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Notch signaling pathway plays crucial roles in animal development. Protein ubiquitination
contributes to Notch signaling regulation by governing the stability and activity of major
signaling components. Studies in Drosophila have identified multiple ubiquitin ligases and
deubiquitinating enzymes that modify Notch ligand and receptor proteins. The fate of
ubiquitinated substrates depend on topologies of the attached ubiquitin chains, which are
determined by the ubiquitin conjugating enzymes (E2 enzymes). However, which E2
enzymes participate in Notch signal transduction remain elusive. Here, we report that the
E2 enzyme UbcD1 is required for Notch signaling activation during Drosophila wing
development. Mutations ofUbcD1 lead to marginal nicks in the adult wing and reduction of
Notch signaling targets expression in the wing imaginal disc. Genetic analysis reveal that
UbcD1 functions in the signaling receiving cells prior to cleavage of the Notch protein. We
provide further evidence suggesting that UbcD1 is likely involved in endocytic trafficking of
Notch protein. Our results demonstrate that UbcD1 positively regulates Notch signaling
and thus reveal a novel role of UbcD1 in development.
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INTRODUCTION

Notch signaling pathway plays crucial roles in developmental processes such as tissue patterning, cell
proliferation and cell fate determination (Bray, 2016). Malfunction of Notch signaling results in
various malignant diseases in human, including neuropsychiatric diseases, metabolic disorders and
multiple types of cancer (Salazar and Yamamoto, 2018). The core components and signal
transduction routes of Notch signaling are highly conserved among the animal kingdom
(Fortini, 2009). Named after the wing margin nicking phenotype observed in the Drosophila
mutant, the Notch gene encodes a transmembrane protein which functions as signal receptor
(Bray, 2016). Binding of Notch with ligand proteins Delta or Serrate, which are presented at the
membrane of signal sending cells leads to a series of proteolytic cleavage of the Notch protein
(Fortini, 2009). As a consequence, the Notch intracellular domain (NICD) is released and
translocates into nucleus in the signal receiving cells (Kopan and Ilagan, 2009). NICD interacts
with the transcription factor Suppressor of Hairless [Su(H)] and the co-activatorMastermind (Mam)
to form a ternary complex. The Su(H)/NICD/Mam complex recognizes specific cis-regulatory
regions and activates transcription of Notch target genes. In the absence of signal input, Su(H)
recruits co-repressors and inhibits the expression of Notch targets (Kopan and Ilagan, 2009).
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The Notch signaling is tightly controlled by auxiliary factors
that modulate the expression, stability and activity of the core
components (Fortini, 2009). Recent studies have revealed that
protein ubiquitination is extensively involved in the regulation of
Notch signaling pathway (Le Bras et al., 2011; Weinmaster and
Fischer 2011). Protein ubiquitination is a reversible post-
translational modification catalyzed by four distinct enzymes.
The E1 (Ub-activating) and E2 (Ub-conjugating) enzymes are
responsible for activating and conjugating the ubiquitin (Ub)
moiety, respectively. The E3 (Ub ligases) enzyme recognizes
specific substrates and transfers Ub from E2 onto them. The
deubiquitinating enzyme (DUB) removes Ub from substrate
proteins to counteract the ubiquitination process (Grabbe
et al., 2011). E2 enzymes are now considered as the main
determinant for the topology of ubiquitin chains, which
directs the ubiquitinated substrates towards distinct fates (Ye
and Rape, 2009).

Multiple E3s and DUBs have been demonstrated to regulate
Notch signaling during fly development (Moretti and Brou,
2013). In the signal sending cells, E3 ligases Neuralized (Neur)
and Mind bomb (Mib1) promote mono-ubiquitination of the
ligand proteins Delta and Serrate to facilitate their endocytosis
(Yeh et al., 2000; Lai et al., 2001; Pavlopoulos et al., 2001; Itoh

et al., 2003; Le Borgne and Schweisguth, 2003; Li and Baker, 2004;
Lai et al., 2005). Ubiquitination and endocytosis of ligand
proteins are required for initiation of signal transduction in
various tissues (Yeh et al., 2001; Le Borgne et al., 2005;
Pitsouli and Delidakis, 2005; Wang and Struhl, 2005; Skwarek
et al., 2007; Miller and Posakony, 2018). In the signal receiving
cells, Notch molecules are ubiquitinated by E3 ligases Nedd4 and
Suppressor of deltex [Su(dx)] and targeted for lysosomal
degradation to avoid ligand independent activation (Cornell
et al., 1999; Mazaleyrat et al., 2003; Sakata et al., 2004; Wilkin
et al., 2004; Dalton et al., 2011). The E3 ubiquitin ligase Deltex
(Dx) was isolated as a positive regulator of Notch signaling which
genetically and physically interacts with Notch (Xu and
Artavanis-Tsakonas, 1990; Diederich et al., 1994; Matsuno
et al., 1995; Matsuno et al., 2002). Subsequent studies reveal
that Dx promotes ubiquitination and ligand independent
activation of Notch through the endocytic machinery (Hori
et al., 2004; Wilkin et al., 2008; Hori et al., 2011; Yamada
et al., 2011). Interestingly, Dx is also capable of inhibiting
Notch activation in certain developmental contexts (Mukherjee
et al., 2005; Fuwa et al., 2006; Dutta et al., 2017). The E3 ligase cbl
is found to target both Dl (Wang et al., 2010) and Notch (Bala
Tannan et al., 2018) for degradation. The DUB enzyme Fat facets

FIGURE 1 |UbcD1s1782 shows phenotypes that resemble Notch LOF inDrosophilawing. (A–B)Wing of the parentalUbx-Flp; FRT82B, Ubi-RFP stock is shown as
wild type control (A). Wing margin loss (black arrow) is observed in fly wings bearing UbcD1s1782 homozygous clones (B). (C–E) Expression of Notch signaling targets
Cut (C), Wg (D) and the reporter NRE-GFP (E) are abolished in UbcD1s1782 homozygous mutant clones. Mutant clones are marked by absence of RFP. Representative
mutant clones are circled by dashed lines.
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(Faf) enhances Delta endocytosis to promote Notch signaling
during fly eye development (Cadavid et al., 2000; Chen and
Fischer, 2000; Chen et al., 2002; Overstreet et al., 2004), while
another DUB enzyme USP5 negatively regulates Notch signaling
in the same tissue (Ling et al., 2017). Several other DUBs have
been implicated in Notch signaling regulation during wing
development, but their substrates are still elusive (Zhang et al.,
2012).

To date, very little is known about the roles of E2 enzymes in
Notch signaling. Here we report that the E2 enzyme UbcD1 (also
known as effete) positively regulates Notch signaling activity in
the signal receiving cells during Drosophila wing development.
UbcD1 is a highly conserved class I E2 enzyme (Treier et al.,
1992), which plays important roles in a broad spectrum of cellular
and developmental events. UbcD1 participates in regulation of
telomere behavior (Cenci et al., 1997; Cipressa et al., 2013),

FIGURE 2 | UbcD1 mutants inhibit Notch signaling activity in Drosophila wing. (A–-B) Wing margin nicks (black arrow) are observed in fly wings bearing
UbcD1mer1 (A) and UbcD18 (B) homozygous clones. (C–E) Expression of Notch signaling targets Cut (C), Wg (D) and the reporter NRE-GFP (E) are abolished in
UbcD1mer1 homozygous mutant cells. (F–G) Expression of Cut (F) and Wg (G) are abolished in a subset of UbcD18 homozygous cells. Mutant clones are marked by
absence of RFP. Representative mutant clones are circled by dashed lines. The expression pattern of Cut, Wg and NRE-GFP in wild type wing discs are shown in
Supplementary Figure S1.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7708533

Zhang et al. UbcD1 Regulates Notch Signaling

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


apoptosis (Ryoo et al., 2002; Yeh and Bratton, 2013), innate
immunity (Chen et al., 2017), dendrite pruning (Kuo et al., 2006),
oogenesis (Ohlmeyer and Schupbach, 2003; Chen et al., 2009),
neuroblast proliferation (Li et al., 2014) as well as Hedgehog (Hh)
signaling and fly wing patterning (Pan et al., 2017). Our study
represents the first analysis for the role of UbcD1 in Notch
signaling pathway, which will help to understand the
functional complexity and diversity of UbcD1.

MATERIALS AND METHODS

Fly Stocks
All fly stocks and crosses were maintained at 25°C on standard media.
The stocks used in this study are: FRT82B,UbcD1s1782/TM6B (#111415;
Kyoto Stock Center); FRT82B,UbcD18/TM6B (Chen et al., 2009);
FRT82B,UbcD1mer1/TM6B (Pan et al., 2017); NRE-EGFP (#30728;
Bloomington Drosophila Stock Center, BDSC); dpp-Gal4, UAS-

FIGURE 3 | UbcD1 knock-down in the signaling receiving cells inhibit Notch activity. (A–B) When driven by dpp-Gal4 in the anterior-posterior border region (A),
UbcD1 RNAi leads to reduction of Cut expression (B). (C–D) TheC5-Gal4 drives GFP expression in the signal-sending cells (C). Expression of Cut are not affected when
UbcD1 RNAi are driven by the C5-Gal4 (D). (E–F) The C96-Gal4 expression domain is restricted within the signal-receiving cells (E). Knocking-down UbcD1 in the
signal-receiving cells by C96-Gal4 disrupts Cut expression (F). The Gal4 expression domain are marked by GFP.
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mCD8-GFP/TM3, dpp-Gal4, UAS-mRFP/TM3, C5-Gal4,UAS-GFP/
TM6B and C96-Gal4,UAS-GFP/TM6B (Zhang et al., 2012; Li et al.,
2019); UbcD1 RNAi (#26011; Vienna Drosophila Resource Center);
UAS-Dl (#26694; BDSC); UAS-NFL (#52309; BDSC); UAS-NICD (Xie
et al., 2014); UAS-UbcD1WT and UAS-UbcD1C85A (Pan et al., 2017);
tub-GFP-LAMP1 (Akbar et al., 2009). TheUbx-Flp; FRT82B,Ubi-RFP/
TM6B and Ubx-Flp; FRT82B, Ubi-GFP/TM6B stock were used to
induce somatic clones in wing disc. The hsFlp; Tub-Gal4, UAS-GFP/
Cyo; FRT82B, Tub-Gal80 stock was used to generate MARCM clones
as previously described (Chang et al., 2021).

The genotypes in the experiments are listed below:

Figure 1A: Ubx-Flp; FRT82B, Ubi-RFP.

Figure 1B–D: FRT82B, UbcD1s1782 × Ubx-Flp; FRT82B,
Ubi-RFP.
Figure 1E:NRE-GFP; FRT82B, UbcD1s1782 ×Ubx-Flp; FRT82B,
Ubi-RFP.
Figure 2A, C, D: FRT82B, UbcD1mer1 × Ubx-Flp; FRT82B,
Ubi-RFP.
Figure 2B, F, G: FRT82B, UbcD18 × Ubx-Flp; FRT82B,
Ubi-RFP.
Figure 2E: NRE-GFP; FRT82B, UbcD1mer1 × Ubx-Flp; FRT82B,
Ubi-RFP.
Figure 3A: dpp-Gal4, UAS-mCD8-GFP.
Figure 3B: dpp-Gal4, UAS-mCD8-GFP × UbcD1 RNAi.
Figure 3C: C5-Gal4, UAS-GFP.

FIGURE 4 | UbcD1 functions upstream of Notch protein processing. (A) In UbcD1mer1MARCM clones, the expression of Cut are reduced. (B–C)Over-expression
of Dl in both wild type (B) and UbcD1mer1mutant cells (C) result in induction of Cut in cells surrounding the MARCM clone. (D) The full-length Notch protein restores Cut
expression in UbcD1mer1 homozygous cells. (E) NICD robustly induces Cut expression in UbcD1mer1 mutant cells. MARCM clones are marked by GFP. Representative
clones are circled by dashed lines.
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Figure 3D: C5-Gal4, UAS-GFP × UbcD1 RNAi.
Figure 3E: C96-Gal4, UAS-GFP.
Figure 3F: C96-Gal4, UAS-GFP × UbcD1 RNAi.
Figure 4A: hsFlp; Tub-Gal4, UAS-GFP; FRT82B, Tub-Gal80 ×
FRT82B, UbcD1mer1.
Figure 4B: hsFlp; Tub-Gal4, UAS-GFP; FRT82B, Tub-Gal80 ×
UAS-Dl; FRT82B.
Figure 4C: hsFlp; Tub-Gal4, UAS-GFP; FRT82B, Tub-Gal80 ×
UAS-Dl; FRT82B, UbcD1mer1.
Figure 4D: hsFlp; Tub-Gal4, UAS-GFP; FRT82B, Tub-Gal80 ×
UAS-NFL; FRT82B, UbcD1mer1.
Figure 4E: hsFlp; Tub-Gal4, UAS-GFP; FRT82B, Tub-Gal80 ×
UAS-NICD; FRT82B, UbcD1mer1.
Figure 5A, B: FRT82B, UbcD1mer1 × Ubx-Flp; FRT82B,
Ubi-GFP.
Figure 5C, D: dpp-Gal4, UAS-mCD8-GFP × UbcD1 RNAi.
Figure 6A, B: FRT82B, UbcD1mer1 × Ubx-Flp; FRT82B,
Ubi-GFP.
Figure 6C: dpp-Gal4, UAS-mCD8-GFP × UbcD1 RNAi.

Figure 6D: dpp-Gal4, UAS-mRFP × tub-GFP-LAMP1;
UbcD1 RNAi.
Figure 7A: hsFlp; Tub-Gal4, UAS-GFP; FRT82B, Tub-Gal80 ×
UAS-UbcD1WT; FRT82B, UbcD1mer1.
Figure 7B: hsFlp; Tub-Gal4, UAS-GFP; FRT82B, Tub-Gal80 ×
UAS-UbcD1C85A; FRT82B, UbcD1mer1.
Figure 7C, F: dpp-Gal4, UAS-mCD8-GFP × UAS-UbcD1WT;
UbcD1 RNAi.
Figure 7D, G: dpp-Gal4, UAS-mCD8-GFP × UAS- UbcD1C85A;
UbcD1 RNAi.
Figure 7E: dpp-Gal4, UAS-mCD8-GFP × UbcD1 RNAi.

Immunostaining and Microscopy
Third-instar larvae were dissected in cold PBS and fixed with 4%
paraformaldehyde for 15 min at room temperature. The wing
discs were washed with 0.1% Triton X-100 in PBS (PBST) and
blocked in 0.2% BSA in PBST for 1 h before incubating with
primary antibodies overnight at 4°C. The primary antibodies used
in this study are: mouse anti-Cut (1:200; 2B10; Developmental

FIGURE 5 | UbcD1 affects Notch distribution. (A–B) In UbcD1mer1 mutant cells, Notch proteins form puncta when labeled by antibodies against NICD (A) and
NECD (B). Mutant clones are marked by absence of GFP. Representative mutant clones are circled by dashed lines. (C–D) In UbcD1 RNAi cells, Notch proteins form
puncta when labeled by antibodies against NICD (C) and NECD (D). The RNAi expressing cells are marked by GFP. Panels (A–D) are magnification of a portion of
Supplementary Figure S2.
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Studies Hybridoma Bank, DSHB), mouse anti-Wg (1:200; 4D4;
DSHB), mouse anti-NICD (1:200; C17.9C6; DSHB), mouse anti-
NECD (1:200; C458.2H; DSHB), mouse anti-Dl (1:200; C594.9B;
DSHB), mouse anti-Rab7 (1:200; Rab7; DSHB), mouse anti-Hrs
(1:200; Hrs8-2; DSHB). After washing with PBST, wing discs were
immersed in second antibodies conjugated with Alexa Fluor 488
(1:200; Invitrogen) or Alexa Fluor 568 (1:200; Invitrogen) for 1 h
at room temperature. After washing with PBST for three times,
wing discs were dissected and mounted in the VECTASHIELD
mounting medium (Vector Laboratories). For LysoTracker
staining, wing discs were dissected in Schneider’s Drosophila
medium (#21720024, Thermo Fisher) and incubated in
medium containing LysoTracker (1:20000; L7528; Invitrogen)
for 5 min at room temperature. After washed by fresh medium,
the wing discs were mounted and imaged. The fluorescence
images were acquired with Leica SP8 confocal microscope and
assembled in Photoshop and ImageJ.

Adult wings were dissected from flies after fixed in isopropanol
for at least 24 h and mounted in 50% glycerol. Images of

adult wings were captured using a Leica DMIL inverted
microscope equipped with a QImaging QICAM Fast 1394
digital camera.

RESULTS

UbcD1 Regulates Notch Signaling in the
Drosophila Wing
Using a somatic mosaic screen strategy (Ren et al., 2018), we
isolated an UbcD1 allele that impairs Notch signaling during fly
wing development. Marginal nicks were observed in fly wings
bearing homozygous UbcD1s1782 clones (Figures 1A,B), a typical
phenotype caused by Notch loss-of-function (LOF) (Blair, 2007;
Bray, 2016). Notch activates the expression of target genes such as
cut and wingless (wg) in cells located at the dorsal-ventral (D/V)
boundary in the wing imaginal disc (Supplementary
Figures S1A,B). The expression of Cut and Wg were
abolished in UbcD1s1782 homozygous cells (Figures 1C,D).

FIGURE 6 | UbcD1 affects endolysosomal machinery. (A–B) In UbcD1mer1mutant cells, Hrs positive early endosomes are not affected (A)while Rab7 association
with endosomes are reduced (B). Mutant clones are marked by absence of GFP. Representative mutant clones are circled by dashed lines. (C–D) In UbcD1 RNAi cells,
accumulation of LysoTracker (C) and GFP-LAMP1 (D) are evident. The RNAi expressing cells are marked by GFP (C) or RFP (D). Panels (A–D) are magnification of a
portion of Supplementary Figure S3.
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The transcriptional activity of Notch signaling could be visualized
by the NRE-GFP reporter (Saj et al., 2010), and the expression of
NRE-GFP was also dampened in UbcD1s1782 homozygous clones
(Figure 1E and Supplementary Figure S1C). These observations
suggest that Notch signaling activity is disrupted in UbcD1s1782

mutant wing disc cells.
To further establish a role of UbcD1 in Notch signaling

transduction, two additional UbcD1 alleles were tested. Both
UbcD1mer1 and UbcD18 are LOF alleles that have been shown
to cause developmental defects in various fly tissues (Chen et al.,
2009; Pan et al., 2017). Upon induction of somatic mosaic clones,
both alleles led to wing margin nicks (Figures 2A,B). Expression
of Cut (Figure 2C), Wg (Figure 2D) as well as the NRE-GFP
reporter (Figure 2E) were reduced in UbcD1mer1 homozygous
cells. Similarly, UbcD18 mutant cells were also deficient of Cut
(Figure 2F) and Wg (Figure 2G) expression. Taken together, we
conclude that UbcD1 positively regulates Notch signaling during
fly wing development.

UbcD1 Functions in the Signal Receiving
Cells
Notch signaling operates among two group of cells, UbcD1might
function in either signal sending or receiving cells in the process
of signal transduction. Cell type specific RNAi experiments were
performed to further distinguish in which group of cells Ubcd1
are required. Knock-down of UbcD1 by a transgenic RNAi
construct resulted in significant inhibition of Cut expression in
the wing disc (Figures 3A,B). The C5-Gal4 (Hall et al., 2017; Li
et al., 2019) was used to drive UbcD1 RNAi in the signal-sending
cells. Knock-down of UbcD1 in the signal sending cells showed
little impact on Cut expression (Figures 3C,D). When the C96-
Gal4 was used to drive UbcD1 RNAi in the signal-receiving cells
(Zhang et al., 2012), reduction of Cut was observed (Figures
3E,F). Therefore, UbcD1 likely functions in the signal-receiving
cells to regulate Notch signaling activity.

To dissect howUbcD1 regulates Notch signal transduction, we
used the MARCM system (Lee and Luo, 2001) to overexpress Dl
and Notch proteins in UbcD1mer1 mutant cells. In UbcD1mer1

MARCM clones which are positively marked by GFP, the
expression of Cut was abolished (Figure 4A). Expression of Dl
in wild type cells led to induction of Cut in cells surrounding the
MARCM clones (Figure 4B), as they received excessive signal
inputs from cells inside the clone. In UbcD1mer1 mutant cells,
overexpression of Dl was still capable of inducing Cut expression
in the surrounding cells (Figure 4C). These results confirm that
UbcD1 is dispensable in the signal sending cells.

In clones located at the D/V boundary, over-expression of Dl
was insufficient to rescue Cut expression (Figure 4C). In contrast,
the full-length Notch protein was able to restore the expression of
Cut in UbcD1mer1 homozygous cells (Figure 4D). When NICD
was introduced into UbcD1mer1 mutant cells, ectopic expression
of Cut was robustly induced (Figure 4E). These genetics analysis
suggests that UbcD1 functions in the signal receiving cells,
presumably at early steps before the cleavage of full-length
Notch protein.

UbcD1 Affects Notch Protein Distribution
Giving that UbcD1 functions up-stream of Notch protein
processing, the potential effects on Notch protein were further
examined. In UbcD1mer1 homozygous mutant cells, Notch
proteins accumulated as puncta when labeled by an antibody
recognizing the intracellular domain (Figure 5A and
Supplementary Figure S2A). Similar distribution defect was
observed using a second antibody raised against the
extracellular domain of Notch protein (Figure 5B and
Supplementary Figure S2B). Consistently, RNAi knock-down
of UbcD1 also resulted in aggregation of Notch proteins (Figures
5C,D and Supplementary Figures S2C,D).

Accumulation of Notch proteins accompanied with
reduction of signaling activity have been found in
mutations of the endolysosomal pathway components
(Vaccari et al., 2008; Vaccari et al., 2010; Ren et al., 2018).
Therefore, whether UbcD1 is involved in the endolysosomal
machinery was investigated. In UbcD1mer1 mutant cells, early
endosomes as labeled by Hrs were not significantly affected
(Figure 6A and Supplementary Figure S3A), but formation of
Rab7-positive late endosomes was inhibited (Figure 6B and
Supplementary Figure S3B). Lacking of Rab7 associated late
endosomes might disrupt subsequent events such as
endolysosome acidification and cargo degradation.
Interestingly, when applied to live wing discs, strong
accumulation of the acidotrophic fluorescent dye
LysoTracker was observed in UbcD1 RNAi cells (Figure 6C
and Supplementary Figure S3C). This result indicates that
despite the reduction of late endosome maturation,
acidification of endocytic organelles are enhanced in UbcD1
RNAi cells. We further examined the lysosomal activity using a
GFP-Lamp1 fusion protein that undergoes rapid lysosomal
degradation in physiological context (Akbar et al., 2009). GFP-
Lamp1 was hardly detectable in wild type wing imaginal disc
cells, while knock-down of UbcD1 by RNAi caused a
significant accumulation of GFP-Lamp1 (Figure 6D and
Supplementary Figure S3D). These results indicate that
UbcD1 might safeguard the integrity of the endolysosomal
machinery to promote Notch signal transduction.

UbcD1 Regulates Notch Signaling as an E2
Enzyme
A conserved Cystine residue at position 85 (C85) is required
for the Ub conjugating activity of UbcD1 (Pan et al., 2017).
Using the MARCM system, we found that reduction of Cut
expression in UbcD1mer1 homozygous mutant cells was
rescued by over-expression of UbcD1WT (Figure 7A), but
not the “catalytic dead” form UbcD1C85A (Figure 7B).
Similarly, only UbcD1WT (Figure 7C) but not UbcD1C85A

(Figure 7D) was capable of restoring Cut expression in
UbcD1 RNAi cells. Expression of another Notch target, Wg,
was also rescued by UbcD1WT (Figures 7E,F) but not
UbcD1C85A (Figure 7G) in UbcD1 RNAi cells. These results
demonstrate that the Ub conjugating activity is essential for
UbcD1 to ensure Notch activation.
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FIGURE 7 | UbcD1 functions as an E2 enzyme. (A–B) InUbcD1mer1mutant cells, UbcD1WT (A) but not UbcD1C85A (B) is sufficient to restore the expression of Cut.
MARCM clones are marked by GFP. Representative clones are circled by dashed lines. (C–D)UbcD1WT (C) but not UbcD1C85A (D) is able to rescue the reduction of Cut
expression caused by UbcD1 RNAi. (E–G) RNAi knock-down of UbcD1 leads to inhibition of Wg expression (E), which is rescued by UbcD1WT (F) but not UbcD1C85A

(G). Note that Wg are accumulated in cells at the edge of wing pouch upon UbcD1 RNAi (E, G). The RNAi expressing cells are marked by GFP.
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DISCUSSION

Formation of wings made insects the first group of animals that
gained the ability to fly during evolution (Shimmi et al., 2014).
The shape, size and venation patterns of insect wings are highly
stereotyped and species specific, and these traits are widely used
in biology researches ranging from species identification, organ
development to evolutionary modelling (Parchem et al., 2007).
Our knowledge of the genetic and molecular basis of insect wing
development largely originates from studies in the model insect,
Drosophila melanogaster (De Celis and Diaz-Benjumea, 2003).
The Notch mutant likely represents one of the first recorded
Drosophilamutations that affect wing development. Later studies
demonstrate that the Notch signal pathway is highly conserved
among the insects and regulates various developmental processes
across different species. Notch signaling regulates wing margin
formation in Drosophila hydei (Van Breugel and Langhout, 1983)
and sheep blowfly (Davies et al., 1996; Chen et al., 1998), wing
morphogenesis in silkworm (Sato et al., 2008; Ling et al., 2015)
and pigment patterns in the butterfly wing (Reed, 2004; Reed and
Serfas, 2004). Further studies indicate that Notch signaling is
required for oogenesis in Blattella germanica (Irles et al., 2016)
and locust (Song et al., 2019), reproductive constraint in the adult
worker honeybee (Duncan et al., 2016), appendage development
in silk worm (Liu, 2012) and camouflage patterns in caterpillars
(Jin et al., 2020). Recent studies reveal crucial role of Notch
signaling during body segmentation in insect species such as
cockroaches (Pueyo et al., 2008; Chesebro et al., 2013) and
silkworm (Liu, 2013). Whether Notch signaling regulates
segmentation in cricket is still under debate (Kainz et al.,
2011; Mito et al., 2011), but segmentation in Drosophila (Liao
and Oates, 2017) and grasshopper (Dearden and Akam, 2000) is
likely independent of Notch signaling. These studies highlight the
important and diverse roles of Notch signaling, identification of
new factors involved in Notch signal transduction will help us to
better understand how it operates to control insect development.

Our data presented here suggests a novel role for UbcD1 as a
positive regulator of the Notch signaling pathway during fly wing
development. Previous studies have found that UbcD1 genetically
interacts with the DUB Faf (Cadavid et al., 2000) and E3 ligase
Neur (Lai et al., 2001), both of which regulate Dl endocytic
trafficking during fly eye development. However, whether and
howDl protein andNotch signaling are affected inUbcD1mutant
eye disc cells have not been investigated (Cadavid et al., 2000; Lai
et al., 2001). Furthermore, Faf is dispensable for fly wing
development (Fischer-Vize et al., 1992). The E3 ligase Neur is
essential for sensory precursors specification but not wing margin
formation and other Notch signaling dependent processes during
wing development (Yeh et al., 2000; Lai and Rubin, 2001).
Therefore, UbcD1 is likely involved in Notch signaling
regulation in multiple tissues and developmental contexts,
targeting distinct signal molecules and transduction steps. Our
genetic analysis suggests that UbcD1 functions presumably at
early steps before the cleavage of full-length Notch protein, but
also impacts later transduction events such as Notch trafficking
and distribution in the developing wing. The molecular targets of

UbcD1 and the exact mechanisms that how UbcD1 impacts
Notch signaling still remains elusive.

Alternatively, UbcD1 might regulate Notch signaling
indirectly through cellular processes such as endolysosomal
trafficking. Our results indicate that UbcD1 is likely required
for maturation of late endosomes and following steps towards
lysosomal degradation. A crucial event during endosome
maturation is Rab conversion, during which the early
organizer Rab5 is replaced by the late organizer Rab7. Recent
work identifies Dmon1, a member of the Sand1/Mon1 protein
family, as a crucial factor for Rab conversion during fly wing
development (Yousefian et al., 2013). In fly wing disc cells, LOF of
Dmon1 results in reduced association of Rab7 with endosomes,
enhancement of endolysosomal acidification and accumulation
of Notch proteins (Yousefian et al., 2013). The high similarity of
these LOF phenotypes indicate that UbcD1 might be involved in
Rab conversion. The exact role of UbcD1 in the endolysosomal
machinery remains an open question.

Given the broad cellular activities of UbcD1, it is not
surprising to find that UbcD1 might regulate multiple
signaling pathways during wing development. It has been
shown that UbcD1 negatively regulates Hh signaling activation
in the wing (Pan et al., 2017). When UbcD1 expression was
inhibited by RNAi, down-regulation of Wg was observed in cells
located at the D/V boundary due to disruption of Notch signaling
transduction. In contrast, accumulation of Wg were found in
UbcD1 RNAi cells at the edge of wing pouch (Figure 7E). The
expression of Wg is regulated by signaling pathways other than
Notch at this region. For example, in response to cell apoptosis,
another cellular event that involves UbcD1 (Ryoo et al., 2002), the
JNK pathway is sufficient to induce Wg expression in these cells
(Ryoo et al., 2004). Whether and how UbcD1 is involved in these
pathways during wing development awaits further investigation.
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