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DNA methylation levels vary markedly by cell-type makeup of a sample. Understanding

these differences and estimating the cell-type makeup of a sample is an important aspect

of studying DNA methylation. DNA from leukocytes in whole blood is simple to obtain

and pervasive in research. However, leukocytes contain many distinct cell types and

subtypes. We propose a two-stage model that estimates the proportions of six main cell

types in whole blood (CD4+ T cells, CD8+ T cells, monocytes, B cells, granulocytes,

and natural killer cells) as well as subtypes of T and B cells. Unlike previous methods

that only estimate overall proportions of CD4+ T cell, CD8+ T cells, and B cells, our

model is able to estimate proportions of naïve, memory, and regulatory CD4+ T cells as

well as naïve and memory CD8+ T cells and naïve and memory B cells. Using real and

simulated data, we are able to demonstrate that our model is able to reliably estimate

proportions of these cell types and subtypes. In studies with DNA methylation data from

Illumina’s HumanMethylation450k arrays, our estimates will be useful both for testing for

associations of cell type and subtype composition with phenotypes of interest as well

as for adjustment purposes to prevent confounding in epigenetic association studies.

Additionally, our method can be easily adapted for use with whole genome bisulfite

sequencing (WGBS) data or any other genome-wide methylation data platform.

Keywords: DNA methylation, whole blood, T cell subtypes, B cell subtypes, epigenetics, deconvolution, cell-type

composition

INTRODUCTION

DNA methylation is an epigenetic modification that occurs when a methyl group is attached to a
cytosine base in the DNA sequence. Methylation typically occurs at sites known as CpGs where a
cytosine base is followed by a guanine base.With the introduction of DNAmethylationmicroarrays
such as the Illumina HumanMethylation450k (M450), the number of publications on the subject
of DNA methylation has increased substantially in recent years. For example, epigenome-wide
association studies (EWAS) have been published for traits such as age (Fraga et al., 2005; Rakyan
et al., 2010; Horvath et al., 2012; Talens et al., 2012; Day et al., 2013; Hannum et al., 2013),
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autoimmune disease (Absher et al., 2013; Liu et al., 2013), and
lipidmeasurements (Irvin et al., 2014; Pfeiffer et al., 2015), among
others.

In the study of genotyping or DNA sequencing data, the type
of cell from which the DNA was obtained is of little consequence.
Except for rare somatic mutations, the DNA sequence is the
same for all cell types. However, this is not the case for DNA
methylation data; DNA methylation varies markedly between
cell types (Reinius et al., 2012). Therefore, it is important to
account for the cell-type makeup of samples when analyzing
DNA methylation data (Adalsteinsson et al., 2012; Jaffe and
Irizarry, 2014; Liang and Cookson, 2014). Results of epigenetic
association studies (EWAS) can be confounded by cell type if it is
not properly accounted for.

Several options are available as ways to adjust for cell-
type makeup of samples. If cell-type percentages have been
estimated directly (such as in a complete blood count), these
measurements can be included in models as covariates. However,
these measurements are often unavailable. Principal components
often correlate with cell-type makeup (Irvin et al., 2014), so
adjusting for a few principal components in a model is often
adequate. Other methods that do not directly estimate cell-type
percentages are available (Leek and Storey, 2007; Teschendorff
et al., 2011; Houseman et al., 2012; Zou et al., 2014). However, it is
often useful to obtain estimates of cell-type percentages in order
to test for associations with percentages of specific cell types.

Many authors have predicted cell-type percentages using gene
expression data (Lu et al., 2003; Wang et al., 2006; Abbas
et al., 2009), and some have used similar approaches for DNA
methylation data (Houseman et al., 2012; Koestler et al., 2013;
Jaffe and Irizarry, 2014). The general method is based on a
linear model of the form B = AX, where B represents the
gene expression or DNA methylation profile of a mixed sample
comprised of several different component types, A represents
a matrix containing the gene expression or DNA methylation
profile of sorted cells of the types making up the sample described
in B, and X is a vector of mixing proportions that describes what
proportion of the sample in B can be attributed to each of the
types in A. The expression or methylation profile of the mixed
samples in B and the purified cell types in A are obtained through
separate experiments, and a subset of genes or CpGs that are
differentially expressed/methylated within different cell types is
selected for inclusion into the model in order to estimate the
unknownmixing proportionsX. Lu et al. (2003) used thismethod
to determine the proportion of yeast cells at different phases in
the cell cycle based on gene expression microarray data. The
authors used optimization by simulated annealing (Kirkpatrick
et al., 1983) to mathematically determine the values of mixing
proportions that would best satisfy the system of equations
without using a linear regression model. Abbas et al. (2009)
introduced an error term, creating a linear regression model that
could be used to obtain estimates of cell-type mixing proportions
through least-squares estimation. The authors restricted the
coefficient estimates to be positive so that negative estimates of
proportions could not be obtained.

The most commonly used method to predict blood cell-
type components using DNA methylation array data is a model

proposed by Houseman et al. (2012). This method is based
on linking two regression models, one for the purified cell
type components and one for the whole-blood samples. Jaffe
and Irizarry (2014) published an adaptation of the Houseman
method for use on Illumina M450 array data as opposed to
the older Illumina HumanMethylation27k array that was used
in the original Houseman publication (Houseman et al., 2012).
The model is the same, and the method only differs in the set
of CpGs that were chosen for inclusion in the model. Although
these models provide useful techniques for estimating overall
proportions of T and B cells among others, the methods do not
provide a way to estimate subtypes of T and B cells. This would be
a useful addition to many researches, particularly those studying
immune cells and autoimmune diseases.

We propose a two-stage model, based on an extension of
the model used by Abbas et al. (2009), for DNA methylation
data on whole blood samples. With this model, we are able to
estimate the percentage of six different main cell types that make
up whole blood. We refine the estimates for similar cell-types,
such as CD4+ T cells and CD8+ T cells, using a two-stage model.
Most importantly, our model is also able to refine estimates
into subtypes of several cells including CD4+ T cells (memory,
naïve, and regulatory), CD8+ T cells (memory and naïve), and
CD19+ B cells (memory and naïve). The estimation of T and
B cell subtypes represents an additional functionality that is not
available with currently existing methods.

MATERIALS AND METHODS

In order to build a model to deconvolute DNA methylation
data from whole blood samples to determine the proportions
of cell types and subtypes, we used data from Illumina
HumanMethylation450k (M450) arrays from individually sorted
blood cell populations and additional samples that had been
further sorted into subtypes. Data came from three main sources:
arrays run and data processed in the Absher lab at HudsonAlpha
Institute for Biotechnology (Absher data), Reinius et al. (2012)
(Reinius data), and Zilbauer et al. (2013) (Zilbauer data). M450
data from whole blood samples whose cell-type percentages had
been quantified was used to calibrate and test the model. Whole
blood data consisted of 44 samples from the Absher data and six
samples from the Reinius data. Sorted cell data used in model
development consisted of 6 CD4+ T cell samples (Zilbauer data),
6 CD8+ T cell samples (Reinius data), 22 CD14+ monocyte
samples (Absher data), 62 CD19+ B cell samples (Absher data),
6 granulocyte samples (Reinius data), and 2 natural killer cell
samples (Absher data). Samples of sorted T and B cell subtypes
were obtained from the Absher data and consisted of 17 naïve
CD4+ T cell samples, 18 memory CD4+ T cell samples, and 13
regulatory CD4+ T cell samples, 4 naïve CD8+ T cell samples,
4 memory CD8+ T cell samples, 35 naïve B cell samples, and
64 memory B cell samples. Memory B cell samples consisted of
two independently sorted groups, 30 that had undergone isotype
class switching and 34 that had not. More information on the
data sets can be found in the Supplementary Methods (Section 1
of Supplementary Material) and Supplementary Table 1. All data
sets were de-identified prior to inclusion in this work. The project
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was approved by the IRB as non-human subjects research (IRB
Protocol #N140904004).

Quality Control and Normalization
Each data set from each study and each cell type was processed
independently using the same quality control and normalization
pipeline. All data sets were preprocessed from raw beta values,
which represent the proportion of methylation at each CpG site
for each sample, by first setting any data points to missing in
which a significant signal could not be detected as compared to
background using a cutoff value of 0.01 for Illumina’s detection
p-value. Next all CpGs with >10% missing data in the data set
were removed, and all samples with >1% missing data were
removed. Missing values were imputed using the impute.knn
function in the impute package in R version 3.1.1 in order to
carry out normalization. Data were then batch normalized using
the Combat function (Johnson et al., 2007) using subsets of
20,000 CpGs run in parallel to improve computational efficiency.
For the purposes of batch correction, a batch was defined as
a single array consisting of 12 samples. For smaller data sets
in which all samples were run on a single array, the batch
normalization step was omitted. Next, samples were normalized
to adjust for differences between the Infinium I and Infinium II
probe chemistries on the M450 array using a method that fits a
polynomial curve to adjacent Infinium I and Infinium II CpGs
within 50 bp of one another (Absher et al., 2013). Supplementary
Figure 1 displays the results of the normalization method on
the global distribution of beta values in comparison to the raw
beta values and BMIQ-normalized beta values (Teschendorff
et al., 2013), a widely-used normalization method for M450
data. Finally, all missing values were reintroduced into the
data sets where imputed values had been positioned prior to
normalization.

A principal component analysis (PCA) was conducted using a
random subset of 5000 CpGs for all data sets with main cell type
data. This was used to determine the best data sets to use for our
model in terms of clean clustering and clear separation of one
cell type from another. It was also used to find any outliers within
a cell-type set and exclude them for the purpose of the analysis.
Additional PCA analyses were conducted independently in the
same manner for CD4+ T cell subtypes, CD8+ T cell subtypes,
and B cell subtypes. For each cell type and subtype, the median of
all QC-filtered samples of that cell type for each QC-filtered CpG
was calculated and used as the covariate basis for that cell type
in the model. For the purpose of model fitting and estimation, all
CpGs that contained SNPs within the probe sequence with minor
allele frequencies above 0.01 were removed from the data.

Data Simulation
In addition to all of the M450 data sets used, we created
simulated data using several of the M450 data sets described
above. Simulating whole blood data was necessary because we
did not have any whole blood methylation data with measured
percentages of T and B cell subtypes. We created 100 simulated
“whole blood” mixtures by creating a linear combination of
samples with sorted samples of each type and/or subtype using
proportions comparable to what would be expected for whole

blood. In order to do this, we used a normal distribution to
draw a random proportion for each cell type. Parameters for
the normal distributions for each cell type are described in
Supplementary Table 2. Approximate percentages for each cell
type in whole blood were obtained using a chart provided
by Stemcell Technologies1. Any proportion simulations value
<0 were set to 0. For CD4+ T cells, CD8+ T cells, and
B cells, we also simulated proportions of subtypes in order
to have known subtype proportions for each of these cells
to use in fitting and testing of the models for T and B cell
subtypes. Once subtype proportions were determined, the sum
was calculated for each of CD4+ T cells, CD8+ T cells,
and B cells. The estimates were scaled such that the sum of
the subtype percentages for each of these three classes was
equal to the simulated percentage value for the respective class
(CD4+ T cells, CD8+ T cells, or B cells) for that sample.
For the B memory subtype, we simulated percentages for both
isotype-class-switched and unswitched B memory cells since
our available samples had been sorted into these subsets. For
the purposes of model evaluation and testing, we combined
the percentages of these two types into a single “B memory”
percentage.

Once proportions had been simulated for each cell type, we
added the proportions together and scaled them such that the
total would sum to 100%. We then randomly selected a single
sample from each corresponding sorted cell-type data set to use
for each mixture. Once percentages had been determined and
random sorted cell samples were selected, a linear combination
was created by multiplying the selected proportion for that
cell type by the methylation beta values for all CpGs for the
selected sample for each cell type and adding up all results
for a single sample. We verified that simulated whole blood
samples mimicked real whole blood samples by performing a
PCA and demonstrating that simulated whole blood samples
cluster with real whole blood samples using the first two principal
components (Supplementary Figure 2).

Data was simulated in a similar fashion using subtypes
of CD4+ T cells to create a sample representative of a
sorted CD4+ T cell sample with known subtype proportions.
Using the same approach, simulated samples representing
CD8+ T cells and B cells were created using a linear
mixture of their respective subtypes. For each of the three
cell types, 100 simulated samples were created. The simulated
proportions of each cell type were based on a normal
distribution with parameters described in Supplementary Table
1 using the subtypes of the respective cell type. After
simulating proportions of each subtype, the proportions of
all corresponding subtypes for each simulated sample were
summed and these proportions were scaled such that the
total was equal to 1. In the same way as for the “whole
blood” simulations, samples were chosen at random from each
respective subtype data set. Finally, a linear combination was
created by multiplying the beta values in the randomly selected
samples of each respective subset by the corresponding simulated
proportion.

1http://www.stemcell.com/~/media/Files/wallchart_CellTypes_WEB.pdf.
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Statistical Models
Our method uses a linear regression model to estimate cell-type
proportions for six major cell types: CD4+ T cells, CD8+ T cells,
monocytes, B cells, granulocytes, and natural killer cells. The
intercept is removed from the model, and the model is restricted
such that all coefficients must be positive and the sum of the
coefficients must be ≤1. The model is described in Equation 1
below.

B = pCD4XCD4+pCD8XCD8+pCD14XCD14+pCD19XCD19

+pGranXGran+pNKXNK+e (1)

Here B represents the methylation beta values of a mixed
sample made up of various cell types, the X terms represent the
methylation beta values of purified cells of the six main cell types
that make up the sample in B (CD4+ T cells [CD4], CD8+ T
cells [CD8], CD19+ B cells [CD19], CD14+monocytes [CD14],
granulocytes [Gran], and natural killer cells [NK]), the p terms
represent the mixing proportions of the six cell types, and e is
the random error term (e ∼ N(0, σ 2)). We built upon the linear
regression model and R function used by Abbas et al. (2009) to
implement our method for use with methylation data. The linear
regressionmodel was adapted by removing the intercept from the
linear regression model and forcing the sum of the coefficients
to be ≤1. Although there are no obvious violations of linear
model assumptions in this setting, the linear model assumptions
can be relaxed a bit in this setting since we are only interested
in the least-squares coefficients and not the standard errors or
hypothesis tests.

In order to run the model to obtain accurate estimates of the
mixing proportions, a set of CpGs that most distinctly distinguish
cell types was selected for inclusion into themodel. First, all CpGs
with SNPs at the CpG or within the probe were excluded from
consideration. Then, a set of CpGs was chosen based on those
that discriminated best between cell types. This lists consisted
of two sub-lists. The first sub-list was based on CpGs that have
the most significant differences overall for all cell-types using an
ANOVAmodel. This list was chosen based on an ANOVAmodel
fit to methylation data from sorted cells of all the main cell types
(CD4+ T cells, CD8+ T cells, monocytes, B cells, granulocytes,
and NK cells) using cell type as the grouping variable. The
list was ranked in order from the smallest ANOVA p-value to
the largest, and the top m CpGs from this list were used in
the deconvolution model. The second sub-list used CpGs that
uniquely discriminate one cell type from one other cell type based
upon t-tests for pairs of cell types. For this sub-list, we chose
the top n CpGs (based on lowest t-test p-values) for each of pair
of cell types such that these n CpGs were not found within the
top n CpGs from t-tests between any other pair of cell types.
The sub-list lengths,m and n, were chosen using an expectation-
maximization (EM) algorithm to minimize an error function
based on standardized correlation of estimated and measured
cell-type percentages andmean squared error (MSE) values using
the two whole blood data sets for which blood count data were
available (Reinius whole blood data and Absher whole blood
data). In order to produce the best possible estimates, accounting
for the accuracy and the precision of the estimates using the

MSE was important. Furthermore, since cell-type composition
estimates are commonly used as covariates in regression models,
it was also important to preserve a clear linear relationship with
the true estimates as measured by the correlation of the estimated
and observed cell compositions. Therefore, we chose an error
function that incorporated both the MSE and the correlation
between true and predicted values. Details of the EM algorithm
and error function can be found in Algorithm 1 in Section 2 of
the Supplementary Material. Although the algorithm is complex,
we felt it resulted in better model fit than other algorithms we
tried that did not include all of these components. We did not
explicitly exclude correlated CpGs in the model, so there could
be potential violations of independence of observations in the
model. However, we did not have any serious concerns about this
issue, especially since we only used the coefficient estimates from
the model and not the standard errors.

Two-Stage Model
The estimates from the model were further refined for similar
cell-types with subtler differences that are more difficult to
separate in the main model (for example, a more refined estimate
of CD4+ T cells vs. CD8+ T cells) and were then further divided
into subsets (such as naïve, memory, and regulatory CD4+ T
cells) using a two-stage modeling approach. The first stage of the
model was carried out using linear regression using the main
model in Equation 1. The methylation profile of B was then
partitioned into one or more components using an equation of
the following form, obtained by rearranging the fixed effect terms
in Equation 2, where the p̂ terms in the equation below represent
the estimates obtained from the main model in Equation 2. B in
Equation 2 is equivalent to B in Equation 1 with the exception
that the vectors in the two equations represent a different subset
of CpGs as determined by the corresponding CpG selection
algorithm (Section 2 of the Supplementary Material).

B̂CD4,CD8 ≈ B−(p̂CD14XCD14+p̂CD19XCD19

+ p̂GranXGran+p̂NKXNK) (2)

This partitioned beta value was then used as the outcome in a new
regression model similar to the one in Equation 1, but containing
only the cell types (or subtypes) of interest. For example, for
CD4+ T cells vs. CD8+ T cells, the model would be

BCD4,CD8 = pCD4XCD4+pCD8XCD8+e (3)

where B̂CD4,CD8 from Equation 2 is used as an estimate for
BCD4,CD8. A new set of CpGs was chosen for inclusion in the
model in the similar way as for main model in Equation 1, but
based on the cell types in question only. With only two cell types
in question, CpGs based on overall ANOVA p-values were not
necessary, so only results from pairwise t-tests between the two
types in question were used. Since only a single variable had to be
optimized (n in Algorithm 2 of Section 2 of the Supplementary
Material), an EM algorithm was unnecessary to determine the
value of this variable that minimized the error function. This
simplified CpG selection procedure is described in Algorithm 2 in
Section 2 of the Supplementary Material. After pCD4 and pCD8 in
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Equation 3 were estimated, the estimates were rescaled such that
the sum of the resulting estimates, (p̂CD4+p̂CD8) from Equation
3 was equal to the sum of the corresponding estimates from the
mainmodel in Equation 1. This was done so that the second stage
refinement did not affect the estimates for other cell types not
included in the second stage.

Estimating Percentages of T and B Cell Subtypes
The same approach as in the second stage of the two-stage
model was applied to estimate subtypes of T and B lymphocytes.
For CD4+ T cells, we estimated proportions of the following
subtypes: CD4+ T-memory, CD4+ T-naïve, and CD4+ T-
regulatory cells. For CD8+ T cells, we estimated proportions of
CD8+ T-naïve and CD8+ T-memory cells. Additionally, for B
cells, we estimated proportions of naïve B cells and memory B
cells (including memory cells that had undergone isotype class
switching and those that had not).

The methylation profile can be estimated for the CD4+ T
cell population only, using a method analogous to the one in
Equation 2. The CD4+ T cell methylation profile for each CpG
can then be estimated using the following equation:

B̂CD4 ≈ B− (p̂CD8XCD8+p̂CD14XCD14+p̂CD19XCD19

+ p̂NKXNK+p̂granXgran) (4)

where the p̂ terms represent the model-estimated percentages of
the cell-type referenced in the subscript. These estimates of B̂CD4
can then be used as the outcome in a new regression model as
below to estimate proportions of the T cell subtypes.

BCD4 = pTmemXTmem+pTnaiveXTnaive+pTregXTreg+e (5)

The estimation was carried out in the same way as for the
previous models in order to estimate cell-type percentages for
each of the T cell subtypes. CpGs were chosen for inclusion
into the model using the same method as for the main model,
described in Algorithm 1 in Section 2 of the Supplementary
Material.

The same methods were used to estimate subtypes for CD8+
T cells and B cells. Since only two subtypes were estimated for
these cell types, Algorithm 2 in Section 2 of the Supplementary
Material was used to choose the CpGs for these models.

All model development and evaluation was conducted using
R version 3.1.1. An R package, calledMethylDeconBloodSubtypes,
which implements our methods is available at https://github.
com/HudsonAlpha/MethylDeconBloodSubtypes. To better
allow for adaptability of our method to different platforms,
including whole genome bisulfite sequencing (WGBS), we
provide the R functions used to select CpGs for inclusion in the
model as well as the functions needed to fit the model.

RESULTS

A PCA was conducted using all data sets with sorted samples
frommain cell types. A plot of the first two principal components
is displayed in Supplementary Figure 3. Based on this plot, we
chose the most tightly clustered data sets that were the most

clearly separated from other cell types to use as a covariate basis
in the model. The selected data sets were Zilbauer CD4+ T
cells, Reinius CD8+ T cells, Absher CD14+ monocytes, Absher
CD19+ B cells, Reinius granulocytes, and Absher NK cells. We
also examined this plot for outliers that did not cluster with their
expected sample groups. For the data sets selected for inclusion
in the model, we did not find any outliers warranting exclusion.

Three similar PCAs were conducted independently for CD4+
T cell subtypes, CD8+ T cell subtypes, and B cell subtypes. Plots
of the first two PCs can be seen in Supplementary Figure 4. One
PC outlier was found among CD8+ naïve T cell samples, and
another outlier was found among CD8+memory T cell samples.
Both of these samples were removed from further analysis.

Two-Stage Model for Main Cell Types
Models were run to predict cell-type percentages for CD4+
T cells, CD8+ T cells, CD19+ B cells, CD14+ monocytes,
granulocytes, and natural killer cells. The main model described
in Equation 1 in Materials and Methods was used to obtain
initial estimates for the proportions of all six main cell types.
Then, estimates of CD4+ T cell and CD8+ T cells proportions
were refined using the second stage of the two-stage model
described in Equation 3. We also attempted to refine estimates
of monocytes and granulocytes with the second stage of the two-
stage model. However, we were unable to obtain estimates that
were any better than the main model (first stage) as measured
with MSE and correlation using the error function described in
Algorithm 1 in Section 2 of the Supplementary Material.

We compared the results of our two-stage model for main
cell-type percentages to those of Jaffe and Irizarry (2014), who
developed an updated version of the Houseman et al. (2012)
method for M450 data using the function “EstimateCellCounts”
in the R packageminfi. Figure 1 demonstrates a plot of measured
vs. model-predicted cell-type proportions for the Absher whole
blood data for our two-stage model and the Jaffe and Irizarry
model. The figure also contains a comparison table between the
performance of our method and the method of Jaffe and Irizarry
in terms of MSE and correlations between measured and model-
predicted cell-type compositions for each of the six main cell
types for three data sets: Reinius whole blood data, Reinius PBMC
data, and Absher whole blood data. The performance of our two-
stage model is very similar to that of the Jaffe and Irizarry model
in terms of correlation and MSE. Although our model performs
better for some cell types for some data sets, the Jaffe and Irizarry
method performs better for other cell types and/or other data
sets. We did not expect our model to perform better than the
Jaffe and Irizarry method, since the innovation of our method is
not in the estimation of proportions of main cells types but in the
estimation of proportions of subtypes of T and B cells.

With regard to our whole blood samples from the Absher
autoimmune twin whole blood data set, we were concerned
that cell-type percentage estimation accuracy may differ between
cases and controls. We compared the difference between
CBC-derived cell proportions and the model-predicted cell
proportions for cases vs. controls (Supplementary Figure 5). The
distributions of these differences were quite similar for cases
and controls for each cell type, and there was no evidence of
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FIGURE 1 | Comparison of model estimates for main cell types from our two-stage model and the Jaffe and Irizarry model. Plots of measured vs.

model-predicted cell type proportions for each cell type for the Absher whole blood data and associated correlation and MSE for each cell type for each of three data

sets (Absher whole blood, Reinius whole blood, and Reinius PBMC) using our two-stage model (A,C) and the Jaffe and Irizarry model (B,D).

significant differences in the distribution of these differences for
any cell type (p > 0.05 from the Kolmogorov-Smirnov test for
each of the six cell types).

Model for Subtypes of T and B Cells
In order to estimate percentages of CD4+ T cell, CD8+
T cell, and CD19+ B cell subtypes, we first partitioned the
methylation beta values into the portion representing CD4+
T cells, CD8+ T cells, or B cells respectively (see Section
Materials and Methods for details). A regression model using
CpGs specific to CD4+ T cell, CD8+ T cell, or B cell subtypes
was then fit to this data. For CD4+ T cells, we estimated
proportions of T memory, T naïve, and T regulatory cells.
For CD8+ T cells, we estimated proportions of naïve and
memory T cells. For CD19+ B cells, we estimated proportions
of naïve and memory B cells. For the development and
calibration of the model, we used simulated whole blood data
created by producing a linear combination of sorted cell beta
values in proportions mimicking plausible values for whole
blood.

Figures 2–4 display plots of true vs. model-estimated values
for proportions of CD4+ T cell, CD8+ T cell, and B cell
subtypes, respectively for both simulated whole blood samples
and simulated sorted CD4+ T cell, CD8+ T cell, and B cell
samples. Additionally, the correlation and MSE of true vs.
model-predicted values are displayed for both data sets. The
model estimates are quite good for sorted cells, even better
than the corresponding estimates for whole blood samples. It
is easier to estimate subtype proportions in sorted cells than it
is in whole blood because the subtypes make up much larger
proportions of the sorted sample, and the total number of cell
types in sorted samples is much smaller than in whole blood

samples. In whole blood samples, the accuracy of the subtype
estimation, as measured by the difference between the model-
estimated and true proportions, is strongly associated with the
accuracy of the estimation for the corresponding main cell type
(CD4+ T cells, CD8+ T cells, or CD19+ B cells; Supplementary
Figure 6).

DISCUSSION

Our method provides a simple technique to estimate the
proportion of major cell types in whole blood as well as subtypes
of T cells and B cells using DNA methylation array data.
Although several authors (Houseman et al., 2012; Jaffe and
Irizarry, 2014) have previously provided methods for obtaining
estimates for major cell types, and one publication (Marioni
et al., 2015) describes the estimation of naïve T cell proportions
in whole blood using methylation microarrays, we are the first
to estimate multiple proportions of T and B cell subtypes. Our
unique methodology provides a process to partition methylation
beta values into estimated proportions contributed by specific
cell types, which provides a way to obtain precise estimates
for T and B cell subtypes. Furthermore, although our model
was developed using data from M450 arrays, the methods
are easily extendable to WGBS or any other methylation data
platform with genome-wide coverage. Our software provides
functions to select CpGs to use in the model, which, with
the input of WGBS data for sorted cell types, could be easily
extended to include CpGs not on the M450 array. Even in the
absence of sorted cell WGBS data, one could easily estimate
proportions of cell types and subtypes using our method on
WGBS whole blood samples using CpGs that overlap with M450
CpGs.
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FIGURE 2 | Model performance for CD4+ T cell subtypes. True vs. model-estimated proportions for CD4+ T cell subtypes for simulated whole blood data (A)

simulated sorted CD4+ T cell data (B). Correlations and mean square errors (MSE) of true vs. model-estimated CD4+ T cell subtype proportions (C).

FIGURE 3 | Model performance for CD8+ T cell subtypes. True vs. model-estimated proportions for CD8+ T cell subtypes for simulated whole data (A) and

simulated sorted CD8+ T cell data (B). Correlations and mean square errors (MSE) of true vs. model-estimated CD8+ T cell subtype proportions (C).

In addition to the added utility of our method in estimating
the composition of T and B cell subtypes, our two-stage model
differs from previous methods (Houseman et al., 2012; Jaffe and
Irizarry, 2014) in that we use a different approach for predicting
main cell types. However, the performance of our method for
the estimation of cell composition for the main cell types is
on par with these methods. It is important to note that the
comparison of the two methods is based on using CBC or FACS

estimated cell counts as a gold standard. However, these counts
are subject to error as well. For example, for CD4+ T cell,
cells are typically selected through positive selection for CD4
expression only. Several authors have demonstrated that other
cell types, most notably monocytes, express CD4 as well (Gartner
et al., 1986; Crowe et al., 1987; Faltynek et al., 1989; Filion
et al., 1990). Positive selection for CD4 expression alone (such
as with Dynabeads) may not be sufficient to purify T helper cells
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FIGURE 4 | Model performance for B cell subtypes. True vs. model-estimated proportions for CD19+ B cell subtypes for simulated whole blood data (A) and

simulated sorted B cell data (B). Correlations and mean square errors (MSE) of true vs. model-estimated CD19+ B cell subtype proportions (C).

from other populations that also express CD4 to some degree.
Our model uses CD4+ T cell data that has been depleted of
monocytes as our covariate basis for estimating CD4+ T cell
proportions. Using this CD4+ T cell data as a covariate basis
in our model allows for a better estimation of true CD4+ T
cell proportions devoid of monocytes. However, since the CD4+
T cell proportion of the all of the whole blood and PBMC
data sets used for our model validation were measured without
monocyte depletion, our CD4+ T cell estimated proportions
do not line up as well with this “gold standard” as they
would had the CD4+ T cells been measured after depletion of
monocytes.

The ability of our model to estimate proportions of T and
B cell subtypes is novel compared to existing methods in this
field. We were able to validate our estimates using simulated
whole blood methylation data as well as simulated sorted CD4+
T cells, CD8+ T cells, and CD19+ B cells. Our estimates
for CD4+ T cell subtypes and B cell subtypes were quite
accurate as measured using MSE and correlation of model-
estimated and true values. Our estimates for CD8+ T cell subtype
proportions were not as good as those for CD4+ T cells or
B cells; however, they still demonstrated reasonable accuracy
for whole blood sample and were extremely accurate for sorted
CD8+ T cells. One possible reason for the shortcomings of
the model for CD8+ T cell subtypes is that we were only
able to use three samples each of naïve and memory CD8+ T
cell for our model development. These samples did not cluster
cleanly and tightly together in distinct subclasses in a PCA in
the same way that our CD4+ T cell and B cell subtypes did.
This could be suggestive of true biological difference among
these cell types, as the differences between memory and naïve
CD8+ T cells may be subtler than those for subtypes of CD4+

T cells or B cells. However, with access to M450 data for
additional sorted memory and naïve CD8+ T cell samples,
we would hope to see more distinct clusters in our PCA and
therefore better estimates for CD8+ subtype proportions in our
model.

Although we validated our model for T and B cell subtypes
using simulated whole blood data, we did not have any available
whole blood data with measured T and B cell subtype counts to
use for validation. Nonetheless, the computationally simulated
DNA mixture samples reliably validated our model. Because
the simulations were based on linear combinations of real data
from sorted cells, they closely represented real whole blood
samples and clustered with real whole blood samples in a
PCA (Supplementary Figure 2). In the future, if methylation
data became available for whole blood samples with measured
proportions of T and B cell subtypes, we would like to validate
our model using real whole blood samples.

Our model provides a unique functionality in estimating
proportions of T and B cell subtypes in whole blood and
sorted T and B cell samples. Despite a few limitations, we
are able to provide reliable estimates of cell-type and subtype
proportions for whole blood or sorted B or T cell methylation
data. Our estimates of subtype proportions in sorted CD4+ T
cells, CD8+ T cells, and B cells are quite accurate. Predicting
of subtype proportions in whole blood is a more difficult task.
However, our estimates still achieve small values of MSE and
large correlations of model-predicted vs. true values. This is
impressive given the difficulty of estimating the very small
proportions of cell subtypes in whole blood. Our model provides
a new functionality that will be valuable in a wide variety of
applications for methylation data for whole blood or sorted blood
cells.

Frontiers in Genetics | www.frontiersin.org 8 February 2016 | Volume 7 | Article 23

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Waite et al. Methylation Deconvolution of Blood Cell Subtypes

AUTHOR CONTRIBUTIONS

LW was involved in developing the method, completing the
statistical analysis, producing the results, and writing the
manuscript. BW was involved in completing the statistical
analysis and writing the R package to implement the method and
contributed to the writing of the manuscript. KD was involved
in developing the method and writing the manuscript. XL, KR,
AG, JE, and RK conceived of and conducted the experiments
necessary to obtain the data that was crucial to the development
of this method as well as contributed to the writing of the
manuscript. DA and HT conceived of the idea for the method
and were involved in writing the manuscript.

FUNDING

Some of the sorted cell data sets used in this work were funded
by the UAB Rheumatic Diseases Core Center (P30-AR48311)
and the Center for Clinical and Translational Science (UL1
TR001417). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the
manuscript.

ACKNOWLEDGMENTS

We would like to thank Fredrick W. Miller (National Institute
of Health Clinical Research Center) and Jan Dumanski
(Uppsala University, Department of Genetics and Pathology)
for access to the autoimmune-discordant twin whole blood
samples. We would also like to thank Matthew Lewis and
Krista Stanton Thibeault for running the M450 arrays for
the Absher data sets. In addition, we would like to thank
Alexander Abbas for providing the deconvolution model R
code used in his 2009 publication (Abbas et al., 2009),
which we modified and adapted for our purposes. We would
additionally like to thank Andrew Jaffe for providing ages
and additional information to link the data provided in
Reinius et al. (2012) with his R data set, FlowSorted.Blood.450k
(Jaffe and Irizarry, 2014).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fgene.
2016.00023

REFERENCES

Abbas, A. R., Wolslegel, K., Seshasayee, D., Modrusan, Z., and Clark, H.

F. (2009). Deconvolution of blood microarray data identifies cellular

activation patterns in systemic lupus erythematosus. PLoS ONE 4:e6098. doi:

10.1371/journal.pone.0006098

Absher, D. M., Li, X., Waite, L. L., Gibson, A., Roberts, K., Edberg, J.,

et al. (2013). Genome-wide DNA methylation analysis of systemic lupus

erythematosus reveals persistent hypomethylation of interferon genes and

compositional changes to CD4+ T cell populations. PLoS Genet. 9:e1003678.

doi: 10.1371/journal.pgen.1003678

Adalsteinsson, B. T., Gudnason, H., Aspelund, T., Harris, T. B., Launer, L. J.,

Eiriksdottir, G., et al. (2012). Heterogeneity in white blood cells has potential

to confound DNA methylation measurements. PLoS ONE 7:e46705. doi:

10.1371/journal.pone.0046705

Crowe, S., Mills, J., and McGrath, M. S. (1987). Quantitative

immunocytofluorographic analysis of CD4 surface antigen expression

and HIV infection of human peripheral blood monocyte/macrophages. AIDS

Res. Hum. Retroviruses 3, 135–145. doi: 10.1089/aid.1987.3.135

Day, K., Waite, L. L., Thalacker-Mercer, A., West, A., Bamman, M. M., Brooks,

J. D., et al. (2013). Differential DNA methylation with age displays both

common and dynamic features across human tissues that are influenced by

CpG landscape. Genome Biol. 14:R102. doi: 10.1186/gb-2013-14-9-r102

Faltynek, C. R., Finch, L. R., Miller, P., and Overton, W. R. (1989). Treatment with

recombinant IFN-gamma decreases cell surface CD4 levels on peripheral blood

monocytes and on myelomonocyte cell lines. J. Immunol. 142, 500–508.

Filion, L. G., Izaguirre, C. A., Garber, G. E., Huebsh, L., and Aye, M. T.

(1990). Detection of surface and cytoplasmic CD4 on blood monocytes from

normal and HIV-1 infected individuals. J. Immunol. Methods 135, 59–69. doi:

10.1016/0022-1759(90)90256-U

Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L.,

et al. (2005). Epigenetic differences arise during the lifetime of monozygotic

twins. Proc. Natl. Acad. Sci. U.S.A. 102, 10604–10609. doi: 10.1073/pnas.05003

98102

Gartner, S., Markovits, P., Markovitz, D. M., Kaplan, M. H., Gallo, R. C., and

Popovic, M. (1986). The Role of Mononuclear Phagocytes in HTLV-III / LAV

Infection. Science 233, 215–219. doi: 10.1126/science.3014648

Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., et al. (2013).

Genome-wide methylation profiles reveal quantitative views of human aging

rates.Mol. Cell 49, 359–367. doi: 10.1016/j.molcel.2012.10.016

Horvath, S., Zhang, Y., Langfelder, P., Kahn, R. S., Boks, M. P. M., van Eijk, K.,

et al. (2012). Aging effects on DNA methylation modules in human brain and

blood tissue. Genome Biol. 13:R97. doi: 10.1186/gb-2012-13-10-r97

Houseman, E. A., Accomando, W. P., Koestler, D. C., Christensen, B. C., Marsit, C.

J., Nelson, H. H., et al. (2012). DNA methylation arrays as surrogate measures

of cell mixture distribution. BMCBioinformatics 13:86. doi: 10.1186/1471-2105-

13-86

Irvin, M. R., Zhi, D., Joehanes, R., Mendelson, M., Aslibekyan, S., Claas, S., et al.

(2014). Epigenome-wide association study of fasting blood lipids in the genetics

of lipid lowering drugs and diet network study. Circulation 130, 565–572. doi:

10.1161/CIRCULATIONAHA.114.009158

Jaffe, A. E., and Irizarry, R. A. (2014). Accounting for cellular heterogeneity

is critical in epigenome-wide association studies. Genome Biol. 15:R31. doi:

10.1186/gb-2014-15-2-r31

Johnson, W. E., Li, C., and Rabinovic, A. (2007). Adjusting batch effects in

microarray expression data using empirical Bayes methods. Biostatistics 8,

118–127. doi: 10.1093/biostatistics/kxj037

Kirkpatrick, S., Gelatt, C. D. Jr., and Vecchi, M. P. (1983). Optimization

by simulated annealing. Science 220, 671–680. doi: 10.1126/science.220.459

8.671

Koestler, D. C., Christensen, B. C., Karagas, M. R., Marsit, C. J., Langevin, S. M.,

Kelsey, K. T., et al. (2013). Blood-based pro les of DNA methylation predict

the underlying distribution of cell types A validation analysis. Epigenetics 8,

816–826. doi: 10.4161/epi.25430

Leek, J. T., and Storey, J. D. (2007). Capturing heterogeneity in gene

expression studies by surrogate variable analysis. PLoS Genet. 3:e161. doi:

10.1371/journal.pgen.0030161

Liang, L., and Cookson, W. O. C. (2014). Grasping nettles?: cellular heterogeneity

and other confounders in epigenome-wide association studies. Hum. Mol.

Genet. 23, R83–R88. doi: 10.1093/hmg/ddu284

Liu, Y., Aryee, M. J., Padyukov, L., Fallin, M. D., Hesselberg, E., Runarsson, A.,

et al. (2013). Epigenome-wide association data implicate DNA methylation as

an intermediary of genetic risk in rheumatoid arthritis. Nat. Biotechnol. 31,

142–147. doi: 10.1038/nbt.2487

Frontiers in Genetics | www.frontiersin.org 9 February 2016 | Volume 7 | Article 23

http://journal.frontiersin.org/article/10.3389/fgene.2016.00023
http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Waite et al. Methylation Deconvolution of Blood Cell Subtypes

Lu, P., Nakorchevskiy, A., and Marcotte, E. M. (2003). Expression deconvolution?:

A reinterpretation of DNA microarray data reveals dynamic changes in

cell populations. Proc. Natl. Acad. Sci. U.S.A. 100, 10370–10375. doi:

10.1073/pnas.1832361100

Marioni, R. E., Shah, S., McRae, A. F., Chen, B. H., Colicino, E., Harris, S. E., et al.

(2015). DNA methylation age of blood predicts all-cause mortality in later life.

Genome Biol. 16, 1–12. doi: 10.1186/s13059-015-0584-6

Pfeiffer, L., Wahl, S., Pilling, L. C., Reischl, E., Sandling, J. K., Kunze, S.,

et al. (2015). DNA methylation of lipid-related genes affects blood lipid

levels. Circ. Cardiovasc. Genet. 8, 334–342. doi: 10.1161/CIRCGENETICS.114.0

00804

Rakyan, V. K., Down, T. A., Maslau, S., Andrew, T., Yang, T.-P., Beyan,

H., et al. (2010). Human aging-associated DNA hypermethylation occurs

preferentially at bivalent chromatin domains. Genome Res. 20, 434–439. doi:

10.1101/gr.103101.109

Reinius, L. E., Acevedo, N., Joerink, M., Pershagen, G., Dahlén, S.-E., Greco, D.,

et al. (2012). Differential DNA methylation in purified human blood cells:

implications for cell lineage and studies on disease susceptibility. PLoS ONE

7:e41361. doi: 10.1371/journal.pone.0041361

Talens, R. P., Christensen, K., Putter, H., Willemsen, G., Christiansen, L., Kremer,

D., et al. (2012). Epigenetic variation during the adult lifespan: cross-sectional

and longitudinal data on monozygotic twin pairs. Aging Cell 11, 694–703. doi:

10.1111/j.1474-9726.2012.00835.x

Teschendorff, A. E., Marabita, F., Lechner, M., Bartlett, T., Tegner, J., Gomez-

Cabrero, D., et al. (2013). A beta-mixture quantile normalization method for

correcting probe design bias in Illumina Infinium 450 k DNAmethylation data.

Bioinformatics 29, 189–196. doi: 10.1093/bioinformatics/bts680

Teschendorff, A. E., Zhuang, J., and Widschwendter, M. (2011). Independent

surrogate variable analysis to deconvolve confounding factors in large-

scale microarray profiling studies. Bioinformatics 27, 1496–1505. doi:

10.1093/bioinformatics/btr171

Wang, M., Master, S. R., and Chodosh, L. A. (2006). Computational expression

deconvolution in a complex mammalian organ. BMC Bioinformatics 7:328. doi:

10.1186/1471-2105-7-328

Zilbauer, M., Rayner, T. F., Clark, C., Coffey, A. J., Joyce, C. J., Palta,

P., et al. (2013). Genome-wide methylation analyses of primary human

leukocyte subsets identi fi es functionally important cell-type – specific

hypomethylated regions. Blood 122, 52–60. doi: 10.1182/blood-2013-05-

503201

Zou, J., Lippert, C., Heckerman, D., Aryee, M., and Listgarten, J. (2014).

Epigenome-wide association studies without the need for cell-type

composition. Nat. Methods 11, 309–311. doi: 10.1038/nmeth.2815

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Waite, Weaver, Day, Li, Roberts, Gibson, Edberg, Kimberly,

Absher and Tiwari. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 10 February 2016 | Volume 7 | Article 23

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive

	Estimation of Cell-Type Composition Including T and B Cell Subtypes for Whole Blood Methylation Microarray Data
	Introduction
	Materials and Methods
	Quality Control and Normalization
	Data Simulation
	Statistical Models
	Two-Stage Model
	Estimating Percentages of T and B Cell Subtypes


	Results
	Two-Stage Model for Main Cell Types
	Model for Subtypes of T and B Cells

	Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


