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Flexible protein database based 
on amino acid k‑mers
Maxime Déraspe1,2*, Sébastien Boisvert3, François Laviolette2,5, Paul H Roy4 & 
Jacques Corbeil1,2,6

Identification of proteins is one of the most computationally intensive steps in genomics studies. It 
usually relies on aligners that do not accommodate rich information on proteins and require additional 
pipelining steps for protein identification. We introduce kAAmer, a protein database engine based on 
amino-acid k-mers that provides efficient identification of proteins while supporting the incorporation 
of flexible annotations on these proteins. Moreover, the database is built to be used as a microservice, 
to be hosted and queried remotely.

One fundamental task in genomics is the identification and annotation of DNA coding regions that translate into 
proteins via a genetic code. Protein databases increase in size as new variants, orthologous and novel genes, often 
found in metagenomics studies, are being sequenced. This is particularly true within the microbial world where 
bacterial proteomes’ diversity follows their rapid evolution. For instance, UniProtKB (Swiss-Prot/TrEMBL)1 and 
NCBI RefSeq2 contain over 100 million bacterial proteins and that number is increasing rapidly.

Identification of proteins often relies on accurate, but slow, alignment software such as BLAST or hidden 
Markov model (HMM) profile-based software3,4. Although other approaches (such as DIAMOND5) have con-
siderably improved the speed of searching proteins in large datasets, from a database standpoint much can be 
done to offer a more versatile experience. One such approach would be to expose the database as a permanent 
service, which can make use of computational resources for increased performance (e.g. memory mapping) 
and leveraging the cloud for remote analyses via a HTTP API. Another approach would be to extend the result 
set with comprehensive information on protein targets to facilitate subsequent genomics and metagenomics 
analysis pipelines.

Alignment software typically relies on a seed-and-extend pattern using an index (two-way indexing in DIA-
MOND) to make local alignments between query and target sequences. However, there is a plethora of research 
techniques to bypass the computational cost of alignment. Alignment-free sequence analyses usually adopt 
k-mers (overlapping subsequences of length k) as the main element of quantification. They are extensively used 
in DNA sequence analyses ranging from genome assemblies6 to genotyping variants7, as well as genomics and 
metagenomics classification8–10. In the present study, we introduce kAAmer, a fast and comprehensive protein 
database engine that was named after the usage of amino acid k-mers (kAAmer: k-amino-acid-mer) which differs 
from the usual nucleic acid k-mers. We demonstrate the usefulness and efficiency of our approach in protein 
identification with a protein domain database and antibiotic resistance gene identification from a pan-resistant 
bacterial genome.

Results and discussion
The database engine of kAAmer is based on log-structured merge-tree (LSM-tree) Key-Value (KV) stores11. LSM-
trees are used in data-intensive operations such as web indexing12,13, social networking14 and online gaming15,16. 
KAAmer uses Badger17, an efficient implementation in Golang (https://​golang.​org/) of a WiscKey KV (key-value) 
store16. WiscKey’s LSM-tree design is optimized for solid state drives (SSD) and separates keys from values to 
minimize data movement during the creation of the key-value store. KAAmer will obtain peak performance 
with modern hardware such as solid-state drives that offer good throughput in input/output (I/O) operations 
per second (IOPS) and will effectively accommodate use cases where many queries are sent simultaneously. A 
kAAmer database includes three KV stores (see Fig. 1a): one to provide the information on proteins (protein 
store) and two to enable the search functionalities (k-mer store and combination store). The k-mer store con-
tains all the 7-mers found in the sequence dataset and the keys to the combination store, which uniquely serves 
the combination of proteins held by k-mers. The fixed k-mer size of 7 was chosen to fit on 4 bytes and keep a 
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manageable database size while offering good specificity over protein targets. The k-merized design of a kAAmer 
database provides an interesting simplicity for the search tasks which will give an exact match count of all 7-mers 
between a protein query and all targets from a protein database. This strategy is not guaranteed to return the 
same homologous targets that would be obtained with alignment or HMM search and is therefore less suitable 
for distant homology retrieval.

In order to evaluate the performance and precision of kAAmer, we built a speed and a sensitivity bench-
mark against protein families of the ECOD database (homology groups)18. We evaluated four software: Blastp 
(v2.9.0+)3, Ghostz (v1.0.2)19, Diamond (v0.9.25)5 and kAAmer (v0.6). Other interesting software that make use 
of web servers for remote analyses, such as Sequenceserver20 and MMseqs221, are worth mentioning for the 
functionality that they offer. However, we limited our benchmark to the previously mentioned software for their 
alignment efficiency and their computational resource requirements. Note that we have tested two modes for 
Diamond, the more-sensitive and fast ones. Similarly, we tested two sensitivity modes with kAAmer, based on the 
minimal number of shared k-mers, which are k10 (at least 10 shared k-mers between protein query and target) 
and k1 (at least 1 shared k-mer). For kAAmer, each sensitivity mode was tested without alignment—the ratio of 
shared k-mers serving as a scoring function and also with a subsequent alignment form. The alignment purpose 
in kAAmer is to improve the scoring metrics while using the same result set as the raw alignment-free method.

Figure 1c illustrates the ROC curve results of the sensitivity benchmark. We observed that Ghostz, Blastp 
and Diamond-sensitive reported respectively the highest number of true positives regardless of false negatives. 
Then follows, kAAmer with the minimal number of shared k-mers, Diamond-fast and kAAmer with at least 10 
shared k-mers. The ROC curve also shows the difference in precision of the alignment-free mode of kAAmer 
compared to the alignment modes. One of the main reasons would be the scoring scheme that uses the percent-
age of shared k-mers in contrast to bit score with the alignment results. Note that the minimal k-mer matches 
is an option provided by the user to tune the sensitivity of the protein search. We also compared our database 
engine with the aforementioned software for their execution time with different query dataset size. Thirteen dif-
ferent protein query datasets were randomly and uniquely chosen from the original ECOD database, with size 
ranging from 1 protein to 50,000 proteins. Figure 1b illustrates the wallclock times of the alignment software 
in comparison with kAAmer for protein homology searches. See the Methods section for the hardware used in 
the benchmarks. We observe with the larger query datasets (50,000 proteins) that kAAmer k10 in alignment-
free mode completed the search in 46.5 s, while the alignment mode for kAAmer-k10 did it in 390.7 s. When 
using only one shared k-mers (kAAmer k1), the most sensitive mode in kAAmer, the execution times were 78.8 
s without alignment and 966.6 s with alignment. The fast mode of Diamond completed the same task in 64.7 s, 
while it took 287.7 s with the sensitive mode. Ghost yielded results similar to the Diamond sensitive mode while 

Figure 1.   (a) Design of a kAAmer database. Three key-value stores are created within a database (K-mer 
Store, Combination Store, Protein Store). Colours indicate the combination (hash) values that are reused in the 
combination store. Proteins are numbered (p01, p02, p03) and k-mers are numbered (k01, k02, ..., k08). (b) 
Protein search speed benchmark. Software include Blastp (v2.9.0+), Ghostz (v1.0.2), Diamond (v0.9.25) and 
kAAmer (v0.6) with (-aln) and without (-kmatch) alignment. (c) Protein search precision and recall benchmark 
with the ECOD database. The blue bars indicate the precision results and the red bars indicate the recall results. 
Software include Blastp (v2.9.0+), Ghostz (v1.0.2), Diamond (v0.9.25) and kAAmer (v0.6) with alignment.
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Blastp reported results that were significantly slower than the other tested software. When comparing the speed 
results with the maximum number of queries (50,000 proteins), kAAmer in its alignment-free mode achieves 
performance comparable to the fast mode of Diamond, although the results will vary with the parameter of the 
minimal number of k-mer matches used. The alignment mode of kAAmer obviously adds an overhead that 
will impact the running time results. Yet in combination with the minimal k-mer match of 1, it will offer better 
sensitivity at the detriment of speed.

In order to accomodate real-use cases, we built relevant kAAmer databases and investigated their usage 
in typical bacterial genomics analyses. It should be noted that annotation of genomes and gene identification 
rely heavily on the quality of the underlying database. What kAAmer has to offer is the inclusion of the pro-
tein information within the database combined with an efficient search functionality to facilitate downstream 
analyses. Therefore, we also provide utility scripts to demonstrate these use cases. The first use case was to 
identify antibiotic resistance genes (ARGs) in a bacterial genome and test its accuracy related to other ARG 
finder software. For ARG identification we used the NCBI Bacterial Antimicrobial Resistance Reference Gene 
Database (v2020-01-06.1)22 and compared the kAAmer results with the ResFinder (v3.2 and database 2019-10-
01)23 and CARD (v5.1.0)24 software and database. The query genome is a pan-resistant Pseudomonas aeruginosa 
strain E613095225. Table 1 shows the results of the ARG identification within the query genome by the three 
software / databases tested. For the majority of antibiotic classes, the results are in agreement between the three 
databases. Interestingly, three aminoglycoside genes (aac(6’)-Il, ant(2”)-Ia and aacA8) were only found with 
kAAmer (NCBI-ARG) and ResFinder. On the other hand, several more antibiotic efflux systems are annotated 
in CARD and the number of identified efflux proteins in E6130952 goes up to 36 while only 3 were reported by 
kAAmer (NCBI-ARG) and none by ResFinder. Also 2 genes associated with resistance to peptide antibiotics 
(arnA, basS) and 2 other (soxR, carA) associated with multiple antibiotic classes were only reported by CARD. 
Other tested use cases include genome annotation and metagenome profiling as shown in the Methods section.

In summary, kAAmer introduces a fast and flexible protein database engine to accommodate different genom-
ics analyses use cases. It can be hosted on-premise or in the cloud and be queried remotely while offering a flex-
ible protein annotation scheme. Although it can be adapted to find more distant homology, it is best suited to 
quickly find close sequence homology with its k-mer matching functionality, while providing rich annotations 
on the identified protein targets.

Methods
Design of kAAmer.  KAAmer design was influenced by our requirements that protein databases would be 
permanently hosted (on premise or in the cloud), queried remotely and would have room to scale as sequence 
databases grow in size. It also needed to be multithreaded for protein searches and would support alignment for 
more accurate remote homology findings. We opted for a Key-Value store engine that would reside on disk and 
be optimized for SSDs. We used the Go programming language for its versatility and efficiency. The Key-Value 
stores use the Badger17 engine and protein annotations are encoded using Protocol Buffers26.

Database building.  KAAmer is first used to build a database in which all amino acid k-mers are associated 
with proteins in which they are found. It consists of three KV stores to hold the database information (k-mer 
store, combination store and protein store). The first KV store (k-mer store) keeps the association of every k-mer 
(key) with a hash value (key length: 8 bytes) that is the entry to the combination store. The k-mer size is fixed at 
7 amino acids to fit k-mer keys onto 32 bits (4 bytes) and thus maintain a manageable final database size while 
keeping a k-mer size long enough for specificity. The second KV store (combination store) is used to hold all the 

Table 1.   Report of the antibiotic resistance gene identification in the pan-resistant Pseudomonas aeruginosa 
E6130952 strain from kAAmer+NCBI-arg, ResFinder and CARD databases.

Resistance gene Antibiotic class kAAmer+NCBI-ARG​ ResFinder CARD

aac(6’)-Il Amikacin/kanamycin/tobramycin 3 3 0

ant(2”)-Ia Gentamicin/kanamycin/tobramycin 1 1 0

aacA8 Aminoglycoside 1 1 (aac(6’)-31) 0

aph(3’)-IIb Kanamycin 1 1 1

aadA6 Streptomycin 2 2 2

blaOXA-2 , blaOXA-488 Beta-lactam 2 2 2

blaPDC-35 Cephalosporin 1 1 ( blaPAO) 1 ( blaPDC-2)

fosA Fosfomycin 1 1 1

catB7 Chloramphenicol 1 1 1

sul1 Sulfonamide 3 3 3

mexA, mexE, mexX Efflux 3 0 2 (no mexX)

Other efflux system Efflux 0 0 34

arnA, basS Peptide antibiotic 0 0 2

soxR, carA Multiple antibiotic class 0 0 2

Total 13 19 16 51
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unique sets of protein identifiers. The method used to build this store can relate to the flyweight design pattern 
or the hash consign technique. Indeed, hash values are reused to access identical objects and therefore minimize 
memory usage. The set of protein identifiers are the keys to the third store (protein store) which contains the pro-
tein information found in the raw annotation file. The raw input file can be either in the EMBL format, GenBank 
format, TSV format or in FASTA format.

Querying a database.  Once we have a database, we expose it with the kAAmer server that listens over 
HTTP for incoming requests. The benefits of using such a service are two fold. First, the database is opened once 
and is memory mapped to increase the performance of protein searches. Second, the kAAmer server can be 
hosted virtually anywhere, in the cloud for instance, and be queried remotely by the kAAmer client. Note that it 
is preferable that the latency (time required for a message to be transported over HTTP) between the server and 
client be as low as possible. KAAmer supports protein query and translated DNA query from FASTA input as 
well as short reads sequences (like Illumina) in FASTQ format. The default mode in kAAmer finds and reports 
k-mer exact matches (“kmatch”) with target proteins from the database. However, kAAmer also provides an 
alignment mode (“kaamer-aln”) that produces protein sequence alignments on the k-mer matches’ result set 
with the Smith-Waterman algorithm, as implemented in the biogo package27. Options for the alignment mode 
include the substitution matrix and the gap open and gap extend penalty values. The user can also control the 
minimal number of k-mer matches to report a hit as well as the minimal ratio of k-mer matches over the protein 
queries.

ECOD database benchmarks.  The ECOD database contains 149,091 protein sequences classified into 88 
homology groups. The sensitivity benchmark is based on those homology groups. For each homology group, we 
identify all the homology pairs where the query is effectively part of the analyzed group. A true positive occurs 
when the subject of the detected homology belongs to the same group of the query and a false positive when it 
belongs to a different group. Each protein can only be identified once from the query set and it must not be the 
same protein that reports the homology, therefore the maximum number of true positives is equal to the size of 
the database. The ROC curve is built by changing the score threshold (bit score or number of shared k-mers) and 
by counting the number of true and false positives respecting it28.

For the speed benchmark on the ECOD proteins database, we randomly and uniquely extracted multiple sets 
of sequences, with the number of sequences ranging from 1 to 50,000. Each set of sequences was in its own FASTA 
file to be queried against the whole database with the different alignment software included in the benchmark. 
The benchmark for all four software (Blastp (v2.9.0+), Ghostz (v1.0.2), Diamond (v0.9.25) and kAAmer (v0.6)) 
was run on nodes geared with 32 cores (2nd generation AMD EPYC Processor), 64 GB of RAM and with a 
NVMe connected SSD (Amazon EC2 c5ad.8xlarge instance). Software were run with default parameters, except 
for the number of threads set to 32 and the maximum number of results equal to the total number of proteins 
in the database. We should note that Diamond yields faster results with large query sets, however, comparison 
purposes of speed and sensitivity both benchmarks used the same ECOD dataset. More details on the benchmark 
is provided at https://​github.​com/​zorino/​kaamer-​bench​mark.

Other kAAmer use cases.  Apart from the antibiotic resistance gene (ARG) identification use case, we 
also provide two demonstrations of kAAmer usage in bacterial genome annotation and metagenome profiling. 
The use cases are documented at https://​github.​com/​zorino/​kaamer_​analy​ses and a Python script is provided 
for each one of the analyses. For the genome annotation, we used the chromosomal sequence of the same Pseu-
domonas aeruginosa strain (E6130952) as in the antibiotic resistance genes identification. The kAAmer database 
that was used for the homology detection is a subset of RefSeq from the Pseudomonadaceae family which is avail-
able from the kAAmer repository (see Data availability) along with other bacterial family databases. Essentially 
the genome annotation script parses the kAAmer results and produces a GFF (General Feature Format) annota-
tion file giving some threshold on the protein homology. The other use case is the profiling of a metagenome 
based on the MGnify database of the human gut29. MGnify includes protein annotations from gene ontology, 
enzyme commission and kegg pathways, among others. The metagenome profiling script will parse the results 
and produce a summary file by annotation that counts the presence and abundance of each feature.

Data availability
The kAAmer software is available under the Apache Version 2.0 license at https://​github.​com/​zorino/​kaamer. The 
documentation is available at https://​zorino.​github.​io/​kaamer/. Several pre-built kAAmer databases are available 
at https://​kaamer.​genome.​ulaval.​ca/​kaamer-​repo/.
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