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One of the major and abundant environmental elements is water, which life existence on earth 
is depending on. However, degradation of water quality arising from natural occurrences due 
to anthropogenic that resulted in eutrophication needs to be guided. Indiscriminate harmful 
waste discharge and dispersion into the water bodies leads to water pollution. As such, constant 
management and monitoring of water resources for an enhanced quality and quantity is essential. 
Therefore, this study employed a coupled derivative mathematical model to investigate soluble 
and insoluble water pollutants. The insoluble pollutants are converted to soluble pollutants 
through an applied control or treatment. To optimize the water quality, parametric sensitivities 
in relation to reproduction number are examined. From the computational analysis carried out, it 
was revealed that treatment still remains the only remedy for safe water.

1. Introduction

A concrete abstract description of systems with the help of mathematical language and concepts defined by mathematical mod-

eling. Mathematical formulations or models are applicable in social sciences, agricultural administration, medicine, engineering, 
and other areas of specialization [1,2]. Deterministic or stochastic, nonlinear or linear models have been developed to forecast the 
epidemic outbreaks and control, Bonyah et al. [3]. Mathematical models remain an effective way for infectious diseases to be dynam-

ically studied in a population and host. According to Yavuz and Ozdemir [4], the contagious diseases mathematical model needs a 
combination of vaccination, containment, quarantine and medication. A compartmental, epidemiological, coupled derivative model 
has been developed for diseases such as malaria, Ebola, COVID-19, HBV, HIV, and so on, which has attracted attention due to an 
effective control prediction [4–9]. Epidemiological models have been developed for water pollution, dispersion and treatment due to 
its need for life sustenance. Reaction-diffusion models are widely used for soluble pollutants that undergo chemical transformations. 
Crank [10] and Sposito [11] described how such models can capture the complex interplay of chemical reactions and diffusion pro-

cesses, particularly for nutrients like nitrates and phosphates. However, these models typically exclude insoluble pollutants, which 
do not react in the same manner.

Water is an element of the environment and a universal chemical solvent that can dissolve several substances. It is a primary 
component of cells, essential for biological processes and a meaningful part of living organisms. Also, it is functional to life survival and 

* Corresponding author.
Available online 19 November 2024
2405-8440/© 2024 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

E-mail address: olajumoke.oludoun@bowen.edu.ng (O.Y. Oludoun).

https://doi.org/10.1016/j.heliyon.2024.e40457

Received 22 February 2024; Received in revised form 13 November 2024; Accepted 14 November 2024

http://www.ScienceDirect.com/
http://www.cell.com/heliyon
mailto:olajumoke.oludoun@bowen.edu.ng
https://doi.org/10.1016/j.heliyon.2024.e40457
https://doi.org/10.1016/j.heliyon.2024.e40457
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 10 (2024) e40457O.Y. Oludoun, S.O. Salawu, S.O. Adesanya et al.

vital in different geological processes, weather patterns, and earth ecosystems [12,13]. The water sources such as streams, lagoons, 
lakes, rivers and others are used for industrial, domestic, and irrigation purposes. Meanwhile, human activities often pollute and 
affect the quality and quantity of good water assessment, Shah et al. [14]. Thus, pollution describes susceptible substances that affect 
ecological systems, harm living resources, damage structures, and threaten human health, as stated by Sharma and Bhattacharya [15]. 
Water pollutants are caused by natural processes and human activities, which contaminate the water bodies and lead to water-borne 
diseases and environmental degradation. Water-borne diseases like respiratory infections, rashes, gastroenteritis, hepatitis, pink eyes, 
ear-arch and many more can be contracted from polluted water [16,17]. Among the water pollutants are insecticides, pesticides, 
untreated sewage, domestic waste, industrial waste, oil spillage and many more, which are equally harmful to aquatic animals, 
Yeleliere et al. [18]. The water pollutants can be categorized into soluble and insoluble pollutants, as presented by Saravanan et 
al. [19]. Water pollutants such as soaps, chlorides, nitrates, and so on are grouped as soluble pollutants, while pollutants such as 
polythene bags, oils, plastics, and many more are grouped as insoluble pollutants [14,19].

Many pollutants affect marine organisms, damage the human nervous system, and consequently signal serious threats to human 
life and ecosystems. Thus, contaminated water breeds mosquitoes, a malaria-causing agent and other agents like viruses, parasites 
and bacteria, Pandey et al. [20]. However, awareness of water pollution has increased recently, but water resource exploitation 
and sustainability need to be improved to prevent water pollution and water-borne diseases, Boelee et al. [21]. Several scholars 
have studied water pollution dynamics among is Agusto and Bamigbola [22], who applied a numerical Crank-Nicholson technique 
to a derivative water pollution and treatment model. The results show that pollutant concentration reduced greatly in each case 
as treatment was applied. Shah et al. [23] presented a mathematical formulation for the forest resource pollutants dispersion with 
control maximization strategies. It was revealed that forest resource pollutant density is reduced directly by the harvest from the 
wood-based factories, but the forest resources are affected directly by the non-wood-based factories. Parsaie and Haghiabi [24]

conducted a computational artificial neural network to study river pollution transmission. A longitudinal pollution coefficient of 
transmission was predicted through the adopted technique. Pimpunchat et al. [25] studied river aeration pollution and its control via 
a mathematical model. The outcomes depicted that river pollutants insertion rate could be economically dead as the needed oxygen 
for fish survival is below standard. More earlier reports on water pollution and remedies can be obtained in [26–28]. Water pollution is 
a critical environmental issue that affects ecosystems, human health, and economies globally. Pollutants in water bodies can originate 
from industrial activities, agricultural runoff, urban waste, and natural processes. The harmful effects of water pollution range from 
habitat destruction, loss of biodiversity, and disruption of food chains to serious public health risks like waterborne diseases and the 
accumulation of toxic substances in humans through contaminated drinking water and food sources.

The various reports on water pollution and the essentials of clear water for microorganisms, aquatic animals and human beings’ 
survival motivated the research. Thus, this study aims to examine soluble and insoluble water pollutant dispersion and control op-

timization through a bio-mathematical model analysis. There is a clear research gap in developing integrated models and control 
strategies that simultaneously address soluble and insoluble pollutants in complex, dynamic environments. Moreover, the interaction 
between these pollutants, the long-term behavior of insoluble substances, and the integration of real-time data into control mod-

els remain under-explored. Addressing these gaps through hybrid modeling approaches and advanced optimization techniques will 
contribute significantly to improving water quality management. The significance of water in agricultural activities, domestic and 
engineering processes, and others cannot be overstressed. As such, the study tends to analyze the pollution stability equilibrium point 
at the pollutants-free equilibrium and endemic and optimize the pollutants control and treatment strategies in reducing pollution of 
water bodies. Thus, the study developed an integrated mathematical model that captures the dispersion dynamics of both soluble 
and insoluble pollutants, accounting for their interaction mechanisms, such as adsorption, desorption, and sedimentation.

2. The descriptions model formulation

Consider a compartmental mathematical model for the soluble and insoluble propagation of water pollutions with suitable 
treatment. A discrete cubic volume compartmental derivative model for the polluted water sources (𝑃𝑤), susceptible-soluble wa-

ter pollutants (𝑆𝑤), infected-insoluble water pollutants (𝐼𝑤) and treated-insoluble water sources (𝑇𝑤) is formulated. In reality, many 
water bodies are contaminated with both types of pollutants, and they often interact in complex ways. As schematically demonstrated 
in Fig. 1, the dispersion of the water pollutants model is developed according to [14,29], considering the assumptions that the water 
body is treated as a homogeneous medium, meaning that its properties are uniform throughout the domain of interest, the pollutants 
are assumed to be sufficiently diluted such that their interactions with the water body do not affect the flow properties or create 
significant nonlinear effects, the insoluble pollutants, biodegradation is often neglected in the modeling framework, assuming that 
the primary processes affecting these pollutants are physical, and the physical properties of the fluid, such as viscosity and density, 
are assumed to remain constant during the modeling period, irrespective of changes in pollutant concentration or flow conditions.

Appropriate dynamical parameters are considered in the development of the nonlinear coupled derivative model. The mechanisms 
for the mitigation of insoluble pollutants spread across the water regime are optimized for an effective control. Thus, the derivative 
dimensional model is given as:

𝑑𝑃𝑤
𝑑𝑡

= 𝛼 − 𝛽𝑃𝑤𝑆𝑤 − 𝛾𝑃𝑤𝐼𝑤 +𝜙𝛽𝐼𝑤 −𝜑𝑃𝑤, 𝑃𝑤0 ≥ 0, (1)

𝑑𝑆𝑤

𝑑𝑡
= 𝛽𝑃𝑤𝑆𝑤 + 𝜆𝐼𝑤 − (𝜖 +𝜑)𝑆𝑤, 𝑆𝑤0 ≥ 0, (2)

𝑑𝐼
2

𝑤

𝑑𝑡
= 𝛾𝑃𝑤𝐼𝑤 −𝜙𝛽𝐼𝑤 − (𝜆+ 𝛿 +𝜑)𝐼𝑤, 𝐼𝑤0 ≥ 0, (3)
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Fig. 1. Model transmission configuration.

𝑑𝑇𝑤
𝑑𝑡

= 𝜖𝑆𝑤 + 𝛿𝐼𝑤 −𝜑𝑇𝑤, 𝑇𝑤0 ≥ 0, (4)

where 𝑃𝑤(0) = 𝑃𝑤0, 𝑆𝑤(0) = 𝑆𝑤0, 𝐼𝑤(0) = 𝐼𝑤0, 𝑇𝑤(0) = 𝑇𝑤0 are the initial constraints.

The embedded term 𝛼 defines water pollutants rate, 𝛽 and 𝛾 are soluble and insoluble water pollutants transmission rate separately. 
The parameter 𝜑 denotes compartmental water pollutants removable rate, 𝜆 describes insoluble water pollutants treatment rate, 𝜙
connotes water pollution rate of insoluble water pollutants, and 𝜖 and 𝛿 are the compartmental cubic volume treatment for soluble 
and insoluble water pollutants respectively.

2.1. Analysis of the mathematical model

The solution positivity and feasibility of the basic system of equations (1) to (4) are described in this section.

2.1.1. Solution positivity

For meaningful epidemiological translation, the water pollutants dispersion system of equations (1) to (4) are investigated for 
solution positivity. Thus, it is necessary to establish the non-negativity of all its stated variables for all 𝑡 ≥ 0.

Theorem 2.1. The solution to the non-negative initial conditions of the coupled equations (1) to (4) of (𝑃𝑤, 𝑆𝑤, 𝐼𝑤, 𝑇𝑤) are bounded 
uniformly on [0, ∞).

Proof. With non-negative initial conditions, the solutions to (𝑃𝑤, 𝑆𝑤, 𝐼𝑤, 𝑇𝑤) are assumed to exist and unique. Taking equation (1)

from the derivative modeled equations and simplify to become:

𝑑𝑃𝑤
𝑑𝑡

= 𝛼 + 𝜙𝛽𝐼𝑤 − (𝛽𝑆𝑤 + 𝛾𝐼𝑤 +𝜑)𝑃𝑤,

removing the term 𝛼 + 𝜙𝛽𝐼𝑤 since it is non-negative to have

𝑑𝑃𝑤
𝑑𝑡

≥ −(𝛽𝑆𝑤 + 𝛾𝐼𝑤 +𝜑)𝑃𝑤. (5)

Integrating both sides of equation (5) and apply separation of variables method, thus gives

∫
𝑑𝑃𝑤
𝑃𝑤

≥ −∫ (𝛽𝑆𝑤 + 𝛾𝐼𝑤 +𝜑)𝑑𝑡,
3

𝑙𝑛|𝑃𝑤| ≥ −(𝛽𝑆𝑤 + 𝛾𝐼𝑤 +𝜑)𝑡+𝐾,
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𝑃𝑤(𝑡) ≥ 𝑒−(𝛽𝑆𝑤+𝛾𝐼𝑤+𝜑)𝑡+𝐾,

apply the initial conditions at 𝑡 = 0; hence, resulted to

𝑃𝑤(𝑡) ≥ 𝑃𝑤0𝑒
−(𝛽𝑆𝑤+𝛾𝐼𝑤+𝜑)𝑡 ≥ 0, since (𝛽𝑆𝑤 + 𝛾𝐼𝑤 +𝜑) > 0.

Therefore, 𝑃𝑤 ≥ 0 for 𝑡 ≥ 0. Also, taking equation (2) from the derivative model,

𝑑𝑆𝑤

𝑑𝑡
= 𝛽𝑃𝑤𝑆𝑤 + 𝜆𝐼𝑤 − (𝜖 +𝜑)𝑆𝑤,

due to non-negativity, the term 𝛽𝑃𝑤𝑆𝑤 + 𝜆𝐼𝑤 is removed, then the equation reduced to:

𝑑𝑆𝑤

𝑑𝑡
≥ −(𝜖 +𝜑)𝑆𝑤. (6)

Solving equation (6) by using variable separation method to have

∫
𝑑𝑆𝑤

𝑆𝑤

≥ −∫ (𝜖 +𝜑)𝑑𝑡,

𝑙𝑛|𝑆𝑤| ≥ −(𝜖 +𝜑)𝑡+𝐾,

𝑆𝑤(𝑡) ≥ 𝑒−(𝜖+𝜑)𝑡+𝐾,

introducing the 𝑆𝑤(𝑡) initial condition at 𝑡 = 0,

𝑆𝑤(𝑡) ≥ 𝑆𝑤0𝑒
−(𝜖+𝜑)𝑡 ≥ 0 since (𝜖 +𝜑) > 0.

Similarly, investigate the solution positivity of equation (3) given as

𝑑𝐼𝑤
𝑑𝑡

= 𝛾𝑃𝑤𝐼𝑤 − (𝜙𝛾 + 𝜖 +𝜑+ 𝜆)𝐼𝑤,

remove the term 𝛾𝑃𝑤𝐼𝑤 since it is non-negative, thus reduced to

𝑑𝐼𝑤
𝑑𝑡

≥ −(𝜙𝛾 + 𝜖 +𝜑+ 𝜆)𝐼𝑤. (7)

Integrating both sides of equation (7) via variables separating method to have

∫
𝑑𝐼𝑤
𝐼𝑤

≥ −∫ (𝜙𝛾 + 𝜖 +𝜑+ 𝜆)𝑑𝑡,

𝑙𝑛|𝐼𝑤| ≥ −(𝜙𝛾 + 𝜖 +𝜑+ 𝜆)𝑡+𝐾,

𝐼𝑤(𝑡) ≥ 𝑒(𝜙𝛾+𝜖+𝜑+𝜆)𝑡+𝐾,

using the initial condition when 𝑡 = 0, this resulted to

𝐼𝑤(𝑡) ≥ 𝐼𝑤0𝑒
−(𝜙𝛾+𝜖+𝜑+𝜆)𝑡 ≥ 0, since (𝜙𝛾 + 𝜖 +𝜑+ 𝜆) > 0.

Finally, taking equation (4) from the modeled equations, such that

𝑑𝑇𝑤
𝑑𝑡

= 𝜖𝑆𝑤 + 𝛿𝐼𝑤 −𝜑𝑇𝑤,

ignoring the non-negative term 𝜖𝑆𝑤 + 𝛿𝐼𝑤, thus the equation gives

𝑑𝑇𝑤
𝑑𝑡

≥ −𝜑𝑇𝑤 (8)

By applying separation of variables via integrating both sides of equation (8) to have

∫
𝑑𝑇𝑤
𝑑𝑡

≥ −∫ 𝜑𝑑𝑡,

𝑙𝑛|𝑇𝑤| ≥ −𝜑𝑡+𝐾,

𝑇𝑤(𝑡) ≥ 𝑒−𝜑𝑡+𝐾,

employ the initial condition at 𝑡 = 0, thus gives

𝑇𝑤(𝑡) ≥ 𝑇𝑤0𝑒
𝜑𝑡 ≥ 0, since 𝜑 > 0.
4

Therefore, at 𝑡 > 0, 𝑃𝑤, 𝑆𝑤, 𝐼𝑤, 𝑇𝑤 are all non-negative i.e. all give positive values. Hence, the proof.
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2.1.2. Solution feasibility

The solution feasibility set for the modeled derivative equations (1) to (4) can be obtained through its positively invariant set give 
as

Λ =
{
(𝑃𝑤,𝑆𝑤, 𝐼𝑤,𝑇𝑤) ∈𝑅4

+ ∶𝐴(𝑡) ≤ 𝛼

𝜑

}
.

Lemma 2.1. With respect to the dynamical system of the water pollutants transmission equations (1) to (4), the region Λ is positively 
invariant.

Proof. To demonstrate the positively invariant region, 𝐴(𝑡) ≤ 𝛼

𝜑
as 𝑡 →∞ shall be established. The total population from the model 

is 𝐴 = 𝑃𝑤 +𝑆𝑤 + 𝐼𝑤 + 𝑇𝑤, thus differentiate 𝐴 and the right hand side with respect to 𝑡 to have an equation satisfying equations (1)

to (4):

𝐴′ = 𝑃 ′
𝑤 +𝑆′

𝑤 + 𝐼 ′𝑤 + 𝑇 ′
𝑤,

= 𝛼 − 𝛽𝑃𝑤𝑆𝑤 − 𝛾𝑃𝑤𝐼𝑤 + 𝜙𝛽𝐼𝑤 −𝜑𝑃𝑤 + 𝛽𝑃𝑤𝑆𝑤

+ 𝜆𝐼𝑤 − (𝜖 +𝜑)𝑆𝑤 + 𝛾𝑃𝑤𝐼𝑤 − 𝜙𝛽𝐼𝑤 − (𝛿 +𝜑+ 𝛿)𝐼𝑤
+ 𝜖𝑆𝑤 + 𝛿𝐼𝑤 −𝜑𝑇𝑤,

= 𝛼 −𝜑𝑃𝑤 −𝜑𝑆𝑤 +𝜑𝐼𝑤 −𝜑𝑇𝑤,

= 𝛼 −𝜑𝐴, since 𝐴 = 𝑃𝑤 + 𝑆𝑤 + 𝐼𝑤 + 𝑇𝑤,

therefore, this gives

𝑑𝐴

𝑑𝑡
= 𝛼 −𝜑𝐴,

𝑑𝐴

𝑑𝑡
+𝜑𝐴 = 𝛼. (9)

Apply the idea of integrating factor to equation (9), solving it gives

𝐴(𝑡) = 𝛼

𝜑
+𝐶𝑒−𝜑𝑡, (10)

where 𝐶 is a constant, introducing the initial condition 𝐴(0) = 𝐴0 on equation (10), this gives

𝐴(0) = 𝛼

𝜑
+𝐶𝑒−𝜑(0) =𝐴0, where 𝐶 =𝐴0 −

𝛼

𝜑

Hence, equation (10) becomes

𝐴(𝑡) = 𝛼

𝜑

(
1 − 𝑒−𝜑𝑡

)
+𝐴0𝑒

−𝜑𝑡, (11)

taking the limit as 𝑡 →∞, thus equation (11) gives

𝑙𝑖𝑚𝑡→∞𝐴(𝑡) ≤ 𝛼

𝜑
. (12)

Hence, equations (1) to (4) feasible region is obtained as equation (12), which can be described as Λ =
{
(𝑃𝑤, 𝑆𝑤, 𝐼𝑤, 𝑇𝑤) ∈𝑅4

+ ∶𝐴 =
𝛼

𝜑

}
is positively invariant. Thus, the water pollutants transmission model is epidemiologically and mathematically posted.

2.2. Pollutants free equilibrium [PFE]

The concept of pollutants-free equilibrium is important in water pollution models as it represents the ideal target for water 
quality restoration efforts. While this equilibrium may be difficult to achieve in practice, mathematical models provide insights into 
the conditions necessary for the reduction of both soluble and insoluble pollutants, and the strategies required to move towards a 
cleaner, more sustainable state in aquatic ecosystems. The PFE can be determined from the derivative equations (1) to (4) by setting

𝑑𝑃𝑤
𝑑𝑡

=
𝑑𝑆𝑤

𝑑𝑡
=

𝑑𝐼𝑤
𝑑𝑡

=
𝑑𝑇𝑤
𝑑𝑡

= 0.

Taking from equation (3),

𝐼 ′𝑤 = 𝛾𝑃𝑤𝐼𝑤 − 𝜙𝛽𝐼𝑤 − (𝛿 +𝜑− 𝜆)𝐼𝑤 = 0,

(𝛾𝑃𝑤 −𝜙𝛽 − 𝛿 −𝜑− 𝜆)𝐼𝑤 = 0,
5

𝐼𝑤 = 0.
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From equation (2), the equilibrium point is obtained as follows

𝑆′
𝑤 = 𝛽𝑃𝑤𝑆𝑤 + 𝜆𝐼𝑤 − (𝜖 +𝜑)𝑆𝑤 = 0,

𝜆𝐼𝑤 − (𝜖 +𝜑− 𝛽𝑃𝑤)𝑆𝑤 = 0, since 𝐼𝑤 = 0,

𝑆𝑤 = 0.

Likewise, from equation (4), it can be gotten as follows

𝑇 ′
𝑤 = 𝜖𝑆𝑤 + 𝛿𝐼𝑤 −𝜑𝑇𝑤 = 0,

𝜑𝑇𝑤 = 0, since 𝐼𝑤 = 𝑆𝑤 = 0,

𝑇𝑤 = 0.

Similarly, taking from equation (1), the equilibrium point is determined

𝑃 ′
𝑤 = 𝛼 − 𝛽𝑃𝑤𝑆𝑤 − 𝛾𝑃𝑤𝐼𝑤 + 𝜙𝛽𝐼𝑤 −𝜑𝑝𝑤 = 0,

𝛼 −𝜑𝑃𝑤 = 0, since 𝐼𝑤 = 𝑆𝑤 = 0,

𝑃𝑤 = 𝛼

𝜑
.

(𝑃 0
𝑤,𝑆

0
𝑤, 𝐼

0
𝑤,𝑇

0
𝑤) =

(
𝛼

𝜑
,0,0,0

)
. (13)

Therefore, the PFE is obtained as equation (13).

2.3. The pollutants basic reproduction number (𝑅0)

This is the epidemiology models threshold quantity, which describes the secondary cases expected number that a pollution or 
infection produced with a single primary case in water body or host population such that everyone is susceptible as stated by Adeniyi 
et al. [30] and Oke et al. [31]. Thus, when 𝑅0 > 0 implies high water pollution or infection dispersion rate, and when 𝑅0 < 0 indicates 
that the pollution or infection will disappear or die overtime.

2.3.1. Evaluation of 𝑅0 via next generation matrix

The 𝑅0 can be determined using next generation matrix with distinct finitely several groups of pollutants are recognized. The 
next generation matrix method properly position terms in infected or polluted group to the vectors 𝐺 and 𝐻 . The compartmental 
new infection appearance rate is 𝐺 and compartmental out and in individual transfer rate that need to be negated. As illustrated 
by Pandey et al. [32], differentiating 𝐺 and 𝐻 with respect to variables subset obtained from the free equilibrium pollutant gives 
Jacobian matrices. Thus, resulted in the matrices 𝐺 and 𝐻 separately.

Let 𝑋′ = (𝑃𝑤, 𝑆𝑤, 𝐼𝑤), the system of equations can be express in matrix form as:

𝑑𝑋

𝑑𝑡
= 𝑢𝑟(𝑋) − 𝑣𝑟(𝑋), 𝑟 = 𝑆𝑤, 𝐼𝑤,

where

𝑋 =
⎛⎜⎜⎝
𝑆𝑤

𝐼𝑤

⎞⎟⎟⎠ , 𝑢𝑟(𝑋) =
⎛⎜⎜⎝
𝛽𝑃𝑤𝑆𝑤

𝛽𝑃𝑤𝐼𝑤

⎞⎟⎟⎠ , 𝑣𝑟(𝑋) =
⎛⎜⎜⎝

−𝜆𝐼𝑤 + (𝜑+ 𝜖)𝑆𝑤

𝜙𝛽𝐼𝑤 + (𝜆+𝜑+ 𝛿)𝐼𝑤

⎞⎟⎟⎠ .
The pollutants propagation matrix 𝐺 and transition matrix 𝐻 denoted as:

𝐺 =
[
𝜕𝑢𝑟(𝑋)
𝜕𝑋𝑛

]
,𝐻 =

[
𝜕𝑣𝑟(𝑋)
𝜕𝑋𝑛

]
, which resulted to,

𝐺 =
⎛⎜⎜⎝
𝛽𝑃𝑤 0

0 𝛾𝑃𝑤

⎞⎟⎟⎠ , 𝐻 =
⎛⎜⎜⎝
𝜑+ 𝜖 −𝜆

0 𝛽𝜙+ 𝜆+𝜑+ 𝛿

⎞⎟⎟⎠ ,
Hence, the PFE Jacobian matrix for 𝐺 and 𝐻 is given as:

𝐺 =
⎛⎜⎜⎜⎝
𝛼𝛽

𝜑
0

0 𝛼𝛾

𝜑

⎞⎟⎟⎟⎠
, and 𝐻 =

⎛⎜⎜⎝
𝜑+ 𝜖 −𝜆

0 𝛽𝜙+ 𝜆+𝜑+ 𝛿

⎞⎟⎟⎠ ,
6

Therefore, the next generation matrix is presented as 𝐺𝐻−1 , such that 𝐻 gives
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𝐻−1 =
⎛⎜⎜⎜⎝

1
𝜑+𝜖

𝜆

(𝜑+𝜖)(𝛽𝜙+𝜆+𝜑+𝛿)

0 1
𝛽𝜙+𝜆+𝜑+𝛿

⎞⎟⎟⎟⎠
,

Thus,

𝐺𝐻−1 =
⎛⎜⎜⎜⎝

𝛼𝛽𝛽

𝜑(𝜑+𝜖 )
𝛼𝛽𝜆

𝜑(𝜑+𝜖)(𝛽𝜙+𝜆+𝜑+𝛿)

0 𝛼𝛽

𝜑(𝛽𝜙+𝜆+𝜑+𝛿)

⎞⎟⎟⎟⎠
.

Determine the eigenvalues of the characteristic equation to obtain 𝑅0 ,

𝑑𝑒𝑡(𝐺𝐻−1 − 𝜒𝐼) = 0,

𝑑𝑒𝑡

⎛⎜⎜⎜⎝
𝛼𝛽𝛽

𝜑(𝜑+𝜖) − 𝜒 𝛼𝛽𝜆

𝜑(𝜑+𝜖)(𝛽𝜙+𝜆+𝜑+𝛿)

0 𝛼𝛽

𝜑(𝛽𝜙+𝜆+𝜑+𝛿) − 𝜒

⎞⎟⎟⎟⎠
= 0. (14)

Hence, equation (14) gives the eigenvalues of the PFE and gotten as(
𝛼𝛽

𝜑(𝜑+ 𝜖)
,

𝛼𝛾

𝜑(𝛽𝜙+ 𝜆+𝜑+ 𝛿)

)
.

The two distinct eigenvalues are:

𝑅1 =
𝛼𝛽

𝜑(𝜑+ 𝜖)
and𝑅2 =

𝛼𝛾

𝜑(𝛽𝜙+ 𝜆+𝜑+ 𝛿)
.

As such, the basic reproduction ratio or number is described as

𝑅0 =𝑚𝑎𝑥(𝑅1,𝑅2).

3. Existence of equilibrium point stability

Stability analysis is the best tool for classifying equilibrium point of a dynamical system, be it the local and the global stability.

3.1. Local stability of the PFE

The PFE is asymptotically stable locally if 𝑅0 < 1 and unstable if otherwise. To show that the pollutants basic reproduction number 
𝑅0 is asymptotically stable or not at the PFE 𝑃0 . The Jacobian matrix is used to determine the stability of each equilibrium points.

𝜏 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−𝛽𝑆𝑤 − 𝛾𝐼𝑤 −𝜑 −𝛽𝑃𝑤 −𝛾𝑃𝑤 + 𝛽𝜙 0

𝛽𝑆𝑤 𝛽𝑃𝑤 −𝜑− 𝜖 𝜆 0

𝛾𝐼𝑤 0 𝛾𝑃𝑤 − 𝛽𝜙− 𝜆−𝜑− 𝛿 0

0 𝜖 𝛿 −𝜑

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (15)

Evaluating the Jacobian matrix of equation (15) at the PFE 𝑃0

𝜏𝑃0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜑 −𝛽𝛼
𝜑

−𝛾𝛼
𝜑

+ 𝛽𝜙 0

0 𝛽𝛼

𝜑
−𝜑− 𝜖 𝜆 0

0 0 𝛾𝛼

𝜑
− 𝛽𝜙− 𝜆−𝜑− 𝛿 0

0 𝜖 𝛿 −𝜑

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (16)

The eigenvalues of equation (16) give 𝜒1 = 𝜒2 = −𝜑 < 0. Reducing the matrix and finding the determinant to obtain the other eigen 
values.

𝜏𝑃0 =
⎡⎢⎢
𝛽𝛼

𝜑
−𝜑− 𝜖 𝜆 ⎤⎥⎥ . (17)
7

⎢⎣ 0 𝛾𝛼

𝜑
− 𝛽𝜙− 𝜆−𝜑− 𝛿 ⎥⎦
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Hence, from equation (17), the remnant eigenvalues are:

𝜒3 =
𝛽𝛼

𝜑
−𝜑− 𝜖

𝜒4 =
𝛾𝛼

𝜑
− 𝛽𝜙− 𝜆−𝜑− 𝛿.

For PFE to be locally asymptotically stable, the eigenvalues 𝜒3 & 𝜒4 must be negative. i.e.,
𝛽𝛼

𝜑
− 𝜑 − 𝜖 < 0 → 𝛽𝛼

𝜑
< 𝜑 + 𝜖 This 

can be rewritten as: 𝛽𝛼

𝜑(𝜑+𝜖) < 1 The PFE is locally asymptotically unstable if 𝛽𝛼
𝜑

− 𝜑 − 𝜖 > 0 → 𝛽𝛼

𝜑
> 𝜑 + 𝜖 This can be rewritten as: 

𝛽𝛼

𝜑(𝜑+𝜖) > 1 Therefore,

𝑅1 =
𝛽𝛼

𝜑(𝜑+ 𝜖)
(18)

Also, for the 𝜒4. It is stable if 𝛾𝛼
𝜑
− 𝛽𝜙 − 𝜆 −𝜑 − 𝛿 < 0 → 𝛾𝛼

𝜑
< 𝛽𝜙 + 𝜆 +𝜑 + 𝛿. This can also be written as: 𝛾𝛼

𝜑(𝛽𝜙+𝜆+𝜑+𝛿) < 1.

It is asymptotically unstable if, 𝛾𝛼
𝜑
− 𝛽𝜙 − 𝜆 −𝜑 − 𝛿 > 0 → 𝛾𝛼

𝜑
> 𝛽𝜙 + 𝜆 +𝜑 + 𝛿. This can also be written as: 𝛾𝛼

𝜑(𝛽𝜙+𝜆+𝜑+𝛿) > 1.

Therefore,

𝑅2 =
𝛾𝛼

𝜑(𝛽𝜙+ 𝜆+𝜑+ 𝛿)
(19)

Thus, the combination of equations (18) and (19) gives 𝑅0, i.e. 𝑅1 +𝑅2 =𝑅0
Hence, the PFE is locally asymptotically stable if 𝑅0 < 1 or unstable if 𝑅0 > 1.

It is vital to demonstrate that the PFE is globally-asymptotically stable in order to guarantee that the removal of pollutants is 
independent of the starting size of the infected water sources.

3.2. Global stability of the PFE

Castilla-Chavez et al. [33] demonstrated the global asymptotic stability of the PFE.

Γ′ = 𝑌 (𝑋,𝐼) (20)

Ξ′ =𝑍(𝑋,𝐼),𝑍(𝑋,0) = 0 (21)

If the two requirements in equations (20) and (21) are met, then PFE becomes globally asymptotic stable.

Also, 𝑋 ∈𝑅2 represents the number of uncontaminated water sources and 𝐼 ∈𝑅2 represents the number of contaminated water 
sources. 𝑃0 = (𝑃 0

𝑤, 𝑆
0
𝑤, 𝐼

0
𝑤, 𝑇

0
𝑤) = (𝑋∗, 0, 0, 0) denotes PFE.

To ensure the global stability of the PFE, two conditions must be met:

(Υ1) for 𝑋′ = 𝑌 (𝑋,0), 𝑋∗globally stable (22)

(Υ2) 𝑍(𝑋,𝐼) =𝐷𝐼 −𝑍(𝑋,𝐼),𝑍(𝑋,𝐼) ≥ 0 ∀(𝑋,𝐼) ∈𝐵, (23)

where 𝐷 = 𝑃1𝑍(𝑋, 0) is an M-matrix with non-negative off diagonal entries, and B are the systems of equation. The following theorem 
applies if the system of equations (1)-(4) meets the conditions in (22) and (23). Observe that

𝑍(𝑋,𝐼) =𝐷𝐼 − 𝐼 ′

where 𝐼 = (𝑆𝑤, 𝐼𝑤) and 𝐼 ′ = (𝑆′
𝑤, 𝐼

′
𝑤) given by equations (2) and (3) respectively.

Theorem. The PFE 𝑃0 =
(

𝛼

𝜑
,0,0,0

)
is globally asymptotically stable if 𝑅0 < 1 and the condition in (23) is met.

Proof. The systems of equations in equations (14) will be rewritten in the form of (20) and (21), and then 𝑋 ∈𝑅2 = (𝑃𝑤, 𝑇𝑤) with 
𝑋1 = 𝑃𝑤 and 𝑋2 = 𝑇𝑤, 𝐼 ∈𝑅2 = (𝑆𝑤, 𝐼𝑤),

𝑋′ = 𝑌 (𝑋,0) =
⎛⎜⎜⎝
𝛼 −𝜑𝑃𝑤

0

⎞⎟⎟⎠
𝑋′

1 = 𝛼 −𝜑𝑃𝑤

is a linear differential equation and its solution is given as:

𝑃𝑤(𝑡) =
𝛼

𝜑
−
(
𝛼

𝜑
− 𝑃𝑤0

(𝑡)
)
𝑒−𝑢𝑡
8

Clearly, 𝑃𝑤(𝑡) →
𝛼

𝜑
𝑎𝑠 𝑡 →∞, since 𝑒−∞ = 0, ∀𝑃𝑤0

. Hence 𝑋∗
1 is globally stable asymptotically.
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So that

𝑍(𝑋,𝐼) =
⎛⎜⎜⎝
𝛽𝑃𝑤𝑆𝑤 + 𝜆𝐼𝑤 − (𝜖 +𝜑)𝑆𝑤

𝛾𝑃𝑤𝐼𝑤 − (𝛿 + 𝜆+𝜑)𝐼𝑤

⎞⎟⎟⎠
and

𝐷 =
⎛⎜⎜⎝
𝛽 − (𝜖 +𝜑) 𝜆

0 𝛾 − (𝛽𝜙+ 𝛿 + 𝜆+𝜑)

⎞⎟⎟⎠ (24)

Clearly, (24) is a non negative diagonal M-matrix. Therefore:

𝑍(𝑋,𝐼) =
⎛⎜⎜⎝
𝑍1(𝑋,𝐼)

𝑍2(𝑋,𝐼)

⎞⎟⎟⎠ =
⎛⎜⎜⎝
𝛽𝑆𝑤(1 − 𝑃𝑤)

𝛾𝐼𝑤(1 − 𝑃𝑤)

⎞⎟⎟⎠ (25)

(Υ2) is satisfied whenever 𝑃𝑤 < 1 is satisfied, but (Υ2) is unsatisfied when 𝑃𝑤 < 0.

Hence from equation (25), the PFE 𝑃0 may be stable globally or not.

3.3. Existence of the pollutant endemic equilibrium points

The endemic equilibrium points of the pollutant exist and can be denoted as: 𝑃 ∗
𝑤, 𝑆∗

𝑤, 𝐼∗𝑤, 𝑇 ∗
𝑤 which is usually calculated by setting 

the equations (1)-(4) to zero and stating the states variables as a function of the transmission coefficients, according to [27,30,31]. 
The endemic equilibrium point here is divided into 𝑃 ∗

1 , a situation where the insoluble pollutants in the water do not exist and 𝑃 ∗
2 , 

where all types of pollutants exist in the water.

The endemic equilibrium are given below:

𝑃 ∗
1 =

(
𝜑+ 𝜖

𝛽
,−𝜑2 + 𝜖𝜑− 𝛼𝛽

𝛽(𝜑+ 𝜖)
,0,− 𝜖(𝜑2 + 𝜖𝜑− 𝛼𝛽)

𝛽𝜑(𝜑+ 𝜖)

)
𝑃 ∗
2 = (𝑃 ∗

𝑤,𝑆
∗
𝑤, 𝐼

∗
𝑤,𝑇

∗
𝑤)

where

𝑃 ∗
𝑤 = 𝜆+𝜑+ 𝛿 + 𝛾𝜙

𝛾
,

𝑆∗
𝑤 = 𝜆(𝜆𝜑− 𝛼𝛾 +𝜑𝛿 +𝜑2 + 𝛾𝜑𝜙

𝑎
,

𝐼∗𝑤 = −(𝛽𝜆+ 𝛽𝜑− 𝛾𝜑+ 𝛽𝛿 − 𝛾𝜖 + 𝛽𝛾𝜙)
𝛾𝜆

𝑆∗
𝑤,

𝑇 ∗
𝑤 = −(𝛽𝛿2 + 𝛽𝜆𝛿 − 𝛾𝜆𝜖 + 𝛽𝜑𝛿 − 𝛾𝜑𝛿 − 𝛾𝜖𝛿 + 𝛽𝛾𝜙𝛿)

𝜑𝛾𝜆
𝑆∗
𝑤,

where

𝑎 = (𝛽𝜑2 + 𝛾𝜑2 + 𝛽𝛿2 + 𝛽𝜆𝜑− 𝛾𝜆𝜑+ 𝛽𝜆𝛿 − 𝛾𝜆𝜖 + 2𝛽𝜑𝛿 − 𝛾𝜑𝜖 − 𝛾𝜑𝛿 − 𝛾𝜖𝛿 + 𝛽𝛾𝜑𝜙+ 𝛽𝛾𝜙𝛿)

3.3.1. Local stability of the endemic equilibrium

Theorem. The endemic equilibrium point is said to be locally stable asymptotically if 𝑅0 > 1 and unstable if 𝑅0 < 1.

To show that 𝑅0 is stable or unstable at the endemic equilibrium 𝑃 ∗. The local stability of the equilibrium points can be determined 
by evaluating the Jacobian matrix of the system in (1)-(4). Evaluating (15) at endemic equilibrium point 𝑃 ∗, to give

𝜏𝑃 ∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 𝜆𝑏1(𝛽+𝜆𝑏2)
𝑎

−𝜑 − 𝛽(𝛾𝜙+𝜆+𝜑+𝛿)
𝛾

−(𝜆+𝜑+ 𝛿) 0

𝛽𝜆𝑏1
𝑎

𝛽(𝛾𝜙+𝜆+𝜑+𝛿)
𝛾

−𝜑− 𝜖 𝜆 0

𝛿2𝑏1𝑏2
𝑎

0 0 0

0 𝜖 𝛿 −𝜑

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

The eigenvalues are gotten from the characteristics equation |𝜏𝑃 ∗ − 𝜒𝐼| = 0 of (26). Clearly the first eigenvalue is: 𝜒1 = 𝜑 < 0. The 
9

subsequent eigenvalues are gotten from the remaining 3 × 3 matrix given below:
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𝜏𝑃 ∗ =

⎡⎢⎢⎢⎢⎢⎢⎣

− 𝜆𝑏1(𝛽+𝜆𝑏2)
𝑎

−𝜑 − 𝛽(𝛾𝜙+𝜆+𝜑+𝛿)
𝛾

−(𝜆+𝜑+ 𝛿)

𝛽𝜆𝑏1
𝑎

𝛽(𝛾𝜙+𝜆+𝜑+𝛿)
𝛾

−𝜑− 𝜖 𝜆

𝛿2𝑏1𝑏2
𝑎

0 0

⎤⎥⎥⎥⎥⎥⎥⎦
. (27)

Equation (27) has the characteristics polynomial given as:

𝑎0𝜒
3 + 𝑎1𝜒

2 + 𝑎2𝜒 + 𝑎3 = 0,

where

𝑎 = (𝛽𝜑2 + 𝛾𝜑2 + 𝛽𝛿2 + 𝛽𝜆𝜑− 𝛾𝜆𝜑+ 𝛽𝜆𝛿 − 𝛾𝜆𝜖 + 2𝛽𝜑𝛿 − 𝛾𝜑𝜖 − 𝛾𝜑𝛿 − 𝛾𝜖𝛿 + 𝛽𝛾𝜑𝜙+ 𝛽𝛾𝜙𝛿),

𝑏1 = (−𝛼𝛾 + 𝛾𝜑𝜙+ 𝜆𝜑+𝜑2 + 𝜀𝛿),

𝛾𝜑+𝜑𝜖 − 𝛽𝛾𝜙− 𝛽𝜆− 𝛽𝜑− 𝛽𝜖,

𝑎0 = 1,

𝑎1 =
−𝛽(𝛾𝜙+ 𝜆+𝜑+ 𝛿)

𝛾
+

𝜆𝑏1(𝛽 + 𝜆𝑏2)
𝑎

+ 2𝜑+ 𝜖,

𝑎2 =
(
−𝛿𝑏1(𝛽 + 𝜆𝑏2) −𝜑𝑎

𝑎

)(
−𝛽(𝛾𝜙+ 𝜆+𝜑+ 𝛿)

𝛾

)
,

𝑎3 =
⎛⎜⎜⎝
𝜆2𝑏1𝑏2

−𝛽(𝛾𝜙+𝜆+𝜑+𝛿)
𝛾

−𝜑− 𝜖

𝑎
−

𝛽𝜆3𝑏21𝑏2

𝑎2

⎞⎟⎟⎠− (𝜆+𝜑+ 𝜖) −
𝛽𝜆3𝑏1𝑏2(𝛾𝜙+ 𝜆+𝜑+ 𝛿)

𝑎𝛾
.

From the characteristics equation above, the stability can be determined using the Routh-Hurwitz stability criterion which states that, 
if the conditions 𝑎1 > 0, 𝑎2 > 0, 𝑎1.𝑎2 − 𝑎3 > 0 are satisfied, then characteristic polynomial have negative real roots which shows that 
the endemic equilibrium point is asymptotically stable locally.

By Routh Hurwitz criteria therefore, the endemic equilibrium point is stable when 𝑅0 > 1, otherwise unstable.

3.3.2. Global stability of the endemic equilibrium

Oludoun et al. [34] demonstrated the global asymptotic stability of the endemic equilibrium using the Lyapunouv method.

Theorem. The equations of the model have a positive distinctive endemic equilibrium whenever 𝑅0 > 1, which is said to be globally asymp-

totically stable.

Proof. Considering the Lyapunov function defined as:

𝐿(𝑃 ∗
𝑤,𝑆

∗
𝑤, 𝐼

∗
𝑤,𝑇

∗
𝑤) =

(
𝑃𝑤 − 𝑃 ∗

𝑤𝑙𝑛

(
𝑃𝑤
𝑃 ∗
𝑤

))
+
(
𝑆𝑤 − 𝑆∗

𝑤𝑙𝑛

(
𝑆𝑤

𝑆∗
𝑤

))
+
(
𝐼𝑤 − 𝐼∗𝑤𝑙𝑛

(
𝐼𝑤
𝐼∗𝑤

))

+
(
𝑇𝑤 − 𝑇 ∗

𝑤𝑙𝑛

(
𝑇𝑤
𝑇 ∗
𝑤

))
,

(28)

Taking the derivative of L in equation (28) along the system as:

𝑑𝐿

𝑑𝑡
=
(
1 −

𝑃 ∗
𝑤

𝑃𝑤

)
𝑑𝑃𝑤
𝑑𝑡

+
(
1 −

𝑆∗
𝑤

𝑆𝑤

)
𝑑𝑆𝑤

𝑑𝑡
+
(
1 −

𝐼∗𝑤
𝐼𝑤

)
𝑑𝐼𝑤
𝑑𝑡

+
(
1 −

𝑇 ∗
𝑤

𝑇𝑤

)
𝑑𝑇𝑤
𝑑𝑡

, (29)

It would be interesting to point out that, at this point, the partial derivatives in equation (29) are replaced by their expressions 
following equations (1) to (4).

𝑑𝐿

𝑑𝑡
=
(
1 −

𝑃 ∗
𝑤

𝑃𝑤

)(
𝛼 − 𝛽𝑃𝑤𝑆𝑤 − 𝛾𝑃𝑤𝐼𝑤 + 𝜙𝛽𝐼𝑤 −𝜑𝑃𝑤

)
+
(
1 −

𝑆∗
𝑤

𝑆𝑤

)(
𝛽𝑃𝑤𝑆𝑤 + 𝜆𝐼𝑤 − (𝜖 +𝜑)𝑆𝑤

)
+(

1 −
𝐼∗𝑤
𝐼𝑤

)(
𝛾𝑃𝑤𝐼𝑤 −𝜙𝛽𝐼𝑤 − (𝜆+ 𝛿 +𝜑)𝐼𝑤

)
+
(
1 −

𝑇 ∗
𝑤

𝑇𝑤

)(
𝜖𝑆𝑤 + 𝛿𝐼𝑤 −𝜑𝑇𝑤

)
,

(30)

At equilibrium, equation (30) gives:

𝛼 = 𝛽𝑃 ∗
𝑤𝑆

∗
𝑤 − 𝛾𝑃 ∗

𝑤𝐼
∗
𝑤 + 𝜙𝛽𝐼∗𝑤 −𝜑𝑃 ∗

𝑤,

𝛽𝑃 ∗
𝑤𝑆

∗
𝑤 + 𝜆𝐼∗𝑤
10

𝜖 +𝜑 =
𝑆∗
𝑤

,
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𝜙𝛽 + 𝜆+ 𝛿 +𝜑 =
𝛾𝑃 ∗

𝑤𝐼
∗
𝑤

𝐼∗𝑤
,

𝜑 =
𝜖𝑆∗

𝑤 + 𝛿𝐼∗𝑤
𝑇 ∗
𝑤

,

𝑑𝐿

𝑑𝑡
=
(
1 −

𝑃 ∗
𝑤

𝑃𝑤

)(
𝛽𝑃 ∗

𝑤𝑆
∗
𝑤 − 𝛾𝑃 ∗

𝑤𝐼
∗
𝑤 +𝜙𝛽𝐼∗𝑤 −𝜑𝑃 ∗

𝑤 − 𝛽𝑃𝑤𝑆𝑤 − 𝛾𝑃𝑤𝐼𝑤 + 𝜙𝛽𝐼𝑤 −𝜑𝑃𝑤
)

+
(
1 −

𝑆∗
𝑤

𝑆𝑤

)(
𝛽𝑃𝑤𝑆𝑤 + 𝜆𝐼𝑤 − (

𝛽𝑃 ∗
𝑤𝑆

∗
𝑤 + 𝜆𝐼∗𝑤
𝑆∗
𝑤

)𝑆𝑤

)
+
(
1 −

𝐼∗𝑤
𝐼𝑤

)(
𝛾𝑃𝑤𝐼𝑤 −

𝛾𝑃 ∗
𝑤𝐼

∗
𝑤

𝐼∗𝑤
𝐼𝑤

)
+(

1 −
𝑇 ∗
𝑤

𝑇𝑤

)(
𝜖𝑆𝑤 + 𝛿𝐼𝑤 −

𝜖𝑆∗
𝑤 + 𝛿𝐼∗𝑤
𝑇𝑤

)
,

(31)

𝑑𝐿

𝑑𝑡
=
(
1 −

𝑃 ∗
𝑤

𝑃𝑤

)[
𝛽𝑃𝑤𝑆𝑤

(
1 −

𝑃 ∗
𝑤𝑆

∗
𝑤

𝑃𝑤𝑆𝑤

)
− 𝛾𝑃𝑤𝐼𝑤

(
1 −

𝑃 ∗
𝑤𝐼

∗
𝑤

𝑃𝑤𝐼𝑤

)
+ 𝜙𝛽𝐼𝑤

(
1 −

𝐼∗𝑤
𝐼𝑤

)
−𝜑𝑃𝑤

(
1 −

𝑃 ∗
𝑤

𝑃𝑤

)]

+
(
1 −

𝑆∗
𝑤

𝑆𝑤

)[
𝛽𝑃𝑤𝑆𝑤 + 𝜆𝐼𝑤 −

(
𝛽𝑃 ∗

𝑤𝑆
∗
𝑤𝑆𝑤 + 𝜆𝐼∗𝑤𝑆𝑤

𝑆∗
𝑤

)]
+
(
1 −

𝐼∗𝑤
𝐼𝑤

)(
𝛾𝑃𝑤𝐼𝑤 −

𝛾𝑃 ∗
𝑤𝐼

∗
𝑤𝐼𝑤

𝐼∗𝑤

)
+(

1 −
𝑇 ∗
𝑤

𝑇𝑤

)(
(𝜖𝑆𝑤 + 𝛿𝐼𝑤) −

𝜖𝑆∗
𝑤 + 𝛿𝐼∗𝑤
𝑇𝑤

)
,

𝑑𝐿

𝑑𝑡
=
(
1 −

𝑃 ∗
𝑤

𝑃𝑤

)[
𝛽𝑃𝑤𝑆𝑤

(
1 −

𝑃 ∗
𝑤𝑆

∗
𝑤

𝑃𝑤𝑆𝑤

)
− 𝛾𝑃𝑤𝐼𝑤

(
1 −

𝑃 ∗
𝑤𝐼

∗
𝑤

𝑃𝑤𝐼𝑤

)
+ 𝜙𝛽𝐼𝑤

(
1 −

𝐼∗𝑤
𝐼𝑤

)
−𝜑𝑃𝑤

(
1 −

𝑃 ∗
𝑤

𝑃𝑤

)]

+
(
1 −

𝑆∗
𝑤

𝑆𝑤

)[
𝛽𝑃𝑤𝑆𝑤

(
1 −

𝑃 ∗
𝑤𝑆

∗
𝑤

𝑃𝑤𝑆𝑤

)
+ 𝜆𝐼𝑤

(
1 −

𝐼∗𝑤𝑆𝑤

𝑆∗
𝑤

)]
+
(
1 −

𝐼∗𝑤
𝐼𝑤

)[
𝛾𝑃𝑤𝐼𝑤

(
1 −

𝑃 ∗
𝑤𝐼

∗
𝑤

𝐼∗𝑤

)]
+(

1 −
𝑇 ∗
𝑤

𝑇𝑤

)[
𝜖𝑆𝑤

(
1 −

𝑆∗
𝑤

𝑆𝑤𝑇
∗
𝑤

)
+ 𝛿𝐼𝑤 −

(
1 −

𝐼∗𝑤
𝐼𝑤𝑇

∗
𝑤

)]
,

(32)

𝑑𝐿

𝑑𝑡
= −𝜑𝑃𝑤

(
1 −

𝑃 ∗
𝑤

𝑃𝑤

)2
− 𝛽𝑃𝑤𝑆𝑤

(
1 −

𝑃 ∗
𝑤𝑆

∗
𝑤

𝑃𝑤𝑆𝑤

)(
1 −

𝑃 ∗
𝑤

𝑃𝑤

)
− 𝛾𝑃𝑤𝐼𝑤

(
1 −

𝑃 ∗
𝑤𝐼

∗
𝑤

𝑃𝑤𝐼𝑤

)(
1 −

𝑃 ∗
𝑤

𝑃𝑤

)
+

𝜙𝛽𝐼𝑤

(
1 −

𝐼∗𝑤
𝐼𝑤

)(
1 −

𝑃 ∗
𝑤

𝑃𝑤

)
+ 𝛽𝑃𝑤𝑆𝑤

(
1 −

𝑃 ∗
𝑤𝑆

∗
𝑤

𝑃𝑤𝑆𝑤

)(
1 −

𝑆∗
𝑤

𝑆𝑤

)
+ 𝜆𝐼𝑤

(
1 −

𝐼∗𝑤𝑆𝑤

𝑆∗
𝑤

)(
1 −

𝑆∗
𝑤

𝑆𝑤

)
+

𝛾𝑃𝑤𝐼𝑤

(
1 −

𝑃 ∗
𝑤𝐼

∗
𝑤

𝐼∗𝑤

)(
1 −

𝐼∗𝑤
𝐼𝑤

)
+ 𝜖𝑆𝑤

(
1 −

𝑆∗
𝑤

𝑆𝑤𝑇
∗
𝑤

)(
1 −

𝑇 ∗
𝑤

𝑇𝑤

)
− 𝛿𝐼𝑤 −

(
1 −

𝐼∗𝑤
𝐼𝑤𝑇

∗
𝑤

)(
1 −

𝑇 ∗
𝑤

𝑇𝑤

)
,

(33)

Simplifying equations (31)- (33) gives:

= −𝜑𝑃𝑤
(
1 −

𝑃 ∗
𝑤

𝑃𝑤

)2
+ 𝑃1(𝑃𝑤,𝑆𝑤, 𝐼𝑤,𝑇𝑤) + 𝑃2(𝑃𝑤,𝑆𝑤, 𝐼𝑤,𝑇𝑤).

Where,

𝑃1(𝑃𝑤,𝑆𝑤, 𝐼𝑤,𝑇𝑤) = 𝜙𝛽𝐼𝑤

(
1 −

𝐼∗𝑤
𝐼𝑤

)
+ 𝛽𝑃𝑤𝑆𝑤

(
1 −

𝑃 ∗
𝑤𝑆

∗
𝑤

𝑃𝑤𝑆𝑤

)(
1 −

𝑆∗
𝑤

𝑆𝑤

)
+ 𝜆𝐼𝑤

(
1 −

𝐼∗𝑤𝑆𝑤

𝑆∗
𝑤

)(
1 −

𝑆∗
𝑤

𝑆𝑤

)
+

𝛾𝑃𝑤𝐼𝑤

(
1 −

𝑃 ∗
𝑤𝐼

∗
𝑤

𝐼∗𝑤

)(
1 −

𝐼∗𝑤
𝐼𝑤

)
+ 𝜖𝑆𝑤

(
1 −

𝑆∗
𝑤

𝑆𝑤𝑇
∗
𝑤

)(
1 −

𝑇 ∗
𝑤

𝑇𝑤

)
,

𝑃2(𝑃𝑤,𝑆𝑤, 𝐼𝑤,𝑇𝑤) = −𝛽𝑃𝑤𝑆𝑤

(
1 −

𝑃 ∗
𝑤𝑆

∗
𝑤

𝑃𝑤𝑆𝑤

)(
1 −

𝑃 ∗
𝑤

𝑃𝑤

)
− 𝛾𝑃𝑤𝐼𝑤

(
1 −

𝑃 ∗
𝑤𝐼

∗
𝑤

𝑃𝑤𝐼𝑤

)(
1 −

𝑃 ∗
𝑤

𝑃𝑤

)

− 𝛿𝐼𝑤 −
(
1 −

𝐼∗𝑤
𝐼𝑤𝑇

∗
𝑤

)(
1 −

𝑇 ∗
𝑤

𝑇𝑤

)
,

𝑃1 ≤ 0, whenever,

𝐼𝑤 ≥ 𝐼∗𝑤,𝑃𝑤𝑆𝑤 ≥ 𝑃 ∗
𝑤𝑆

∗
𝑤,𝑆𝑤 ≥ 𝑆∗

𝑤, 𝐼𝑤𝑆𝑤 ≥ 𝐼∗𝑤𝑆
∗
𝑤, (34)

𝑃2 ≤ 0, whenever,

𝑃𝑤 ≥ 𝑃 ∗
𝑤,𝑃𝑤𝑆𝑤 ≥ 𝑃 ∗

𝑤𝑆
∗
𝑤,𝑇𝑤 ≥ 𝑇 ∗

𝑤, 𝐼𝑤𝑇𝑤 ≥ 𝐼∗𝑤𝑇
∗
𝑤. (35)

Thus, 𝑑𝐿
𝑑𝑡

≤ 0 if the conditions in (34) and (35) hold.
11

Therefore, by Oludoun et al. [34], the positive equilibrium state is globally asymptotically stable in the positive region 𝑅4
+ .
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Table 1

Sensitivity Index of 𝑅0 for some estimated parameters.

Parameters Sensitivity index

𝛼 1

𝛽 1

𝜑 -0.66667

𝜖 -0.33333

Fig. 2. Transmission dynamics for 𝑃𝑤 .

4. Sensitivity analysis

This section outlines the method Oludoun et al. [34] used to identify the parameter values that significantly affect the fundamental 
reproduction number. Sensitivity analysis is important not only for exploratory research design only but also for understanding how 
important each parameter is to the spread of disease. Sensitivity analysis is mostly used to assess how well model predictions hold up 
to various parameter values. This will establish a direct link between the prevalence of water pollutants and the endemic equilibrium 
point, as well as between the early transmission of water pollutants and basic reproduction numbers. This aids in our understanding 
of the relative importance of each characteristic for the prevalence and transmission of contaminants in water. Extremely sensitive 
parameters need to be evaluated carefully because even a small deviation in one of these parameters can have a significant quantitative 
impact on the quantity of interest and, in turn, affect the qualitative outcomes. Conversely, determining the sensitivity index of an 
insensitive parameter doesn’t need a lot of effort because even a small divergence from the parameter won’t significantly alter the 
number of interests. To reduce the amount of water pollutants spreading into water sources, these factors ought to be the main 
consideration while figuring out how to regulate water pollution.

4.1. Explanation of sensitivity indices

Sensitivity indices are estimated to determine how a state variable varies in response to parameter changes. A normalized forward 
can be used to determine 𝑅0 sensitivity index to its dependent parameter. The normalized forward sensitivity index is the ratio of a 
variable’s relative change to that of a parameter. Partial derivatives can be used to define the sensitivity index for variables that are 
differentiable functions of the parameter.

Definition. The normalized forward sensitivity index of a differentiable variable 𝑅0 is defined as follows:

ℏ
𝑅0
𝓁 =

𝜕𝑅0
𝜕𝓁

𝓁
𝑅0

.

The sensitivity indices of 𝑅0 with reference to 𝛼; 𝛽; 𝜑 and 𝜖 denoted by ℏ𝑅0
𝛼 ; ℏ𝑅0

𝛽
; ℏ𝑅0

𝜑 and ℏ𝑅0
𝜖 respectively, are shown below. These 

indices denote the usefulness of each parameter in determining pollutant water transmission and incidence.

𝑅 𝜕𝑅0 𝛼 𝑅 𝜕𝑅0 𝛽
12

ℏ 0
𝛼 =

𝜕𝛼
×
𝑅0

= 1, ℏ 0
𝛽

=
𝜕𝛽

×
𝑅0

= 1,
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Fig. 3. Propagation dynamics for 𝑆𝑤 .

ℏ
𝑅0
𝜑 =

𝜕𝑅0
𝜕𝜑

× 𝜑

𝑅0
= 𝜑2(𝜑+ 𝜖)

(
−𝛼𝛽

𝜑(𝜑+ 𝜖)2
− 𝛼𝛽

𝜑2(𝜑+ 𝜖)

)
,

ℏ
𝑅0
𝜖 =

𝜕𝑅0
𝜕𝜖

× 𝜖

𝑅0
= −𝜖

𝜑+ 𝜖
,

Table 1 described the sensitivity index of 𝑅0, which measures how changes in various parameters affect the basic reproduction number 
𝑅0. A positive sensitivity index means that an increase in the parameter will increase 𝑅0 , while a negative index indicates that an 
increase in parameter will decrease 𝑅0. Sensitivity analysis helps prioritize which parameters have the most significant influence on 
controlling the spread of an infection, guiding public health interventions.

5. Numerical simulation

The following parameter values 𝛼 = 0.8, 𝛽 = 0.18, 𝛾 = 0.02, 𝜙 = 0.25, 𝜑 = 0.4, 𝜆 = 0.3, 𝜖 = 0.2, and 𝛿 = 0.5 as taken from Shah et 
al. [14] while some where assumed will be used for the numerical analysis and simulation to investigate the dynamics of the system 
of equations (1)-(4). The maple software is used for the simulation at the initial conditions 𝑃𝑤0 = 500, 𝑆𝑤0 = 400, 𝐼𝑤0 = 100, and 
𝑇𝑤0 = 0.

Fig. 2 illustrates the transmission dynamics of polluted water. It can be seen from the figure that the increasing water pollutants 
do not have any significant effect as the days go by, this signifies that polluted water sources keeps increasing if measures are not 
put in place. An increasing water pollutants do not show significant immediate effects over time due to factors like pathogen decay, 
population immunity, or natural dilution, the underlying long-term risks remain significant. If left unchecked, increasing pollution 
could lead to chronic health issues, environmental degradation, and even delayed disease outbreaks under the right conditions. 
Fig. 3 shows the transmission dynamics of the susceptible soluble water, the plot indicates a decreasing soluble water pollutants 
as the time increases which may be as a result of the availability of treatment present in the soluble water pollutants. An initial 
rise in pollutant levels as contamination enters the water system (e.g., from runoff, industrial waste, or improper waste disposal). 
However, as time progresses, treatment processes reduce the concentration of soluble pollutants, leading to a gradual decline in the 
amount of contamination, which suggests that treatment or other mitigation efforts are effectively reducing contamination over time. 
Also a similar dynamics can be noticed in Fig. 4, i.e. a decreasing insoluble water pollutant was seen. This could be as a result of 
effective treatment and awareness on not dumping insoluble waste to the water ways which could be the best management practice or 
insoluble water pollutants. Likewise, some insoluble organic pollutants may be broken down by microorganisms over time. However, 
this process is slower and more dependent on environmental conditions such as temperature, oxygen levels, and microbial presence. 
The key challenge is ensuring these pollutants are not just removed from the water column but also effectively managed in the long 
term to avoid environmental buildup. It is displayed from Fig. 5 an upward spike in the plot at the point 0 ≤ 𝑡 ≤ 2 that which may be 
as a result of positive adherence to treatment but a continuous decrease in the plot as the time increases was shown which could be 
as a result of negligence to treatment. Meanwhile, treatment negligence of water pollutants, whether soluble or insoluble, can lead to 
severe long-term consequences for public health, the environment, and even the economy. If treatment efforts are neglected, especially 
in managing waterborne pollutants, the impacts could include increasing levels of contaminants, a resurgence of waterborne diseases, 
13

and irreversible damage to ecosystems.
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Fig. 4. Proliferation dynamics for 𝐼𝑤 .

Fig. 5. Transmission dynamics for 𝑇𝑤 .

Fig. 6 depicts the effect of water pollution transmission 𝛽 on the soluble water compartments. It is shown from figure that as the 
rate of soluble water pollutants 𝛽 increases, the soluble water pollutants decrease. The increasing rate of 𝛽 increases the viability of 
soluble water pollutants in the water sources which poses threat to the water bodies and makes the water harmful for consumption 
and domestic uses. Fig. 7 reveals the effect of water pollution transmission 𝛾 on the insoluble water compartments, it can be seen 
that an increase in the rate of insoluble water pollutants increases the rate of the insoluble water pollutants 𝛾 . As 𝛾 increases, the 
water ways becomes dirty as a result of an increase in the insoluble water pollutants and this causes environmental degradation and 
consequential puts the lives of both humans and animals at risk of germs and probably extinction of some aquatic animals.

Fig. 8 illustrates the effect of treatments and controls on the soluble pollutants. It can be seen from plot that pollutants take longer 
to vanish without control unlike the control plot which treatment eradicates the pollutants just after 4 months. Also, Fig. 9 revealed 
the effect of treatments and controls on the insoluble water pollutants, the figure depicts that insoluble water pollutants diminished 
and got eradicated at 6 months but the control plot the pollutants were eradicated shortly after 2 months. This suggests that improving 
water quality should be encouraged in order to lower the prevalence of water pollution and consequential reduce the emerging of 
14

water borne diseases.
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Fig. 6. Soluble pollutant spread for 𝛽 .

Fig. 7. Impact of 𝛾 on insoluble pollutant.
15

Fig. 8. Optimal control effect on 𝑆𝑤 .
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Fig. 9. Insoluble pollutant 𝐼𝑤 control.

Fig. 10. Impact of 𝜖 on soluble pollutant.

Fig. 10 shows the effect of varying treatment of soluble water pollutants 𝜖 on the soluble water pollutants compartment. It can be 
seen clearly at as the treatment rate of soluble water pollutant is increased, it decreases the water pollutants and this will eventually 
fizzle out over time. Also Fig. 11 depicts the effect of varying treatment of insoluble water pollutants 𝛿 on the insoluble water 
compartment. The plots illustrate that as the treatment rate of insoluble water pollutant is increased, the pollutants decrease over

time. This shows that improving treatment will help improves the water from both soluble and insoluble water pollutants and this 
eventually gives safe water for drinking and aquatic animals will thrive in safe water.

6. Conclusion

The study focuses on the causative factors of water pollution which have been identified in this study as the soluble water pollutants 
and the insoluble water pollutants arising from natural occurrences due to anthropogenic that resulted in eutrophication needs to 
be guided. Indiscriminate harmful waste discharge and dispersion into the water bodies leads to water pollution. As such, constant 
management and monitoring of water resources for an enhanced quality and quantity is essential. Therefore, this study employed a 
coupled derivative mathematical model to investigate soluble and insoluble water pollutants. The insoluble pollutants are converted

to soluble pollutants through an applied control or treatment. To optimize the water quality, parametric sensitivities in relation to 
reproduction number are examined. From the computational analysis carried out, it was revealed that treatment still remains the 
only remedy for safe water. This means that, in order to minimize pollution, treatment of water pollutants before it is discharged 
into water bodies should be strictly adhered to. Sensitivity analysis conducted on the advection-diffusion parameters indicated that 
the dispersion of soluble pollutants was most sensitive to changes in flow velocity, while insoluble pollutants were highly affected by 
variations in sedimentation rates and particle size distribution.

Future research could expand on this study by developing more sophisticated multiphase flow models that capture a wider range 
16

of pollutant behaviors, including gas-phase pollutants or pollutants with more complex chemical reactions in water. This could further 
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Fig. 11. Rising effect of 𝛿 on insoluble.

improve the prediction and control of pollutant dispersion in diverse environments, such as industrial waterways or areas affected 
by chemical spills.
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