castration-resistant prostate cancer (CRPC). In recent
years, both the homeostasis of AR-V7 protein and AR-V7’s relationship with LncRNAs have gained
great attention with in-depth studies. Starting from protein stability and LncRNA, the paper discusses
and summarizes the mechanisms and drugs that affect the CRPC patients’ sensitivity to enzalutamide
by regulating the protein or transcriptional stability of AR-V7, hoping to provide therapeutic ideas
for subsequent research to break through the CRPC therapeutic bottleneck.

Abstract: Prostate cancer (PCa) has the second highest incidence of malignancies occurring in men
worldwide. The first-line therapy of PCa is androgen deprivation therapy (ADT). Nonetheless,
most patients progress to castration-resistant prostate cancer (CRPC) after being treated by ADT.
As a second-generation androgen receptor (AR) antagonist, enzalutamide (ENZ) is the current
mainstay of new endocrine therapies for CRPC in clinical use. However, almost all patients develop
resistance during AR antagonist therapy due to various mechanisms. At present, ENZ resistance
(ENZR) has become challenging in the clinical treatment of CRPC. AR splice variant 7 (AR-V7) refers
to a ligand-independent and constitutively active variant of the AR and is considered a key driver of
ENZR in CRPC. In this review, we summarize the mechanisms and biological behaviors of AR-V7
in ENZR of CRPC to contribute novel insights for CRPC therapy.

Keywords: AR-V7; enzalutamide; drug resistance; castration-resistant prostate cancer; proteosta-
sis; LncRNA

1. Introduction

As the most common urological malignant tumor, prostate cancer (PCa) occurs
in the prostate epithelium, and is the fifth leading cause of death from cancer in men.
New cancer cases among men worldwide exceeded 10 million in 2020, 1.4 million of which
were newly diagnosed with PCa and accounted for 14.1% of all incident cases in men. And
the number of deaths from PCa was 375,304, making up 6.8% of all cancer deaths in men [1].
The incidence of PCa, ranking the highest in 112 countries and regions, is lower in East Asia
than that in European and American countries, whereas men in East Asia had higher PCa
mortality rates than those in European and American countries [2]. The occurrence and
development of PCa are closely related to androgens that can stimulate the growth of PCa
cells and promote the progression of PCa. Consequently, PCa is an androgen-dependent
tumor [3]. For this reason, androgen deprivation therapy (ADT) has become the standard
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treatment for PCa. It slows the progression of PCa by reducing androgen levels in the body
or inhibiting the androgen receptor (AR) through surgery or medical castration such as
the application of AR signaling inhibitors (ARSI). However, most patients develop drug
resistance within 2 to 3 years after ADT and progress to castration-resistant prostate cancer
(CRPC) [4,5].

The introduction of second-generation ARSI has greatly impacted the treatment of
CRPC [6]. Enzalutamide (ENZ) is the second-generation ARSI by the FDA approval
and the most important new drug of endocrine therapies for CRPC [7]. ENZ is one of
the important options for both metastasis CRPC (mCRPC) and non-metastatic CRPC
(nmCRPC) patients [3]. A phase III clinical trial investigating the efficacy and safety
of ENZ in patients with nmCRPC showed that nmCRPC patients treated with ENZ had
significantly improved metastasis-free survival, suggesting that ENZ significantly improves
overall survival in nmCRPC [8]. Additionally, a recent meta-analysis also supported this
view [9]. More than this, the overall survival and progression free survival of mCRPC
patients treated with ENZ were prolonged, and the five-year survival rate was significantly
improved [10,11].

ENZ mainly acts through the blockade of the AR signaling pathway, including block-
ing the binding of androgens to AR, impeding the AR nuclear translocation, and inhibiting
the AR transcriptional activity for the treatment of CRPC [4,12,13]. Scher et al. demon-
strated through a double-blind placebo-controlled trial the median survival of 18.4 months
of the ENZ-treated patients, compared with 13.6 months in the placebo group [14]. ENZ
thereby can significantly improve the survival of patients with CRPC after chemotherapy.
However, Azuma et al. showed the insensitivity of some patients with CRPC ENZ during
the clinical application of ENZ [15]. Also, drug resistance still occurred even after 11.2 years
since the effective primary treatment [16]. These findings indicate that drug resistance
develops through multiple mechanisms in nearly all patients with PCa treated by ARSI.

AR-related signaling pathways have always been seen as one of the considerable
mechanisms responsible for ENZ resistance (ENZR) in CRPC, such as the aberrant amplifi-
cation and/or overexpression of AR [17,18], AR mutation [19,20], generation of androgen
splice variants (AR-Vs) [20]. Further, ENZR in CRPC has been strongly affected by neu-
roendocrine prostate cancer (NEPC) as a result of AR-mediated lineage plasticity [21],
and by the activation of related signaling pathways like Wnt, PI3K, and NF-kB [22,23].
The insensitivity of CRPC to ENZ has been attributed in a large part to the generation of
AR-V7 [24,25]. A plethora of research in this field centered on the relationship between
cofactors and AR-V7. The transcriptional coactivator four-and-a-half LIM domain protein
2 (FHL-2) can act as an AR-V7 agonist [26]. Vav guanine nucleotide exchange factor 3
(VAV3) can promote the activity of AR-V7 to enhance the progression of CRPC [27,28].
Moreover, cofactors can affect ENZR through the interaction with AR-V7, such as mediator
complex subunit 1(MED1) [29], fork head box01 (FOX01) [30], GATA binding protein 2
(GATA2) [31], and src-associated in mitosis of 68KD (SAM68) [32]. Nowadays, related
research has paid attention to proteostasis and the role of Long noncoding RNA (LncRNA)
in cancer. The changes of AR-V’s protein homeostasis are closely related to prostate cancer,
and its relationship with LncRNA has also attracted the attention of researchers and has
been studied in depth. This article reviews and summarizes the related research, to provide
clues to solve ENZR and to improve the treatment of CRPC.

2. The Relationship between AR-V7 and AR-FL
2.1. AR-V7 Is Derived from the Splicing of AR-FL

The full-length AR (AR-FL) is mapped to chromosome Xq11-Xq12 [33]. For the first
time, Chang et al. cloned the AR cDNA of human beings and rats in 1988 [34]. AR-
FL is approximately 919 amino acids [35,36], mainly consisting of four structures which
are the N-terminal domain (NTD), the DNA-binding domain (DBD), the hinge domain
(HD), and the ligand-binding domain (LBD) [37]. AR-Vs result from alternative splicing
of AR-FL during the treatment of CRPC using the second-generation ARSI. Currently,
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the mechanism that underlies the production of AR-Vs has been mostly understood by AR
gene rearrangements [38,39], which is the primary mechanism leading to the generation
of AR-V7 and AR-V567es [40], point mutations in the AR gene [41], post-translational
modifications [42], and involvement of related splicing factors such as heterogeneous
nuclear ribonucleoprotein A1 (hnRNPA1) [43], U2 small nuclear RNA auxiliary factor 2
(U2AF2) [44], Sam68 [45].

2.2. AR-V7 and AR-FL Have Similar Structures

AR-Vs were first discovered over 20 years ago and reported by Tepper et al. [46].
At present, more than 20 types of AR-Vs have been found and identified [47], the majority
of which contain complete DBD and NTD (AR8 with the lack of the functional DBD and
AR-V3 with no zinc fingers of DBD, with the exception of AR45 that does not contain
NTD). Most of them have primarily LBD and HD loss [47]. AR-V7 retains the complete
NTD and DBD while lacking the LBD and HD which is displaced by a short peptide
sequence encoded by cryptic exon 3 (CE3) instead [48]. Therefore, AR-V7 that contains
a complete activation functions (AF)-1 transactivation domain is constitutively active at
the transcriptional level and maintains gene transcription without the need for ligand
(independent of androgen) binding [49]. Given that ENZ targets LBD [50], the truncated
LBD in AR-V7 is the primary cause why ENZ cannot bind to the AR-V7 and further play
its role, subsequently leading to ENZR (Figures 1 and 2).
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Figure 1. The Structure of AR-FL and AR-Vs. The human AR gene contains eight exons; AR has four
domains, including NTD, DBD, HD and LBD. Exon 1 encodes NTD, DBD is encoded by exons 2 and
3, exon 4 encodes HD, and LBD is encoded by exons 5,6,78; AR-V7 has no LBD, so enzalutamide
cannot bind to AR-V7; The DBD domain of AR-V3 is only encoded by exon 2, and lacks zinc finger;
AR45 starts coding from exon 1b and lacks the NTD domain; The DBD domain formed by AR8 is only
encoded by exon 3 and is not functional. AR8 inserts 69 nucleotides upstream of exon 3; AR-V567es
does not contain exon 5.6.7; UTR: Untranslated Region; AR-FL: full-length androgen receptor; AR-V:
androgen receptor splicing variant; NTD: N-end domain; DBD: DNA binding; HD: hinge domain;
LBD: ligand binding domain; CE3: recessive exon 3; AF: Activate the function.
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Figure 2. Enzalutamide acts on the AR signaling pathway. Enzalutamide binds to the LBD and block-
ades the AR signaling pathway by blocking the binding of androgens to AR, impeding the AR nuclear
translocation, and inhibiting the AR transcriptional activity. AR-FL: full-length androgen receptor;
AR-V7: androgen receptor splice variant 7; DHT: dihydrotestosterone. HSP: heat shock proteins.

2.3. There Are Differences between AR-V7 and AR-FL

AR-V7 is a mimic of AR, or AR-V7 has unique activity or whether AR-V7 contains
a unique binding site is the focus of researchers. A recent study has found that AR-V7
induces a slightly higher proportion of total regulatory genes in the cell model than AR-FL,
and its differential binding with chromatin is stronger than AR-FL [51]. Some studies
also have shown that AR-V7 has specific targeted genes, which cannot be targeted by
AR-FL [52]. These results together indicate that AR-V7 has unique activity and is not just
a mimic of AR-FL.

2.4. AR-V7 Plays a Role Independently of AR-FL

AR-V7 is derived from AR-FL and is almost always co-expressed with AR-FL in the clin-
ical environment. Therefore, the topic of whether the role of AR-V7 in PCa depends on
AR-FL has been widely debated. Some researchers have concluded that AR-V7 works
with AR-FL or requires AR-FL to perform activities, because AR-V transcriptional activity
requires AR-V homologous dimerization [53]. AR-V7 can also form heterodimers with
AR-FL [54]. In addition, in the model of the expression of AR-FL, AR-V7 activity depends
on AR-FL to a large extent [55,56]. However, other researchers believe that exogenous
overexpressed AR-V7 can act as a heterodimer of AR-FL, but whether the endogenous
AR-V7 functions depend on heterodimerization with AR-FL remains to be further studied,
because in AR-FL null cell models and/or AR-FL depleted models, many AR-Vs have
been proven to have the ability to regulate gene transcription without AR-FL [48,57,58].
Similarly, the experimental study of Liang et al. also emphasized that AR-FL deletion
would not damage the chromatin binding of ARv7 splicing variants, and that AR-FL and
AR-V7 independently participated in AR transcriptional activity [59], which seems to be
a shred of strong evidence that AR-V7 plays a role independently of AR-FL.

3. The Close Relationship between AR-V7 and the Treatment of CRPC with ENZ

Sharp et al. assessed the expression of AR-V7 protein in 358 primary prostate speci-
mens and 293 metastatic biopsy specimens [60]. The results showed a very low level (<1%)
of the expression of AR-V7 protein in cases with primary PCa and a detectable level of
in 75% in cases treated by ADT. A marked increase in the expression of AR-V7 protein
in cases with ENZ demonstrated that the use of ENZ can enhance the generation of AR-V7.
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However, the use of ENZ is not an absolute factor in the production of AR-V7, because
AR-V7 expression is also detected in patients with primary PCa. This is also consistent with
the research of Sciarra et al. [61]. They classified 56 cases of PCa according to clinical risk,
examined the expression of AR-V7 and found that 24 of 32 high-risk patients were AR-V7
positive, 4 of 13 in the medium risk group and 2 of 11 in the low risk group. Therefore,
AR-V7 could be detected by immunohistochemistry in more than 50% of nmPCa patients
without treatment. It also showed that there was a significant correlation between AR-V7
positive and PCa risk classification (p < 0.001)

The generation of AR-V7 is one of the causes of the poor prognosis and low overall
survival rate of CRPC patients after treatment. Compared with AR-V7 negative patients,
the prognosis of PCa patients treated with ENZ became worse if they were also AR-
V7 positive [62]. The research team selected 31 men using ENZ and Abiraterone (ABI)
respectively. Among the patients treated with ENZ, it was found that the PSA response
rate of AR-V7 positive ones was lower than that of negative ones (0% vs. 53%, p = 0.004).
Moreover, it was also found that the AR-V7 positive patients had a shorter PSA progression-
free survival (median 1.4 months vs. 6.0 months; p < 0.001), shorter clinical or radiographic
progression-free survival (median 2.1 months vs. 6.1 months; p < 0.001) and shorter overall
survival (median 5.5 months vs. not reached; p = 0.002), indicating insufficient therapeutic
efficacy and prognosis as a consequence of the decreased sensitivity of AR-V7 positive
patients to ENZ. Similarly, research detected in various ways the AR-V7 in the CTCs of
blood samples belonging to high-risk CRPC patients being treated by ENZ and came to
the same conclusion: the AR-V7 expression is independently related to shorter clinical
progression-free survival (PFS) and poorer overall survival (OS) [63]. Meanwhile, it further
showed that the continuous subsequent treatment with ENZ would not result in a good
endpoint for patients with CRPC who were AR-V7 positive. Therefore, ENZ leads to
the generation of AR-V7 and drug resistance, which impedes the therapeutic efficacy and
survival rate of patients. Up to now, the treatment of AR-V7 positive CRPC patients has
become a challenging issue in the clinic.

A large number of preclinical research results show that AR-V7 can be used as a bio-
logical marker of ENZR in CRPC [64,65]. Besides, AR-V7 is considered helpful in guiding
the treatment selection after ABI or ENZ progress in mCRPC. It has available commercial
test methods and has been prospectively validated in multiple centers [66]. Therefore, im-
proving the detection efficiency and accuracy of AR-V7 can help not only patient diagnosis
but also the precise guidance of medical use for CRPC patients in the clinic. As previously
mentioned, Zhu et al. developed an analytical method of in situ hybridization with AR-V7
RNA. The technology can overcome the limitation that AR-V7 cannot be accurately detected
by observing single splicing connections in cells and tissues [67]. Maillet et al. applied
enrichment analysis (the AdnaTest) to detect the mRNA-based AR-V7 in circulating tumor
cells (CTCs), and performed the pre-amplification PCR step before real-time qPCR analysis
to establish a highly sensitive method for detecting in CTCs AR-V7, and significantly
improves the detection efficiency of AR-V7 [68]. Despite that the clinical utility of these
detection methods remains controversial, they do offer new hope to patients with CRPC
who are ENZR to get early treatment.

4. AR-V7 as the Cause of ENZR in CRPC

AR-V7 has long been a crucial research focus in exploring the mechanism of ENZR.
In cell-level experiments, it has been found that the ENZ therapy of CRPC enhances the level
of AR-V7 and aids the expression of its target genes in PCa cells, and that the knockdown
of AR-V7 can restore the sensitivity of cancer cells to ENZ, suggesting that AR-V7 is one of
the salient factors leading to drug resistance [69]. Similarly, Zhu et al. found that patient-
derived xenografts (PDX) with high expression of AR-FL could resist the first-generation
ARSI but not the second-generation ARSI ENZ, proving that ENZR was closely related
to AR-V7 expression [70]. The authors further demonstrated through subsequent cell
experiments that ENZR required the high-level AR-FL and critical-level AR-V7 expression.
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Although the precise mechanism by which AR-V7 plays its role remains unknown, all
the above indicates that AR-V7 is crucial in mediating ENZR of CRPC. Moreover, basic
research has centered on the change of AR-V7 proteostasis and how its interaction with
LncRNAs works on ENZR in CRPC in recent years, which also provides new therapeutic
insights for the treatment of drug resistance in CRPC.

4.1. Heat Shock Protein Participates in Regulating the Protein Stability of AR-V7

Heat shock proteins (HSP) refer to a group of proteins generated by cells under
the induction of stressors, especially environmental high temperature [71]. They are
highly conservative molecular chaperones, including HSP70, HSP40, HSP90, etc. [72–76].
As molecular chaperones, HSPs regulate the stability and function of client proteins in a
variety of ways, including preventing the aggregation of misfolded proteins, promoting
intracellular protein transport, maintaining protein conformation to achieve ligand binding,
and promoting the degradation of severely damaged proteins by mediating the ubiquitin
proteasome [77,78].

AR/AR-V7 is one of the client proteins of HSP [79]. In the cytoplasm, free AR/AR-V7
combines with chaperone HSP70-HSP40 to form a protein complex, and then HSP90 and
chaperone bind to AR/AR-V7, which dissociates AR/AR-V7 from HSP70-HSP40. HSP90
can ensure that AR/AR-V7 retains the conformational structure with a high affinity for its
ligand dihydrotestosterone, and promote the binding of AR/AR-V7 with ligand [80]. After
AR binds dihydrotestosterone, phosphorylation and dimerization occur. The combination
of HSP27 and AR homodimer further promotes the nuclear translocation of the androgen
response element (ARE) in AR and specific gene promoter regions, thus promoting the reg-
ulation of transcriptional activity [81]. A promising strategy for the treatment of cancer is
to increase the degradation of oncogenic proteins by targeting the ubiquitin-proteasome
system [52,53]. Therefore, it is one of the potential strategies to affect the protein stability
of AR/AR-V7 or treat the resistance of CRPC to ENZ by regulating heat shock proteins
(Figure 3).
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Figure 3. Natural/compound drugs affect the transcriptional activity and protein stability of AR-
V7 through the HSP family. ARVib, JG98, and C86 promote AR-V7 degradation by inhibiting
HSP40/HSP70 axis; bruceantin promotes AR-V7 degradation by directly binding to HSP90 and
disrupting the interaction between HSP90 and AR-V7; KRIBB3 promotes the degradation of AR by
interacting with HSP27; niclosamide not only inhibits the transcriptional activity of AR-V7 but also
promotes the degradation of AR-V7.

HSP70 has been identified as a biomarker for the survival and prognosis of PCa ow-
ing to the relationships between its overexpression and carcinogenesis as well as drug
resistance in PCa [82]. HSP70 inhibitor JG98 can impede protein levels and transcrip-
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tional activities of AR-FL and AR-Vs, and degrade other oncogenic proteins at the same
time [77,83]. Moses et al. also revealed that PCa patients who had developed drug resis-
tance to the standard antiandrogen therapy would benefit from targeting the Hsp40/Hsp70
chaperone axis [83]. One of the reasons that niclosamide, an anti-worm drug, has been
proven to be an effective inhibitor to reverse ENZR in CRPC, is that it can promote the pro-
tein degradation of AR-V7 by activating the ubiquitin protease hydrolysis pathway [84].
STIP1 homology and U-box containing protein 1(STUB1) is a co-chaperone protein and
a functional E3 ubiquitin ligase [85]. AR/AR-V7 proteostasis requires the interaction of
STUB1, the E3 ubiquitin ligase, and the HSP70 complex. STUB1 separates AR/AR-V7 from
HSP70, provoking the ubiquitination and degradation of AR/AR-V7 [86]. Liu et al. found
an analog that targeted and degraded AR/AR-V7 through a niclosamide analog library.
It was identified and termed ARVib [87]. ARVib-7 which had a higher bioavailability
than niclosamide, can inhibit the proliferation of AR-V7 transcriptional activity in PCa
cells. Follow-up experiments discovered that ARVib-7 can inhibit the AR-V7 transcrip-
tional activity in cells of ENZR in PCa, and also that it was able to promote the nuclear
translocation of STUB1 by inhibiting the expression of HSP70. To treat drug resistance
in CRPC, the increased nuclear penetration of STUB1 further binds to AR-V7 to facilitate its
ubiquitination and degradation and to impair the expression of AR-V7 downstream genes
in PCa cells. All eukaryotic cells contain the expression of the stress protein Hsp90, which
is essential for the correct folding, hormone binding, and transcriptional activity of AR.

Moon et al. screened and identified the drug bruceantin (BCT) from a small antimalar-
ial drug library, by directly binding to HSP90 which can not only disrupt the interaction
between HSP90 and AR-FL/AR-V7 but also inhibit the chaperone function of HSP90,
causing the degradation of AR-FL/AR-V7 through the ubiquitin-proteasome system [88].
These results indicate that BCT is a promising option for anti-CRPC medication. Gel-
danamycin (GA), the Hsp90 inhibitor, has also been reported to impair the AR proteostasis
with no impact on the protein level of AR-V7. In the same way, it can impede AR transcrip-
tional activity but has little impact on AR-V7 activity. All uncovered that AR-V7 is resistant
to Hsp90 inhibitors [89]. Similar results have been reported in an article, and it is important
to note that the second-generation HSP90 inhibitor Onalespib mainly affects the splicing
of AR-V7 rather than directly affecting the protein levels of AR-V7 [90]. This experiment
showed that Onalespib was able to induce AR-FL proteasomal degradation but had little
effect on AR-V7 stability, and it was able to cause a decrease in AR-V7 mRNA levels, but did
not affect total AR transcript levels [91]. Clearly, a close connection exists between HSPs
and AR/AR-V7. Further research is required to confirm the impact of the HSP90 inhibitor
on the proteostasis of AR-V7 and to investigate the role of other HSPs.

4.2. Natural Products and Compounds Can Regulate the Stability of AR-V7

In recent years, the application of natural products and their analogues in tumors has
received much attention. AR-V7 is a substrate for the proteasome, as Liu et al. demon-
strated [92]. They extracted nobiletin from citrus peel, a type of polymethoxylated flavonoid,
which induced cancer cells to block in the G0/G1 phase and prevented the interaction
of AR-V7 with ubiquitin specific peptidase 14 (USP14) and USP22, so as to selectively
stimulate the proteasome destruction of AR-V7. AR-V7 positive PCa cells were thereby
more sensitive to ENZ. In addition, this study highlighted that nobiletin was able to
downregulate AR-V7 in a manner dependent on dose and time, but had no significant
effect on the protein level of AR-FL. Previous research has also reported that nobiletin
inhibits the growth of PCa cells by impeding the signaling pathway of TLR4/TRIF/IRF3,
TLR9/IRF7, and AKT [93,94]. Huaier extract, derived from medicinal fungi, has been
found to be anti-proliferative in CRPC cells. By inhibiting the transcriptional activity and
nuclear translocation of AR-FL/AR-V7, it enhances the proteasome-mediated degradation
of AR-FL/AR-V7 proteins through the down-regulation of USP14 and can consequently
be applied as an effective inhibitor of AR-FL and AR-V7 in PCa [95]. Coincidentally,
Liao et al. screened and identified rutin (Rut), the main component of Evodia rutaecarpa,
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from the natural product library, and revealed that it can be used as an inhibitor of AR-
V7 [96]. They demonstrated that this alkaloid inhibited AR-V7 signaling by selectively
accelerating the degradation of the K48-binding ubiquitinated proteasome.

A novel protac small molecule named MTX-23 was designed and developed by
Lee et al. [97], which was made to bind both the VHL ligand of E3 ubiquitin ligase and
the DNA binding domain (DBD) of AR simultaneously. It was found in the research
that MTX-23 had no crucial effect on the mRNA level of AR-FL and AR-V7, and that,
however, MTX-23 can specifically stimulate the ubiquitination and degradation of AR-V7
and AR-FL through the VHL E3 ligase/proteasome axis at the protein level to inhibit
drug resistance. Interestingly, the authors discovered that MTX-23 was more effective
than AR-FL in the degradation of AR-V7 (DC 50 of 0.37 and 2µmol/L respectively), given
the fact that MTX-23 played its role through targeting DBD substantially. Theoretically
speaking, MTX-23 should be able to degrade both AR-V7 and AR-FL with similar efficacy.
The LBD remaining in AR-FL or the protein bound to LBD, according to the authors,
may physically interfere with the interaction of MTX-23 with DBD, as a consequence of
the possibility that the biological outcomes of MTX-23-mediated ubiquitination may vary
in AR-V7 and AR-FL.

One approach to treating cancer is to screen and create small molecule compounds
from databases. Nevertheless, continuous discovery of natural products and their deriva-
tives has demonstrated an extraordinary anti-cancer effect as well as their abilities to
reverse tumor resistance, suggesting the crucial clinical value of natural products and
their derivatives (Table 1). Moreover, there are still many possibilities for the development
in the utilization of natural products and their derivatives to treat ENZR in CRPC. Deep re-
search will develop stronger and safer medications against drug resistance in the treatment
of tumors.

Table 1. Drugs and correlated mechanisms in CRPC.

Drugs Drug Source Clinical Development Stage
of the Drug Mechanism Reference

C86
JG98

Uercetin
VER155008

Compound medicine Preclinical studies
Inhibit HSP40 or HSP70 and

promote AR-V7
degradation.

Liu et al. (2018) [86]
Kazuaki Kita et al.

(2017) [98]
Michael A Moses et al.

(2018) [83]

KRIBB3 Compound medicine Preclinical studies Inhibit HSP27 and promote
AR-V7 degradation

Ilker Kiliccioglu et al.
(2019) [75]

Niclosamide Compound medicine

It is an anthelminthic drug
approved by FDA in 1982 and

is in preclinical research
in the treatment of CRPC.

Inhibition of AR-V7
transcriptional activity and
down-regulation of AR-V7

protein expression.

Liu et al. (2014, 2017)
[84,99]

Navid Sobhani et al.
(2018) [100]

ARVib Compound medicine Preclinical studies
Promoting AR/AR-V7

protein degradation through
HSP70/STUB1.

Liu et al. (2021) [87]

Bruceantin Compound medicine

The drug was used in phase I
and phase II clinical trials for

the treatment of B16
melanoma, colon 38, L1210,
and P388 leukemia, but no

objective tumor regression was
observed, so the clinical trial
was terminated. At present,

the research on PCa removal is
limited to preclinical research.

Inhibition of HSP90
promotes degradation of

AR/AR-V7.

Sue Jin Moon et al.
(2021) [88]

Nobiletin Natural medicine Preclinical studies Inducing proteasomal
degradation of AR-V7. Liu et al. (2021) [92]

Huaier Extract Natural medicine Preclinical studies
Down-regulation of USP14
and promotes proteasomal
degradation of AR/AR-V7.

Liu et al. (2021) [95]
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Table 1. Cont.

Drugs Drug Source Clinical Development Stage
of the Drug Mechanism Reference

Rut Natural medicine Preclinical studies Targeting GRP78-dependent
AR-V7 protein degradation. Liao et al. (2020) [96]

MTX23 Compound medicine Preclinical studies

Binds to the DNA binding
domain of AR and VHL E3
ubiquitin ligase to promote

the degradation of
AR/AR-V7.

Geun Taek Lee et al.
(2021) [97]

Indometacin Compound medicine

It is a nonsteroidal
anti-inflammatory drug

approved by FDA in 2014 and
is in preclinical research

in the treatment of CRPC.

Target AKR1C3 and
promote AR-V7

degradation.

Liu et al. (2019) [101]
Wang et al. (2020) [102]

CX4945 Compound medicine Preclinical studies

Target CK2 and
down-regulated AR-V7 at
both mRNA and protein

levels.

Deng et al. (2017) [103]

Leelamine Natural medicine Preclinical studies
Down-regulation of
AR/AR-Vs protein

expression

Krishna B Singh et al.
(2018) [104]

Bortezomib Compound medicine

Approved by FDA in 2003 for
the treatment of MM and
MCL, its role in CRPC is

in preclinical research stage.

Target NF-κB and
down-regulation of AR-Vs

protein expression.
R Jin et al. (2015) [105]

NaAsO2 Compound medicine Preclinical studies
Down-regulated nuclear
translocation and protein
expression of AR/AR-Vs

Kim et al. (2017) [106]

ASC-J9 Compound medicine Preclinical studies Promote AR/AR-V7
degradation.

Shinichi Yamashita et al.
(2012) [107]

Luteolin Natural medicine Preclinical studies
Down-regulated

the expression level of
AR-V7.

Aya Naiki-Ito et al.
(2020) [108]

Indisulam Compound medicine

Indisulam is an aryl
sulfonamide drug with

selective anticancer activity, its
relationship with ENZ is

in pre-clinical research stage.

Down-regulated AR-V7
mRNA expression level.

James E Melnyk et al.
(2020) [109]

Abbreviations: CRPC: Castration-resistant prostate cancer; FDA: Food and drug administration; AR: Androgen
receptor; AR-V: Androgen receptor splice variant; HSP: Heat shock protein; USP: ubiquitin specific peptidase;
CK2: Casein kinase 2; MM: Multiple myeloma; MCL: Mantle cell lymphoma.

4.3. LncRNA Has Multiple Effects on AR-V7

LncRNA has been widely researched in the past decade, which is defined as an RNA
transcript longer than 200 nucleotides without protein coding [110]. Earlier research has
shown that LncRNAs play an important role in cell cycle regulation [111], cell differen-
tiation regulation [112], cell metabolism regulation [113], and other cellular processes.
Meanwhile, LncRNAs can regulate its transcriptional level and epigenetic modification
through interaction with DNA, proteostasis, and so on [114,115].

Recent research has displayed close relationships between LncRNAs and the oc-
currence and development of malignancies [116,117]. LncRNA-PCA3 has evolved into
the most PCa-specific LncRNA which is an important diagnostic marker of PCa [118–120].
LncRNA-HOTAIR and LncRNA-GAS5 also play an indispensable role through various
mechanisms in the progression of CRPC [121,122]. Shang et al. found that LncRNA-PCAT1
regulated PHLPP/FKBP51/IKK α complex to activate AKT and NF-κB signaling [123];
Wen et al. identified and termed a special LncRNA that transcribed at the CHPT1 enhancer
as CHPT1-eRNA, and discovered that the level of the LncRNA in ENZR tumors was higher
than that in the control group. Further cell experiments showed that this LncRNA was
engaged in the generation of SE and regulated the transcriptional activity of SE by directly
binding to BRD4, thus significantly provoking ENZR in CRPC [124]. Together, all research
mentioned above revealed the status of LncRNAs in CRPC.
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Wang et al. revealed the relevance between LncRNAs and the expression of AR-V7
in CRPC. Specifically, LncRNA-Malat1 is essential for the generation of AR-V7 [125]. They
focused on the role of 32 LncRNAs associated with drug resistance in CRPC and verified
how they worked in ENZR in CRPC through the construction of multiple ENZR-PCa cells
and human clinical data. The authors mainly discussed the role of LncRNA-PCGEM1
and LncRNA-Malat1 in the mechanism of drug resistance, with LncRNA-PCGEM1 being
identified as an AR/AR-V7 signal-regulated LncRNA [126], and LncRNA-MALAT1 proved
to be upregulated in CRPC and to be likely to participate in RNA splicing [127,128]. They
also discovered the correlation between the rise in SF2 activity and the overexpression
of LncRNA-MALAT1 in ENZR C4-2 cells. Their previous research pointed out that in-
trons between exon 3 and exon 4 of AR transcripts can be recognized and bound by SF2,
which aided the generation of AR-V7 and consequently led to ENZR [129]. Meanwhile,
knockdown of LncRNA-Malat1 with siRNA to inhibit the expression of LncRNA-MALAT1
leads to a significant reduction in AR-V7 expression, indicating that LncRNA-Malat1 is
indispensable for ENZ induced AR-V7 expression.

The LncRNA was related to the generation of AR-V7. Additionally, the most recent
research uncovered that LncRNA might also change the expression level and/or function
of AR-V7 through a series of mechanisms, affecting the drug sensitivity of ENZ in CRPC.
Zhang et al. found that LncRNA-PCBP1-AS1 can accelerate the progression of ENZR
in CRPC by binding to NTD to improve the stability of the USP14-AR-V7 complex. AR-V7
and USP22 were found in this experiment to be greatly reduced by PCBP1-AS1 deple-
tion [130]. Therefore, targeting PCBP1-AS1 could impede the expression of AR-V7 and
strengthen the sensitivity of CRPC to ENZ. In 2022, Ghildiyal et al. discovered a type of
LncRNA named NXTAR with the ability to inhibit drug resistance in PCa, and reported that
NXTAR directly bound to AR upstream of the AR promoter to enhance EZH2 recruitment,
leading to the down-regulation of the AR and AR-V7 expression and positive feedback
to increase NXTAR expression [131]. This discovery provides a therapeutic strategy for
treating recurrent CRPC. As previously mentioned, the role of LncRNAs in ENZR in CRPC
has been further expanded, which may serve as new potential for clinical diagnosis and
targeted therapy.

NTD is one of the necessary structures for AR transcription. Hirayama et al. [54] found
that antagonizing NTD can decrease the transcriptional efficacy of AR-FL and AR-V7,
effectively improving the efficacy of ENZ [69]. Targeting AR-NTD is thus one of the effective
ways to inhibit AR-V7 and another option to treat ENZR in CRPC. Zhang et al. reported
that LncRNA-KDM4A-AS1 enhanced the stability of the USP14-AR/AR-Vs complex and
promoted the ubiquitination of AR/AR-Vs through the binding with NTD to protect
itself from the MDM2-mediated degradation of ubiquitin-proteasome, thereby intensifying
ENZR in CRPC. At present, many medicines designed to target AR-V7 NTD are under
development [132]. This also suggests that targeting other structures in AR-V7 may have
the same effect, such as DBD.

Generally speaking, LncRNAs and AR-V7 are closely related to each other, playing
an important role through various mechanisms in ENZR in CRPC (Table 2). In addition,
LncRNA-P21 [133], LncRNA-H19 [134], and so forth have also been reported to promote
the occurrence of NEPC and consequently lead to ENZR. Therefore, targeting LncRNA and
AR-V7-related signaling pathways may contribute new insights for the clinical treatment
of drug resistance in CRPC.
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Table 2. The expression of LncRNAs in patients with CRPC affects its benefit from ENZ.

LncRNAs LncRNAs Source Sample
Type

Number of
Samples Expression Benefit from

ENZ
Mechanism of

Action Reference

LncRNA-
HOTAIR

ChIP-Seq analysis of
the LNCaP PCa cells. Cell line / Up Decrease Inhibition of AR

ubiquitination.
Zhang et al.
(2015) [135]

LncRNA-
MALAT1

MALAT1 was initially
overexpressed

in non-small cell lung
cancer patients.

Tissue and
cell line / Up Decrease

Promote AR-V7
transcription and

expression.

Ren et al.
(2013) [127]
Chou et al.

(2020) [136]
LncRNA-
PRNCR1
LncRNA-
PCGEM1,

Transcriptome
Sequencing.

Tissue and
cell line

3 human
PCa and

paired BPT
Up Decrease

Promote AR
transcription and

activation.

Yang et al.
(2013) [126]

LncRNA-
PCBP1-AS1

Analysis through
the data of GSE124291

and used RNA-scope to
detect PCBP1-AS1

expression in a patient
tissue microarray.

Tissue and
cell line

BPH = 4
HSPC = 28,
CRPC = 12

Up Decrease
Enhanced

deubiquitination
of AR/AR-V7.

Zhang et al.
(2021) [130]

LncRNA-
ARLNC1

Using an integrative
transcriptomic analysis

of PCa cell lines and
tissues (GSE56288 and

GSE55064)

Tissue and
cell line / Up Decrease

Stabilizes AR
transcripts;

Induction of AR
protein

production.

Zhang et al.
(2018) [137]

LncRNA-
KDM4A-

AS1

Processed microarray
on LNCaP and

LNCaP-AI cells and
analyzed the results.

Tissue and
cell line

BPH = 4
HSPC = 28
CRPC = 13

Up Decrease
Inhibition of
AR/AR -Vs
degradation.

Zhang et al.
(2022) [132]

LncRNA-
PCAT1

Analysis through
public database

(TCGA) and performed
RISH on CRPC and
ADPC specimens.

Tissue and
cell line

CRPC = 5
ADPC = 5 Up Decrease

Activation of
AKT and NF-κB

signaling.

Shang et al.
(2019) [123]

LncRNA-P21

Detection of LncRNA
Expression

in NEPC-PDX and
Adenocarcinoma PDX

Samples by qPCR
Analysis.

Cell line / Up Decrease
Inducing the neu-

roendocrine
differentiation.

Luo et al.
(2019) [133]

LncRNA-H19

Analysis of clinical
NEPC queues using
lncRNA sequencing
pipeline, including

eight queues (BCCA,
WCM2, WCDT, GRID,

VPC-P, VPC-M,
JHMI-N and WCM1).

Tissue / Up Decrease
Inducing

neuroendocrine
differentiation.

Neha
Singh et al.
(2021) [134]

LncRNA-
NXTAR

Analyzed by UCSC
genome browser and

verification by
qRT-PCR.

Tissue and
cell line

35 human
PCa and
paired
normal

prostate.

Down Increase
Inhibit

expression of
AR/AR-V7

Ruchi
Ghildiyal et al.
(2022) [131]

LncRNA-
GAS5

LncRNA-GAS5 was
originally found by
differential cloning
in growth arrested

cells.

Cell line / Down Increase
Inhibition of AR
transcription and

activation

Shidong
Lv et al.

(2021) [138]

Abbreviations: LncRNA: Long non-coding RNA; ENZ: Enzalutamide; AR: Androgen receptor; AR-V7: Androgen
receptor splice variant 7; CRPC: Castration-resistant prostate cancer; PCA: Prostatic cancer; BPH: Benign prostatic
hyperplasia; HSPC: Hormone-sensitive prostate cancer; ADPC: Androgen-dependent prostate cancer; NEPC:
Neuroendocrine prostate cancer; PCR: Polymerase Chain Reaction; qPCR: Real-time quantitative PCR detection
system; RISH: RNA in situ hybridization; PDX: Patient-derived tumor xenograft.

4.4. Interaction between Other Molecules and AR-V7

Recent studies have reported that many molecules regulate the expression of AR-V7
in different ways (Table 3). AKR1C3, a member of the NAD(P)H-linked oxidoreductase su-
perfamily, is highly expressed in PCa and its precancerous tissues in the human body [139].
Previous research has demonstrated that AKR1C3 can provoke ENZR by triggering the an-
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drogen biosynthesis pathway and AR signaling [140]. Through the ubiquitin-mediated pro-
teasome pathway, AKR1C3 can induce the generation of AR-V7 and enhance its proteostasis.
Indomethacin, an AKR1C3 inhibitor, can be utilized through the ubiquitin-mediated pro-
teasome pathway targeting AKR1C3, to significantly reduce the expression of AR/AR-V7
protein in vitro and in vivo, and thus the sensitivity of patients to ENZ increases [101].
This is consistent with the findings of Wang et al. who found that AKR1C3 bound to AR-V7
protein in CRPC cells and mutually improved the proteostasis of AR-V7 and AKR1C3 by
inhibiting ubiquitin activity in a positive feedback mechanism [102].

The kinesin family encompasses kinesin family member 15 (KIF15) which is essential
for the development of bipolar spindles [141]. KIF15 is directly bound to the N-terminal
of AR/AR-V7 to increase the binding between USP14 and AR/AR-V7 protein, thereby
inhibiting the degradation of AR/AR-V7 protein and promoting ENZR [142]. Deleted
in breast cancer 1 (DBC1) is a human nuclear protein that modulates the activities of var-
ious proteins [143]. Su et al. discovered that DBC1 interacted with AR-V7 to enhance
the DNA binding activity of AR-V7 and competed with CHIP for AR-V7 binding to inhibit
the ubiquitination and degradation of AR-V7 mediated by the CHIP E3 ligase, and thus
stabilizing and activating AR-V7 [144]. As a result, the possibility exists in this situation that
DBC1 could be targeted to decrease the stability of AR-V7 or reverse ENZR in CRPC. Aber-
rant expression of casein kinase 2 (CK2) is associated with tumorigenesis and progression
of PCa [145], the novel CK2-selective inhibitor CX4945, which selectively downregulates
AR-V7 at the mRNA and protein levels, offers a potential option for the treatment of PCa,
especially CRPC [103].

How AR-V7 mediates genome function in CRPC remains largely unknown. homeobox
B13 (HOXB13), a member of the homeobox proteins family, is a key regulator of the epithe-
lial differentiation in the prostate gland [146]. Zhong et al. reported that HoxB13 firstly
combined with AR-V7 through direct physical interaction, and cooperated with AR-V7
to up regulate target oncogenes, which is a key upstream regulator of the AR-V7 driven
transcriptome, indicating that HoxB13 can be used as a therapeutic target for AR-V7 driven
prostate tumors [147]. The discovery of HoxB13 is helpful for us to further understand how
AR-V7 mediates genome function in CRPC.

Table 3. Some molecules in patients with CRPC affect the therapeutic effect of ENZ.

Molecule Therapeutic
Effect of ENZ Mechanism Reference

KIF15 Decrease
Increase protein binding of USP14

to AR/AR-V7 to prevent
degradation of AR/AR-V7 protein.

Gao et al. (2021)
[142]

DBC1 Decrease
Enhance DNA binding activity of
AR-V7 and inhibit ubiquitination

degradation of AR-V7.
Su et al. (2017) [144]

TNC Increase Promote AR-V7 transcriptional
activity and protein expression.

Rintu Thomas et al.
(2022) [148]

STUB1 Decrease Promote AR-V7 degradation. Xu et al. (2020) [149]
Liu et al. (2018) [86]

Abbreviations: KIF15: kinesin family member 15; DBCI: deleted in breast cancer 1; TNC: Tenascin-C; STUB1:
STIP1 homology and U-box containing protein 1.

Therefore, if key regulatory molecules such as AKR1C3, KIF15, DBC1 and HOXB13
can be targeted, thereby reducing the stability of AR-V7, promoting the protein ubiquitin-
proteasome of AR-V7 may be able to reverse ENZR of CRPC.

5. Conclusions and Prospects

ENZ, a second-generation ARSI, has given hope to CRPC patients and increased
the overall survival rate. Nevertheless, ENZR has become challenging in the clinical
treatment of CRPC. Scientific research has also focused on the mechanism of ENZR in CRPC.
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Numerous studies have thus far reported that the occurrence of ENZR is mediated by
different mechanisms, which are AR-related mechanisms, glucocorticoid receptor-related
processes, neuroendocrine transformation, related pathway activation, etc. There is no
doubt about the role of AR in mediating ENZR in CRPC. As the most important AR-Vs,
AR-V7 have been shown to play an important role in the development of drug resistance
in CRPC and in predicting treatment response.

In addition to expanding our understanding of the AR signal axis in the past, the re-
search into AR-V7 in the mechanism of ENZR in CRPC also offers the most recent therapeu-
tic approaches to treating CRPC. One of the recent research hotspots and foci are the rela-
tionships between LncRNA with proteostasis and AR-V7. In order to treat ENZR in CRPC,
continuous investigation is explored on strategies targeting the stability of the AR-V7
protein or the AR-V7 transcription levels. For example, the conventional drug niclosamide
has been applied in a new way. Some newly developed small-molecule compounds such
as ARVib-7 and MTX-23, as well as natural products such as nobiletin and Hsp90, have
also shown efficient therapeutic effects.

Although the data of preclinical studies are encouraging, the specific mechanism
of AR-V7 activation is not clear at present, and most drugs are limited to the results of
preclinical studies now. No further clinical trials have been carried out. In addition, there
are still problems of limited efficacy or unacceptable toxicity in clinical trials in clinical
development. Therefore, there is still a long way to go to develop drugs that inhibit
the expression of AR-V7 or promote the degradation of AR-V7 and finally put them into
clinical treatment for patients with CRPC.
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