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Abstract: Developing polyols derived from natural sources and recycling materials attracts great
interest for use in replacing petroleum-based polyols in polyurethane production. In this study,
rigid polyurethane (PUR) foams with various isocyanate indices were obtained from polyols based on
rapeseed oil and polyethylene terephthalate (RO/PET). The various properties of the prepared PUR
foams were investigated, and the effect of the isocyanate index was evaluated. The closed-cell content
and water absorption were not impacted by the change of the isocyanate index. The most significant
effect of increasing the isocyanate index was on the dimensional stability of the resulting foams.
This is due to the increased crosslink density, as evidenced by the increased formation of isocyanurate
and increase of the glass transition temperature. Additionally, the influence on compression strength,
modulus, and long-term thermal conductivity were evaluated and compared with reference PUR
foams from commercially available polyols. Rigid PUR foams from RO/PET polyol were found to be
competitive with reference materials and could be used as thermal insulation material.

Keywords: rigid polyurethane foams; bio-based polyols; renewable materials; thermal conductivity;
dimensional stability; isocyanate index

1. Introduction

Polyurethanes (PURs) have been widely used for different applications, such as coatings, adhesives,
sealants, elastomers, resins, and foams. Most of these PUR materials are obtained from petrochemicals
which are non-renewable, have low sustainability, and cause environmental concerns for society [1].
Due to that, as well as increasing emphasis on issues concerning waste disposal and depletion of
non-renewable resources, the development and production of polyols derived from natural sources
and recyclable materials attracts great interest [2].

Over the past few decades, oils and fats of vegetable origin have served as a viable alternative
to petroleum resources [3]. Researchers have managed to obtain PUR materials with up to 20%–35%
of renewable material content [4]. Polyols from vegetable oils, such as soybean [5,6], castor [7,8],
palm oils [9,10], sunflower [11,12], and rapeseed oil (RO) [13,14] have been synthesized and investigated
as alternatives to petrochemical polyols in the production of PURs. Rapeseed is an especially important
oil plant in the temperate climate region. Its production is showing a growing trend, both in Europe
and around the world [15,16].
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Typical methods used to produce polyols from vegetable oils are applied for RO too: epoxidation
and opening of oxirane rings [13,17], transesterification with triethanolamine, and transamidation with
diethanolamine [17,18]. Hence, various RO polyols can be offered for the PUR market. According
to Zieleniewska et al., investigations of PUR foams from RO polyols show competitive advantages
such as lower water absorption (due to the hydrophobicity of fatty acids), higher thermal stability,
and improved biological properties for rigid PUR foams. However, lower compressive strength and
higher friability have been reported as disadvantages [13]. The incorporation of hard segments into the
structure of PUR foam improves mechanical properties [19]. For this purpose, polyols from recycled
polyethylene terephthalate (PET) can be successfully employed for PUR formulations to obtain rigid
foams [20–22].

PET is one of the most versatile commodity thermoplastics, widely used in a broad range of
applications, like fibres and disposable soft-drink bottles. The high popularity of PET as packaging
material and its non-biodegradability creates huge amounts of waste. Therefore, effective recycling of
PET is crucial [23,24]. PET waste can be recycled either physically or chemically.

One of the chemical recycling products of PET, that is suitable for obtaining PUR, is an aromatic
polyester polyol. There are various chemical recycling pathways for aromatic polyester polyol
synthesis: hydrolysis, aminolysis, methanolysis, and glycolysis [25]. Glycolysis is one of the most
popular chemical recycling methods which has been commercialized [26]. Different depolymerization
agents are employed (e.g., ethylene glycol [23,27], diethylene glycol (DEG) [28,29], propylene glycol [30],
etc.) in glycolysis to obtain oligomers or oligoester diols/polyols with hydroxyl terminal groups.
As mentioned before, aromatic polyester polyols improve the mechanical properties and thermal
stability of PUR foams. Furthermore, it partly solves PET waste problems and decreases PUR
dependence on petroleum feedstock. However, PET polyols’ high viscosity, fast crystallization,
and incompatibility with a blowing agent were reported as its drawbacks [31], whereas polyols
from plant oils do not have such problems. The combination of PET and natural oils, such as RO
and tall oil, eliminates the mentioned disadvantages of aromatic polyester polyols. Novel polyols
are compatible with a physical blowing agent, less viscous, and more stable against crystallization.
Therefore, these polyols are suitable for the preparation of rigid PUR foams [21,32,33].

Rigid PUR and polyisocyanurate (PIR) foams are one of the most energy-efficient thermal
insulation materials, which are mainly used in civil engineering as well as in the refrigeration industry.
PUR and PIR foams are also applied as impact absorption materials for structural and functional
engineering apllications [34]. PURs are made by the exothermic reactions between alcohols with two
or more reactive hydroxyl groups (-OH) per molecule (diols, triols, polyols) and isocyanates that
have more than one reactive isocyanate group (-NCO) per molecule (diisocyanates, polyisocyanates).
Isocyanurate forms via trimerization of isocyanate as a side reaction during PUR formation [35].

The amount of PUR bonds and isocyanurate rings is closely related to a parameter called
isocyanate index, which is the ratio of the equivalent amount of isocyanate used relative to the
theoretical equivalent amount times 100. A theoretical equivalent amount is equal to one equivalent
isocyanate per equivalent OH group. Higher isocyanate index incorporates more isocyanurate
rings and increases the non-renewable material concentration in the end-product. The amount of
isocyanurate rings in the polymer matrix affects the performance of PUR foams. The increase of glass
transition temperature (Tg), dimensional stability, thermal stability, as well as thermal insulation with
increasing isocyanate index value is reported [17,36]. Formulations for the production of rigid PUR
foams normally have an index between 105 and 125, and those for rigid PUR-PIR foams have an index
between 180 and 350 [37]. Hence, there is no precise limit where PUR foams end and PIR foams start.
The influence of isocyanate index on the performance of rigid PUR and PIR foams, based on polyols
synthesised from both PET and natural oil, have not been previously reported.

In the present study, rigid PUR foams were obtained from polyols based on RO and PET.
Different isocyanate indices (from 110 to 180) were used for development of PUR foam formulations.
The various properties (apparent density, foaming parameters, dimensional stability, water absorption,
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glass transition temperature, compression strength, and thermal conductivity) of the prepared PUR
foams were investigated. For comparison, three series of reference rigid PUR foams were obtained
from commercially available polyols. The isocyanate index effect on the foams’ performance was
evaluated, as well as optimal isocyanate index as a compromise of sustainable material content,
and foam performance was determined.

2. Materials and Methods

2.1. Materials

Aromatic polyester polyol based on RO and PET (RO/PET polyol, OH = 408 mg KOH/g) with
RO/PET molar ratio 1:4 was synthesized, as described in our previous work [30]. Three base polyols
for reference foams were chosen: aliphatic polyether polyol Lupranol 3300 (OH = 400 mg KOH/g,
functionality f = 3) from BASF; aromatic polyester polyol Neopolyol 380 (OH = 370 mg KOH/g, f = 3.3 [4])
based on industrial PET waste and purchased from NEO Group (Lithuania); and RO/triethanolamine
(RO/TEA) polyol (OH = 373 mg KOH/g, f = 2.6 [4]), which was synthesized by Latvian State Institute of
Wood Chemistry via RO transesterification with TEA, and contains long dangling chains in its structure.

Rigid PUR foams were prepared by reacting synthesized RO/PET or reference polyols with
different amounts of polymeric diphenylmethane diisocyanate (PMDI) (NCO group content = 31.5%)
purchased from BASF. Other reagents used were: high functional polyether polyol Lupranol 3422
(OH = 490 mg KOH/g) from BASF, catalysts CAT NP-10 and 30 wt% solution of potassium acetate
(KAc) in DEG from Performance Chemicals Handels, surfactant NIAX Silicone L6915 from Momentive
Performance Materials, flame retardant Levagard PP (tris (2-chloroisopropyl)-phosphate)) from Lanxess,
and physical blowing agent Solkane 365/227 (pentafluorobutane:heptafluoropropane = 87:13) from
Solvay. These materials were used without any additional prior treatment.

2.2. Preparation of Rigid PUR Foams

Rigid PUR foam series RO/PET was prepared from synthesized RO/PET polyol. In addition,
three series of reference foams were prepared. As mentioned before, three base polyols for reference
foams were chosen: Lupranol 3300, NEO 380, and RO/TEA. The obtained foam series were named
LUPR, NEO, and RO/TEA, respectively. Chosen isocyanate indices were 110, 120, 130, 150, and 180.
Foam samples were named SERIES NAME II = n, where n is the relevant isocyanate index. For example,
RO/PET II = 120 is an RO/PET series rigid PUR foam with an isocyanate index of 120.

Polyols’ systems were prepared by mixing all of its components according to the formulations
presented in Table 1.

Table 1. Formulations of rigid polyurethane (PUR) foams.

Component Application Amount, pbw 1

Rapeseed oil/PET (RO/PET) or reference polyol Base polyol 75
Lupranol 3422 Crosslinking agent 25
Levagard PP Flame retardant 20

NIAX Silicone L6915 Surfactant 2.0
30 wt% potassium acetate (KAc) solution in diethylene glycol Catalyst 1.0–1.5 2

PC CAT NP-10 Catalyst 1.6–4.0 3

Water Blowing agent 2.2
Solkane 365/227 Blowing agent 16

1 part by weight. 2 KAc was added only in PUR formulations with isocyanate indices 150 and 180. 3 4.0 pphp were
added for reference foams based on Lupranol 3300 to enhance reactivity.

The necessary amount of PMDI was calculated according to the equation:

mPMDI =
II

wNCO
·

(∑ OHn ·mn

1336
+ 4.67 ·mH2O

)
(1)
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where II is the isocyanate index; mPMDI, mn, and mH2O refer to the mass of PMDI, each polyol,
and summary water, respectively; wNCO refers to the content of NCO groups of PMDI (31.5%); and OHn

is the hydroxyl value of each polyol (mg KOH/g).
The calculated amount of PMDI was added to a polyol system, and the resulting mixture was

stirred vigorously at 2000 rpm for 10 s. Afterward, it was instantaneously poured into an open mold
with the dimensions 30 × 30 × 10 cm to obtain free-rise foams. After preparing all foam samples,
they were allowed to cure at ambient conditions for 24 h before any further tests.

2.3. Characterization of Rigid PUR Foams

The process of rigid PUR foam formation was monitored by measuring foaming parameters: the
duration of cream time, gel time, and tack-free time. The closed-cell content and apparent density
were measured according to the standards ISO 4590 and ISO 845, respectively. The compression
strength of rigid PUR foams were tested on testing machine Zwick/Roell Z100 (standard ISO 844,
maximum load-cell capacity 1 kN, test speed—10%/min, six specimens for each composition). Cylinder
specimens with diameter and height of ≈20 mm were cut with a drill press using a crown drill bit.
Water absorption was tested immersing PUR specimens into the water for seven days, according to
ISO 2896. The dimensional stability measurements were acquired according to ISO 2796. Two modes
were chosen: 28 days at 70 ◦C, ambient relative humidity (R.H.); and 28 days at 70 ◦C, R.H. = 97%.
The initial thermal conductivity of the rigid PUR foams was measured, as well as thermal conductivity
after 24 weeks. These tests were carried out with Linseis Heat Flow Meter 200 according to the ISO
8301 standard. The temperature range was +10...+30 ◦C, and dimensions of specimens were 200 ×
200 × 30 mm. The FTIR data was collected using an attenuated total reflectance technique with a
ZnSe and Diamond crystals on a Thermo Fisher Nicolet iS50 spectrometer. A total of 32 scans were
averaged at 4 cm−1 resolution for each spectrum. Dynamic mechanical analysis (DMA) was carried
out with Mettler Toledo DMA/SDTA861e: temperature range from 25 to 200 ◦C, ramp rate of 3 ◦C/min,
frequency of 1 Hz, amplitude 40 µm, and maximal force of 2 N. Compression oscillation mode was
used. Three cylinder specimens with a diameter of ≈16 mm and a height of ≈8 mm were tested for
each composition. Specimens were cut with a drill press using a crown drill bit. The maximum of the
peak in the viscoelastic parameter tan δ was used to define Tg.

3. Results and Discussion

3.1. Sustainable Material Content

Rigid PUR foams with different isocyanate indices were obtained by the free-rise method.
Renewable and recycled material content was calculated and is shown in Figure 1.
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The amount of renewable and recycled materials in RO/PET foams is between 11% to 14%.
In comparison, reference LUPR series foams contain up to 8%; NEO series, 15%; and RO/TEA series,
20%. The difference in sustainable material content between series of PUR foams depends mainly on
the sustainability of the base polyol. The largest quantity of non-renewables in PUR formulations is
made by PMDI. Hence, the sustainable material content decreases by rising isocyanate index.

3.2. Apparent Density and Closed-Cell Content

The obtained rigid PUR foams were characterized by apparent density and closed-cell content
(Table 2). Closed-cell content of RO/PET PUR foams was higher than 95 vol.% (on average,
97 vol.%) and was not impacted by the isocyanate index. Reference foams, LUPR (ρ = 40–43 kg/m3),
NEO (ρ = 40–45 kg/m3), and RO/TEA (ρ = 41–48 kg/m3) series, showed slightly lower closed-cell
content: 93 vol.%, 95 vol.%, and 93 vol.% on average, respectively. Closed-cell content 92–98 vol.% is
suggested as a typical rigid PUR foam characteristic [38]. All obtained rigid PUR foams are suitable for
thermal insulation according to this indicator.

Table 2. Apparent density and closed-cell content of RO/PET series rigid PUR foams.

Sample Apparent Density, kg/m3 Closed-Cell Content, vol.%

RO/PET II = 110 39.1 ± 0.4 95.2 ± 0.2
RO/PET II = 120 38.5 ± 0.1 98.0 ± 0.4
RO/PET II = 130 44.3 ± 1.3 97.6 ± 0.3
RO/PET II = 150 39.1 ± 0.4 98.7 ± 0.2
RO/PET II = 180 41.7 ± 0.1 97.4 ± 0.4

3.3. Reactivity of Foam Formation

Reactivity of the polyol system is characterized by foaming parameters, such as cream time (the
visible increase of foam volume), gel time (the transition from liquid to solid), and the tack-free time
(when the outer surface of the foam is not sticky anymore). Gel time is the starting point of a stable
network formation by intensive allophanate crosslinking as well as urethane and urea linkages [36].
Table 3 shows that all three foaming parameters increase with an increase in the isocyanate index.
The absolute amount of foaming catalyst, PC CAT NP-10, was identical for all foams in the RO/PET
series. Therefore, its part by weight to the total mass of foams decreased by increasing the isocyanate
index, and that increased the cream time. The increasing tendency of gel time is due to the increased
production of low molecular weight polymers, including the unreacted monomers, as the stoichiometric
imbalance between the reacting groups is increased. Because of their low free energy, the low molecular
weight species are typically exposed to the free surfaces, causing adhesiveness and prolonging tack-free
time [36,39].

Table 3. Foaming parameters.

Time, s

Sample Cream Gel Tack-Free

RO/PET II = 110 22 52 75
RO/PET II = 120 22 52 75
RO/PET II = 130 23 54 90
RO/PET II = 150 25 54 93
RO/PET II = 180 25 56 108

As mentioned earlier, the amount of foaming catalyst for reference foams was adjusted according
to the reactivity of their polyol mixes. The series RO/TEA and RO/PET polyol systems were required to
add less catalyst, as they showed higher reactivity. The higher reactivity was due to a tertiary amine
group in the main polyol structure [32].
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3.4. FTIR and DMA Results

It is expected that at a higher isocyanate index, the crosslinking density will increase. Two effects
contribute to this. First, the functionality of PMDI is 2.7 and its molecular mass is relatively small (aprox.
381 g/mol), so it will work as a crosslinking reagent by itself. Second, when an excess of isocyanate
is added, allophanates, biurets, and isocyanurates can be formed via side reactions. That will add
additional crosslink points in the PUR polymer matrix, which gives a decrease in Mc and an increase
in elasticity. Additionally, the increase in Tg is expected for higher crosslinking [40].

FTIR analysis was carried out for RO/PET series to judge the amount of isocyanurate formation.
An isocyanurate band appears at 1410 cm-1, and it is shown in Figure 2.
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Figure 2. FTIR spectra for RO/PET rigid PUR foams, band at 1410 cm−1.

The peak intensity for foams with II = 110–130 is very similar. It is clearly seen that for higher
isocyanate indices, more isocyanurates are formed. As no trimerization agent is added for formulations
with II = 110–130, for those foams, crosslinking due to the formation of isocyanurate is closely similar.
It agrees with the results of DMA. Tg was determined from damping factor curves, as shown in Figure 3.
Tg of PUR foams for RO/PET II = 120 and II = 130 are similar: 121 ◦C and 129 ◦C, respectively. A higher
increase of Tg is observed by increasing the isocyanate index, and it reached 172 ◦C for RO/PET II = 180.
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FTIR and DMA results prove that crosslink density increases because more crosslinks are formed
due to the formation of isocyanurates. Additionally, an increase in elasticity can be expected [36].

3.5. Compression Strength

Compression strength is strongly affected by apparent density. Therefore, compression strength
and modulus values for all samples were normalized for an apparent density of 45 kg/m3 using the
equations of Hawkins et al [41]. Relating to the impact of isocyanate index, both decrease and increase
in compression strength were reported. In the investigation of Javni et al., the soy polyol sample at
the lowest index (II = 110) showed the highest compression strength because of the highest apparent
density [42]. Additionally, Kim et al. showed a decrease of compression strength with an increase in
isocyanate value (from 90 to 130) due to the decrease in apparent density [36].

In our case, the compression strength of RO/PET PUR foams slightly increases with an increase in
isocyanate index (Figure 4a). It raises from 0.30 MPa for the sample with II = 110, to 0.37 MPa for the
sample with II = 180. The same growing trend is observed for compression modulus, which raises
from 6.35 MPa to 7.61 MPa (Figure 4b).
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Figure 4. Physical-mechanical properties: (a) The compression strength of the RO/PET and reference
rigid PUR foams; (b) Compression modulus of the RO/PET and reference rigid PUR foams.

Due to the enhancement of foam elasticity, anisotropic ratio (AR, strength ratio of parallel to
perpendicular direction) for RO-PET 1/4 II = 180 is smaller (AR = 1.79) than for samples with lower
isocyanate index (AR = 1.85–2.16). RO/PET shows higher compression strength than reference foams,
LUPR and RO/TEA series, but slightly lower than the NEO series. NEO performance could be explained
by the higher number of hard segments from recycled PET in its PUR foam matrix.

Reference foams show an unexpected decrease in compression strength and modulus with an
increase in isocyanate index from 110 to 130. It could be related to the lack of isocyanate trimerization
catalyst in their formulations, hence no addition crosslinks are formed and unreacted isocyanate
remains in foams. Nevertheless, all samples are within commercially acceptable limits. According
to Javni et al., typical industrial PUR rigid insulating foams have compression strength at 10% strain
between 0.15 and 0.25 MPa [42].

3.6. Dimensional Stability and Water Absorption

The results of water absorption are presented in Figure 5. No impact of isocyanate index is
observed for all series, with the exception of RO/TEA polyol based foam series, where a slight increase
in water absorption for samples with II = 130, 150, and 180 is observed. PUR foams with base polyols
containing aromatic structure (NEO and RO/PET series) show lower water absorption.
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Figure 5. Water absorption after seven days of immersion.

The increase of the isocyanate index improves dimensional stability due to the incorporation of
the isocyanurate ring into the PUR foam matrix [43]. The results of dimensional stability are presented
in Figure 6. Volume relative change after 28 days at 70 ◦C, ambient R.H., decreases from 4.0% to 1.0%
with increasing isocyanate index. At mode where R.H. = 97%, volume change for RO/PET series is
below 15% and reaches 3.4% when II = 180.
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Figure 6. Dimensional stability–volume relative change at two modes: (a) 28 days at 70 ◦C, ambient
relative humidity (R.H.); (b) 28 days at 70 ◦C, R.H. = 97%.

Although RO/PET polyols show better compatibility with blowing agents [32], which could
improve dimensional stability, it was not observed in the results of the present study. As the standard
ISO 2796 gives various options for modes and test duration, it is quite difficult to compare our results
with other investigations. For example, Kim et al. suggested that volume change at 80 ◦C and −30 ◦C
less than 1% in one day is desired for sufficient strength [36]. All of our series foams at 70 ◦C in one day
showed volume change less than 1%, except for RO/TEA II = 110 (∆V = 1.7%). Overall, starting from II
= 130 and up, the dimensional stability is considered to be within commercially acceptable bounds.

3.7. Thermal Conductivity

Initial thermal conductivity of rigid PUR foams with apparent density 42 ± 3 kg/m3 was measured,
as well as thermal conductivity, after 24 weeks. The initial values are given in Figure 7a, where one can
observe that foams from RO/PET polyol show as good thermal insulation property (average λ = 20.7 ±
0.7 mW/(m·K)) as foams from commercially used NEO (average λ = 21.2 ± 0.7 mW/(m·K)) and LUPR
(average λ = 21.9 ± 0.2 mW/(m·K)). Rigid PUR foams from RO/TEA polyol showed slightly worse
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results for thermal conductivity (λ = 22.9 ± 1.2 mW/(m·K)). Additionally, it can be observed that the
isocyanate index does not affect the initial thermal conductivity.
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Figure 7. Results of thermal conductivity: (a) Initial thermal conductivity; (b) Thermal conductivity
relative change in 24 weeks.

To evaluate the retention of thermal conductivity in the long term, Figure 7b is given with results
of thermal conductivity relative change in 24 weeks. The best retention of thermal conductivity
was shown in NEO series PUR foams from PET-based aromatic polyester polyol. The same results
were observed in previous investigations by our research group [21,32]. The retention of thermal
conductivity depends on the blowing agent gas diffusion rate through rigid PUR foam material. This is
related to the crosslink density of PUR polymer matrix, cohesion energy, and ability of macromolecular
conformation of PUR polymer chains. NEO and RO/PET polyol structure have aromatic groups
derived from PET polymer and additional carboxylic groups that allow the formation of hydrogen
bonds between polymer chains. Both of these aspects contribute to a stronger and more neatly packed
polymer matrix, which minimizes the outward flow of the carbon dioxide (λ = 14.6 mW/(m·K)) and
inward flow of air (λ = 24 mW/(m·K)), thus enhancing long-term thermal conductivity retention [44].
Galakhova et al. reported that carbon dioxide leaves rigid PUR foams already after 2.5 months [45].

No impact of isocyanate index on the retention of thermal conductivity for rigid PUR foams series
NEO, RO/PET, and LUPR is observed. Only for PUR foams based on RO/TEA polyol, does the increase
of isocyanate index improve retention. RO/TEA polyol chemical structure introduces long dangling
chains into the PUR polymer matrix, which causes a low packing degree of PUR macromolecules [46].
The excess of PMDI introduces aromatic groups and increases crosslink density. As mentioned
above, a more neatly packed polymer matrix is formed and long-term thermal conductivity retention
is improved.

4. Conclusions

Rigid PUR foams with isocyanate index 110–180 were obtained from polyols based on rapeseed oil
and polyethylene terephthalate. Additionally, reference PUR foams were obtained from commercially
available polyols: Lupranol 3300, Neopolyol 380, and rapeseed oil/triethanolamine polyol.

Closed-cell content of rapeseed oil/polyethylene terephthalate PUR foams was ≈97 vol.% and
was not impacted by the isocyanate index. Additionally, no effect of the isocyanate index on water
absorption was observed.

The values of foaming parameters increased with an increase in isocyanate index. The increasing
tendency of gel time was due to the lower molecular weight polymers formed, which are typically
exposed to the free surfaces, causing adhesiveness and prolonging tack-free time.

The increase of compression strength, compression modulus, and dimensional stability of RO/PET
PUR foams with the increase of isocyanate index were caused by the higher ratio of crosslinking due to
the formation of isocyanurate (evidenced by FTIR and DMA).
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Overall, the optimum complex of the physical and mechanical properties of RO/PET PUR foams
was achieved for formulations with isocyanate indices of 130–180. Therefore, it is possible to obtain
commercially competitive rigid PUR foams with sustainable material content up to 13%.
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