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Abstract

Background: The LAR family Protein Tyrosine Phosphatase sigma (PTPc) has been implicated in
neuroendocrine and neuronal development, and shows strong expression in specific regions within
the CNS, including the subventricular zone (SVZ). We established neural stem cell cultures, grown
as neurospheres, from the SVZ of PTPc knockout mice and sibling controls to determine if PTPc
influences the generation and the phenotype of the neuronal, astrocyte and oligodendrocyte cell
lineages.

Results: The neurospheres from the knockout mice acquired heterogeneous developmental
characteristics and they showed similar morphological characteristics to the age matched siblings.
Although Ptprs expression decreases as a function of developmental age in vivo, it remains high with
the continual renewal and passage of the neurospheres. Stem cells, progenitors and differentiated
neurons, astrocytes and oligodendrocytes all express the gene. While no apparent differences were
observed in developing neurospheres or in the astrocytes and oligodendrocytes from the PTPc
knockout mice, the neuronal migration patterns and neurites were altered when studied in culture.
In particular, neurons migrated farther from the neurosphere centers and the neurite outgrowth
exceeded the length of the neuronal processes from age matched sibling controls.

Conclusion: Our results imply a specific role for PTPc in the neuronal lineage, particularly in the
form of inhibitory influences on neurite outgrowth, and demonstrate a role for tyrosine
phosphatases in neuronal stem cell differentiation.

Background

Neural stem cells comprise a relatively quiescent, uncom-
mitted and multipotent subpopulation in the central
nervous system [1-3]. Stem cells reside in multiple areas of
the central nervous system including the olfactory bulb,
striatum, cerebellum, hippocampus (dentate gyrus), cere-

bral cortex and spinal cord [4]. The subventricular zone
(SVZ) is one of the richest zones capable of generating
stem cells during development and into old age [5]. In
culture, neural stem cells and progenitor cells grow as
spherical cell clusters termed neurospheres, and they pro-
vide a valuable way to investigate neuronal and glial cell
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lineage development in vitro. Neural stem cells express
EGF and FGF receptors [6] and the mitogens FGF and EGF
are used to induce mitosis in stem cells [7,8].

During development, cell signaling facilitates cellular
maturation as well as extracellular interactions between
the cells and the environment [9]. Kinases and phos-
phatases are regulatory proteins antagonistically control-
ling the phosphorylation state of molecules within cell-
signaling pathways. It had been previously demonstrated
that protein tyrosine phosphatases (PTPs) contribute to
neuronal development, influencing axon growth, trajec-
tory, guidance, fasciculation and synapse formation [10-
14]. Receptor protein tyrosine phosphatase sigma (PTPg,
also known as LAR-PTP2, PTP-P1, PTP-NU3, PTP-NE3,
CRYPa and CPTP1), the product of the Ptprs gene, is a
member of the LAR family of protein tyrosine phos-
phatases (Type Ila PTP) along with LAR and PTP3 [15]. It
is comprised of a cell adhesion-like ectodomain consist-
ing of 3 Ig and 5 or 8 FNIII repeats, a single transmem-
brane domain and 2 tandem catalytic domains, the first of
which is active [16,17]. The ectodomain of PTPc interacts
with the heparan sulfate proteoglycans(HSPGs) agrin and
collagen XVIII in the retina [18], although it has other, yet
unidentified ligands in the muscle [18] and other tissues.
Intracellular substrate(s) for PTPc have not yet been
described.

Using PTPo knockout mice our previous studies and those
of others have focused on the spatial patterns of PTPc
expression particularly in the central and peripheral nerv-
ous system, as well as on nerve regeneration and axonal
guidance [20-24]. PTPo deficient mice exhibit neuroendo-
crine defects, with reduced production of growth hor-
mone and prolactin by the pituitary, which contribute to
their high rate of postnatal mortality [21,25]. Surviving
mice exhibit neuronal and neurobehavioral defects [20],
and abnormal nerve regeneration pattern following injury
of the sciatic [23] or facial nerves [24]. In addition, our
analysis of the CNS revealed hippocampal dysgenesis,
reduction in thickness of the corpus callosum and cerebral
cortex and spinal cord abnormalities [22].

In our previous studies [22] we observed strong expres-
sion of PTPc immediately adjacent to the ventricles in the
subventricular zone (SVZ). Prompted by this observation
we sought to determine if neural stem cells express the
Ptprs gene and if this gene influenced the phenotype of
the 3 principal lineages generated from these stem cells:
astrocytes, oligodendrocytes and neurons. Our results
demonstrate expression of PTPc in stem cell-derived
astrocytes, oligodendrocytes and neurons. Moreover,
while differentiated astrocytes and oligodendrocytes from
the neurospheres of PTPc knockout mice appeared nor-
mal, the neurons showed an accelerated growth of proc-
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esses, suggesting that PTPo provides inhibitory signal(s)
that is specific for the neuronal lineage.

Results

PTPo does not affect neurosphere ontogeny and
morphology

To determine the morphology of neurospheres generated
from the PTPo (-/-), (+/-) and (+/+) mice, we recovered
stem cells from the SVZ of each genotype and generated
neurospheres in the presence of bFGF and EGF. The prop-
erty of self-renewal was demonstrated by the weekly pas-
sage of the spheres for several months and in some cases
beyond one year. With the continued passage of the neu-
rospheres, we were able to analyze several hundred neuro-
spheres for each genotype. Neurospheres examined by
phase contrast microscopy were indistinguishable
between the 3 groups (genotypes) of mice. We established
the neurosphere cultures at least 10 times from each gen-
otype. While combinations of bFGF and EGF generated
higher numbers of neurospheres in contrast to a single
growth factor, there was no difference between the three
genotypes (Table 1). As the neurospheres increased in
size, many acquired a heterogenous cellular composition.
The spheres contained cells with the progenitor cell mark-
ers nestin and NG2 (Figure 1). We observed a wide variety
of markers expressed by cells in the neurospheres. Individ-
ual neurospheres would commonly reveal the co-expres-
sion of two lineages (Table 2). Many cells were stained for
2 markers in addition to the generation of multiple line-
ages. We could localize cell markers that labeled different
cell populations in the spheres as well as cells co-express-
ing different lineage markers (Figure 1). Heterogeneity
was most apparent in the largest spheres. There was no
difference between the 3 genotypes regarding the single
expression or co-expression of the various markers. In
addition, the larger spheres also consisted of differenti-
ated cells predominantly of a neuronal phenotype (Figure

1).

Neural stem cells and differentiated progeny express PTPc
To determine whether PTPc is expressed in the neuronal
stem cells, B-galactosidase expression, included in the
knockout cassette and driven by the endogenous Ptprs
promoter, was analyzed. As seen in Figure 2, the neuro-
spheres from the PTPc (-/-) and the (+/-) mice exhibited
B-galactosidase expression (reporting Ptprs expression),
demonstrating that PTPc is normally present in these neu-
ral stem cells. Neurospheres produced from the wildtype
animals showed no B-galactosidase staining, as expected.
The neurospheres generated from all 3 genotypes con-
sisted of a heterogeneous makeup of progenitor cells and
lineage committed cells. The spheres often contained cells
with the NG2 cell progenitor marker and cells co-express-
ing GFAP or tubulin. When the neurospheres were
induced to differentiate, we observed differentiated neu-
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Figure |

Neurospheres derived from the PTPc(-/-) knockout mouse brain show normal morphological features. a) Classical appearance
of neurospheres in culture. Clonal derived spheres from a PTPo(-/-) mouse visualized by differential interference contrast
microscopy. Scale bar = 50 pm b) Nestin expression in a medium sized neurosphere from a PTPG(-/-) mouse. This stem cell/
progenitor cell marker is uniformly distributed throughout the sphere. Confocal microscopy. Scale bar = 50 um c) Double
labeling for nestin (rhodamine-red) and the EGF-R (fluorescein-green) in a sphere derived from a PTPo(+/-) mouse. Confocal
microscopy. Scale bar = 50 pum d) Immunofluorescent image of the NG2 progenitor cell marker (fluorescein-green) and the
neuronal marker tubulin (rhodamine-red) in a neurosphere generated from a PTPc (-/-) mouse. Epi-fluorescence microscopy.
Scale bar = 50 pum.

rons, astrocytes and oligodendrocytes that co-expressed B-  Neurons lacking PTP o show altered migration patterns
galactosidase with the appropriate end cell marker (Figure ~ and enhanced neurite outgrowth

2). There was no apparent difference between the different =~ The neuronal lineage derived from PTPo (-/-) mice dem-
genotypes in the capacity for neurospheres to generate the  onstrated a different migration pattern compared to both
3 separate cell lineages, nor was there any tendency fora  heterozygotes and wild type mice (Figure 3). Neurons
genotype to produce a particular lineage. generated from the PTPo (-/-) neurospheres migrated over
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Table I: Number of neurospheres generated/well (n = 9) after 7 days in culture. Average +/- SE. ANOVA indicated no significant

difference between the different genotypes.

Genotype EGE bFGF EGF & bFGF
-l- 50.3 +/- 14.14 43.3 +/-21.18 108 +/- 9.84
+/- 60.3 +/- 14.78 39.6 +/- 12.45 130 +/- 7.51
++ 31.3 +/-16.34 34.0 +/- 10.07 84.3 +/- 28.16

large areas of the laminin substrate. These neurons, iden-
tified by B II-tubulin expression, moved long distances
from the center of the neurospheres to often create over-
lapping zones of migration between adjacent neuro-
spheres. The neurons from the PTPo (+/-) and (+/+) mice
remained close to the neurosphere of origin and were
observed in closely associated groups. Processes derived
from PTPc (-/-) neurons were significantly (p <0.001)
longer than the neurons from heterozygote PTPc (+/-)
and wildtype neurons. The PTPc (-/-) neurons tended to
have one neurite that was considerably much longer than
the other neurites. Seven days after the induction of differ-
entiation, the PTPc (-/-) neurons had average neurite
lengths of 77.0 + 2.2 um, whereas the PTPs(+/-) and
wildtype neurons showed neurite lengths of 34.0 + 16.6
pum (Figure 4). No differences in the migration patterns of
astrocytes and oligodendrocytes derived from the PTPo (-
/-) or sibling controls were observed. These cells remained
close to the neurosphere of origin.

Discussion

We have demonstrated the expression of PTPc in neural
stem cells and in each of the 3 main lineages derived from
the neural stem cell, as well as a role for this gene in neu-
ronal lineage differentiation. To our knowledge, this is the
first direct demonstration of PTP expression in neural
stem cells isolated from the SVZ, in line with our earlier
observation of strong expression of PTPo in the SVZ [22].
Moreover, it is also the first demonstration of a role for a
PTP (PTPo) specifically in the growth of stem cell-derived
neurons, but not in the development of the other lineages
(astrocytes and oligodendrocytes) under our culture con-
ditions. Identification of glial substrates for this gene may
offer insight into specific function(s) for astrocytes and
oligodendrocytes. Bernabeu and coworkers have recently

demonstrated the expression of LAR in progenitor cells of
the dentate gyrus within the hippocampus of mice, and
showed increased neurogenesis in LAR deficient dentate
gyrus [26]. This is interesting given the previously docu-
mented stimulatory role of LAR in neuronal growth (see
below), including hippocampal cholinergic neurons
[13,14,33].

The Ptprs gene does not appear to influence the formation
and cellular makeup of the neurosphere. However, while
we did not observe any significant phenotypic differences
in the astrocyte or oligodendrocyte cell lineages produced
by the neurospheres derived from the PTPc deficient mice
relative to wild type mice, prominent phenotypic differ-
ences were noted in the neuronal derivatives of these neu-
rospheres. In particular, neurite outgrowth was
accelerated in the knockout animals, suggesting that PTPc
provides inhibitory stop signals for neurite growth.

A number of receptor PTPs, particularly from the LAR or
LAR-related families, have demonstrated an ability to pro-
mote neurite or axonal outgrowth in wvitro. Examples
include LAR [27], PTPS [28,29], PTPu[30] and PTPk [31].
Regulation of neurite outgrowth by LAR has also been
shown in vivo [22,32,33]. Our results suggest that unlike
these PTPs, PTPo, which is highly homologous to LAR and
PTP9, acts as an inhibitor of neurite outgrowth. This sup-
ports our previous studies documenting increased regen-
eration rate of the sciatic nerve in PTPc deficient mice
following injury in vivo [23], an observation subsequently
confirmed by studies of facial nerve regeneration carried
out by Thompson et al [24]. Together with our present
data, these findings support the notion of a role for PTPc
in inhibiting neurite outgrowth. This is in contrast to the
finding that sciatic nerve crush in LAR knockout mice

Table 2: Cell marker combinations used to identify cell lineage heterogeneity in the neurospheres. (+) indicates detection of the
antibody. (-) indicates that the antibody combination was not co-expressed in cells within the neurospheres.

Marker Combination

Double labelled cells in neurospheres

Single labelled cells in neurosphere

04 plus GFAP

04 plus PGP

04 plus NG2
tubulin plus GFAP
tubulin plus NG2
NG2 and GFAP

+ o+

+

+ 4+ + + + 4+
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Figure 2

Neurosphere stem cell lineages express PTPo. a) A neurosphere derived from the SVZ of a PTPo(+/-) mouse brain and

reacted for the histochemical localization of 3-galactosidase. Nomarski phase contrast inverted microscopy. Scale bar = 50 um.
b) Histochemical localization of the PTPc reporter gene -galactosidase in neurospheres originating from a PTPG(-/-) mouse.
Phase contrast inverted microscopy. Scale bar = 25 um. c¢) Co-expression of the progenitor cell marker NG2 (green) and the
neuronal lineage marker tubulin (red) in cells differentiated from a PTPc(-/-) mouse. Epi-fluorescence microscopy. Scale bar =
50 pum. d) Differentiated neurons derived from a PTPo(-/-) neurosphere. The merged image shows the co-expression (yellow)
of B-galactosidase and B-Ill tubulin in the cytoplasm. Epi-fluorescence microscopy. Scale bar = 50 um. e) Astrocytes contain
GFAP (rhodamine-red) and B-galactosidase (fluorescein-green) when differentiated from a PTPo(-/-) neurosphere. Epi-fluores-
cence microscopy. Scale bar = 50 um. f) Mature oligodendrocytes derived from a PTPG(-/-) mouse stained with the 04 anti-

body. Epi-fluorescence microscopy. Scale bar = 50 um.

resulted in delayed nerve regeneration [34], suggesting
that LAR (unlike its close relative PTPc) promotes nerve
regeneration and growth in vivo. McLean and colleagues
[23] also documented increased errors in axonal pathfind-
ing in PTPc knockout mice, complementing the inverte-
brate studies with Drosophila DLAR [35].

In our study, differences in the neuronal migratory pat-
terns from the neurospheres existed between PTPc defi-
cient mice and their sibling matched controls when
differentiated on laminin coated glass coverslips. The
intracellular pathway(s) regulating PTPc mediated con-
trol of neurite growth in the CNS and PNS are unknown
since the substrate(s) for this phosphatase has/have not
been described. Other receptor PTPs (eg PTPp), related to

PTPo, have been reported to regulate the cadherin-catenin
complex. Our preliminary examination of the neurite
lengths of neurons grown on the N-cadherin substrate did
not reveal any significant differences in neurite length
between the PTPo (-/-) mice and the siblings under our
current assay conditions. These preliminary data suggest
that neurite growth regulated by PTPc is also dependent
on extracellular substrata/factors, likely in addition to
intrinsic factors.

Our studies corroborate the growing body of evidence
illustrating a very diverse make-up to the developing neu-
rosphere [36,37]. The intrinsic complexity of the various
developmental stages of neural lineages was apparent
when staining with the different combinations of precur-
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Figure 3

Neurons show enhanced migration patterns and neurite outgrowth when differentiating from neurospheres derived from

PTPo (-/-) mice. All images taken after 7 days of differentiation. Epi-fluorescence with the B-IIl tubulin antibody. A. Morpholog-
ical appearance: a) Appearance of neurospheres from PTPg(+/+) mice grown on laminin coated coverslips. Scale bar = 150 pum.
b) Higher magnification of (a) to show neuronal progeny derived from the PTPG(+/+) genotype. Scale bar = 100 um c) Appear-
ance of the neuronal migration from PTPg(+/-) derived neurospheres. Scale Bar = 100 um d) Neurons that differentiate from
neurospheres from a PTPc(-/-) mouse appear extensively distanced from the neurosphere of origin. Scale bar = [00um. e)
Neuronal differentiation from a PTPo(+/-) neurosphere. Scale bar = 50um. f) Long random processes characterize PTPo(-/-)
neurons. B-lll tubulin immunocytochemistry. Scale bar = 50um. g) High power view of a long process from a neuron derived

from a PTPo(-/-) neurosphere. B-1ll tubulin immunocytochemistry. Scale bar = 25um.

sor and lineage specific antibodies. Our understanding of
antibodies thought to identify exclusive steps in precursor
cell development, glial or neuronal lineages is constantly
changing. The NG2 antibody, thought to identify a chon-
drotin sulfate proteoglycan on the surface of glial cells
only, co-existed with cells expressing neuronal markers in
our neurospheres. This same antibody has been used by
Belachew and colleagues [38] to reveal similar results in
vivo, including the generation of neurons from NG2 posi-
tive glial precursors.

Conclusion

In conclusion, we have performed adult stem cell isola-
tion procedures in mice lacking PTPc. The combination
of these techniques provides a unique and powerful
opportunity to study the role of single genes on the devel-
opmental aspects of stem cell derived glial and neuronal
lineages. Our results support a role for PTPo in specifically
suppressing the neurite outgrowth from stem cell derived
neurons (but not other lineages) and modulating their
migration patterns.
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Neurite length of differentiated neurons (identified by b-IlI
tubulin immunocytochemistry) grown on laminin coated glass
coverslips. The data (average of all neurites £SEM) show a
significant increase in neurite outgrowth from the PTPs(-/-)
mice (KO) relative to sibling (Sib) controls. Data represent 4
separate experiments with a total of 469 neurites measured
for the knockout mice and 573 neurites for the siblings. KO
represents mice genotyped as PTPs (-/-) and Sib represents
mice genotyped as PTPs(+/-) or PTPs (+/+). There was no
difference in the length of neurites between the neurons
from the PTPs(+/+) or (+/-) neurospheres, hence their data
were combined.

Methods

All the experiments with the mice followed the guidelines
set out by the Canadian Council on Animal Care, and they
were approved by the Animal Research Ethics Board of
McMaster University.

Animals and genotyping

The PTPc knockout mice were generated and character-
ised as described previously [20]. The knockout cassette
used to generate the mice included the B-galactosidase
gene, to allow detection of expression by lacZ staining.
PTPc (+/-) mice were phenotypically indistinguishable
from wild type animals. Three cohorts of PTPo (-/-) could
be identified: 60% of PTPo (-/-) animals die within 2 days
after birth, likely from hypoglycemia [25]. Approximately
38% live until two to three weeks of age and then suc-
cumb to a wasting syndrome. Only 2.5% of PTPc (-/-)
mice survive to adulthood, are approximately 25% - 50%
smaller by weight, but are fertile.

Isolation of neural stem cells and neurosphere expansion

Stem cell isolation procedures were adapted primarily
from Weiss and colleagues [39,40]. The brains from the
PTPc (-/-), (+/-) and (+/+) mice, aged 1 to 4 weeks were
removed and suspended in artificial cerebrospinal fluid
(aCSF) containing 0.012 M NaCl, 0.005 M KCl, 0.03 M
MgCl,, 0.026M NaHCO;, 0.01 M glucose and 0.097 mM
CaCl, in dH,O. The brains were bisected along the sagittal
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plane to separate the hemispheres and permit isolation of
a thin tissue layer outside the ventricles containing the
SVZ. The isolated tissue was dissociated with a mixture of
enzymes (1.0 ml of aCSF containing; 0.13 mg kynurenic
acid (4-hydroxyquinoline-2-carboxylic acid, Sigma, St.
Louis, MO), 0.66 mg type 1-S hyaluronidase (Sigma, St.
Louis, MO) and 1.3 mg trypsin (Sigma, St. Louis, MO) for
90 min in a shaking water bath set to 35°C. The sample
was triturated with a Pasteur pipette thirty times every 15
min. The single cell suspension was re-suspended in 4.0
ml of serum free media containing 1.6 pl of ovomucoid
(trypsin inhibitor, Sigma, St. Louis, MO). The serum free
media (SFM) consisted of DMEM/F12 (Life Technologies,
Burlington ON) with 0.03M glucose, 0.005 M hepes
buffer (Sigma St. Louis, MO), 20 nM progesterone (4-
pregnene-3,20-dione, Sigma, St. Louis, MO), 60uM
putrescine (SigmaRSt. Louis, MO. 1,4-diaminobutane;
tetra-methylenediamine), 0.1 mL insulin-transferrin-
sodium selenite (Roche), 2.0 mL B27 Growth supplement
(Life Technologies, Burlington ON), 20 uL epidermal
growth factor (20 ng/ml, Sigma, St. Louis, MO), 20 pl
basic fibroblast growth factor (10 ng/ml, Sigma, St. Louis,
MO) and 7.32 pl heparin (Sigma, St. Louis, MO) in a total
of 100 mls of SFM. The cells were centrifuged at 250 g for
3 min, placed into fresh SFM and plated at a density of 10
viable cells per pL in serum free media to achieve clonally
derived neurospheres [41]. Each well of the 24 well dishes
received 500 uL of the cell suspension. The plates were
maintained in a humidified 5% CO,/95% air incubator at
37°C. Developing neurospheres were prominent after 3-
7 days in culture and were passaged on a weekly basis. For
the differentiation studies, the neurospheres were used at
the second or the third passage.

To enhance the generation of oligodendrocytes from the
neurospheres, a slightly modified medium was used [42].
An oligodendrocyte specification medium (OSM) con-
sisted of 100 ml of DMEM/F12 with 0.5 mg insulin, 1.61
mg putrescine, 5.0 mg transferrin, 0.46 gm D(+) galactose
(0.025 M) and 200 pL of insulin-transferrin-sodium
selenite. The OSM was used in combination with the SEM
at a ratio of 5.3 ml to 6.7 ml (respectively) to make 12.0
ml of media.

Immunocytochemistry

Neurospheres were washed in PBS, fixed in 4.0% buffered
paraformaldehyde for 5 minutes then washed twice with
PBS prior to the incubation with the primary antibodies.
Progenitor cells were detected by nestin expression
(Pharmingen), NG2 (Chemicon) and the EGF-receptor
(Santa Cruz Biotechnology, Santa Cruz, CA). Differenti-
ated cells were assessed for their immunoreactivity
towards antibodies specific for B IlI-tubulin or PGP 9.5
(Sigma), glial fibrillary acidic protein (GFAP) (Dako) and
04 (Chemicon) to detect the presence of neurons, astro-
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cytes and oligodendrocytes, respectively. All double labels
were conducted using primary and secondary antibodies
applied independently over two consecutive days. The
appropriate species specific secondary antibody linked to
fluorescein or thodamine was applied and the spheres
were viewed by confocal or epifluorescence microscopy.
Controls involved the same procedures with the omission
of the primary antibody.

Detection of the S-galactosidase reporter gene

Spheres were fixed as described above and re-suspended
in 1.5 ml of: 1.0 mg/ml 5-bromo-4-chloro-3-indoyl-B-D-
galactopyranoside (Roche), 5.0 mM potassium ferrocya-
nide, 5.0 mM potassium ferricyanide and 2.0 mM magne-
sium chloride (in PBS). Cells were placed in a standard
humidified 5% CO,/95% air incubator at 37°C for 5 to
15 minutes until the blue color was visible when observ-
ing the spheres under a dissection microscope. In addi-
tion, some of the cells induced to differentiate were
processed for fluorescence immunocytochemistry using a
primary antibody to B-galactosidase (Sigma, St.Louis,
MO).

Measurement of neurite length

The extent of neurite outgrowth from the neuronal prog-
eny generated from neurospheres was determined on lam-
inin coated glass coverslips. Circular coverslips (Bell) were
immersed in 95% ethanol, passed over a bunsen burner
flame and placed into each well of a 24 well plate. Lam-
inin (12 pl, SIGMA) was diluted in 12.0 mL of SFM and
used to cover the surface of the coverslips. The 24 well
plates were placed in a humidified 5%CO,/95% air incu-
bator at 37°C for 45 minutes. The laminin/media was
removed and replaced with the neurosphere suspension
in SEM. To induce differentiation of the neurospheres, the
mitogens were withdrawn from the media and two drops
of media containing 10% fetal bovine serum in DMEM
was added to each well [43]. An alternative method to
induce differentiation involved reducing the growth fac-
tors to 50% and adding the media containing the fetal
bovine serum. After 7 days in culture, the cells were proc-
essed for B II-tubulin immunocytochemistry. Digital
images of the neurons were captured and the processes
measured using the LSM 5 image browser software or
Axiovision 4.5 software (Zeiss). Only processes that had a
clear origin from the cell body were measured. All statisti-
cal analysis was performed with SPSS or MiniTab soft-
ware.
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