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Targeting laryngeal cancer cells with
5-fluorouracil and curcumin using
mesoporous silica nanoparticles
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Abstract
Objective: To explore the inhibitory and synergistic effects of 5-fluorouracil and curcumin on Hep-2 laryngeal cancer cells and
clarify the effect of mesoporous silica nanoparticles as drug carriers. Methods: The inhibitory effects of 5-fluorouracil and
curcumin on Hep-2 cells were detected using the CCK-8 assay. CompuSyn was used to calculate the synergistic effect of the
2 drugs. Flow cytometry was used to detect apoptosis and cell cycle arrest induced by 5-fluorouracil and curcumin. The drugs
were loaded into mesoporous nanoparticles. Western blotting was used to detect the expression of related proteins after
treatment. The growth of subcutaneous tumors in BALB/c nude after the intraperitoneal injection with drug-loaded mesoporous
silica nanoparticles was recorded. Results: 5-Fluorouracil and curcumin synergistically induced apoptosis and cell cycle arrest in
Hep-2 cells. Mesoporous silica nanoparticles as drug carriers enhanced the therapeutic effects of 5-fluorouracil and curcumin.
Conclusions: Mesoporous silica nanoparticles are expected to be effective drug carriers that enhance the synergistic effects of
5-fluorouracil and curcumin on laryngeal cancer.
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Introduction

Laryngeal cancer is a common head and neck cancer malignant

neoplasm with a high incidence and mortality rate. An esti-

mated 177,000 new cases of laryngeal cancer and 94,000

deaths worldwide associated with the disease occurred in

2018.1 Laryngeal cancer accounts for a quarter of all malignant

head and neck tumors and approximately 1% of all new cancer

globally. Male sex and older age are associated with greater

susceptibility to this malignancy.1,2 In the clinic, the standard

treatment for laryngeal cancer remains chemotherapy (alone or

combined with radiotherapy) after surgical resection.3 None-

theless, given the lack of specificity of traditional chemother-

apy, patients have a poor prognosis because of local recurrence

and metastasis.4,5 Thus, improving the chemotherapeutic effect

of drugs by endowing them with targeting activity could reduce
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undesired adverse effects on normal tissues and insufficient

dosages in diseased regions. Compared with monotherapy,

combination treatments have exhibited promising efficacy in

cancer therapy.6

5-Fluorouracil (5-FU) is a common clinical chemotherapeu-

tic drug for the treatment of laryngeal cancer, and it has been

widely used alone or in combination with other anti-cancer

drugs to treat many cancers since 1957.7 The main mechanisms

of action of 5-FU include the inhibition of thymidylate

synthase activity, DNA synthesis, and DNA repair via the

incorporation of its metabolites into the DNA/RNA of cancer

cells.8 All of these activities could ultimately lead to apoptosis

and G1 arrest.9,10 However, the efficacy of 5-FU in the clinic is

limited by dose-limiting toxicities and chemoresistance.11 To

overcome these problems, improving the utilization ratio of

5-FU and combining it with other anti-cancer drugs (such as

paclitaxel, cisplatin, and curcumin [CRC]12-14) with different

mechanisms of action could be promising strategies to enhance

its anti-cancer efficiency.

CRC is a natural extract from the rhizome of Zingiberaceae

plants15,16 that selectively induces apoptosis in cancer cells

at the G2 phase via p53 upregulation and mitochondrial

apoptosis.17,18 The compound can also stimulate other extrinsic

apoptotic pathways such as TNF-a and Fas signaling.19,20

Numerous studies have demonstrated the ability of CRC to

prevent and treat cancers without cytotoxicity on normal

cells.20,21 Additionally, CRC has been confirmed to have

synergistic effects with many anti-cancer drugs, leading to

reduced cytotoxicity and increased anti-cancer efficacy against

several cancer types.22-24 Research on CRC in laryngeal cancer

demonstrated that the compound could inhibit cell proliferation

and promote apoptosis through the PI3K/Akt and JAK/STAT

pathways.25,26 In addition, CRC enhances the therapeutic

effects of other drugs (such as cisplatin and anthocyanin27,28).

The combination of 5-FU and CRC has been studied for the

treatment of colorectal, breast, liver, and gastric cancers, in

which CRC enhanced the therapeutic efficacy and reduced the

toxicity of 5-FU.22 Thus, these two drugs in combination might

also have promising effects against laryngeal cancer.

Nanotechnology has been used to develop tumor-targeting

drug delivery systems29 that can reduce the dose and interval of

treatment.30 The functional nanomaterials that have been pri-

marily used as anti-cancer drug carriers include liposomes,

polymer nanoparticles, dendritic polymers, and nanomi-

celles.29 Mesoporous silica nanoparticles (MSNs) have been

proposed as excellent drug delivery systems31 because they

have a relatively large specific surface area and pore volume,

an adjustable pore diameter, and easily modified internal and

external surfaces.32 In addition, MSNs has been described as

dual-drug carriers for cancer therapy.33 Compared with normal

tissues and the bloodstream (pH 7.2 to 7.4), solid tumors usu-

ally have a weakly acidic (pH ¼ 6.0 to 7.0) and hyperthermic

environment. Further, cancer cells have a lower pH than the

tumor microenvironment.34-36 We previously reported dual-

responsive MSN-conjugated polymers with thermosensitivity

and pH-coupling sensitivity and proved that the drug-loaded

polymers had greater anti-cancer efficiency.32,37 Utilizing

these reported MSNs, we examined whether they could be used

to carry both 5-FU and CRC as a treatment for human laryngeal

cancer. We hope this strategy could maximize both the efficacy

and tumor-targeting activity of the combination regimen.

Using Hep-2 human laryngeal squamous cancer cells, we

investigated the anti-cancer effects of the combination of 5-FU

and CRC and their mechanism of action when loaded into

MSNs. Co-delivery of 5-FU and CRC using MSNs resulted

in a stronger anti-tumor effect, highlighting the potential of

this strategy for treating laryngeal cancer.

Materials and Methods

Cell Culture and Reagents

The human laryngeal squamous cancer cell line Hep-2 was

obtained from the Shanghai Institute of Cell Biology, Chinese

Academy of Sciences (Shanghai, China). Cells were cultured in

RPMI-1640 (Gibco, Thermo Fisher Scientific, Waltham, MA,

USA) containing 10% fetal bovine serum (Biological Indus-

tries, Beit Haemek, Israel) and maintained at 37�C in a 5% CO2

atmosphere. 5-FU and CRC were purchased from MedChem-

Express (Shanghai, China). MSNs conjugated with folic acid

and MSNs loaded with 5-FU and/or CRC were provided from

Prof. Xiaowei Song of State Key Laboratory of Inorganic

Synthesis and Preparative Chemistry, College of Chemistry,

Jilin University (Changchun, Jilin, China).32,37

CCK-8 Assay

Hep-2 cells (1 � 104) were seeded into each well in 96-well

culture plates and grown overnight as monolayers. Cells were

incubated with different concentrations of 5-FU and CRC for

different times. Cell growth and viability were assessed using

the CCK-8 assay (MedChemExpress). According to the man-

ufacturer’s instructions, the cell growth rate was calculated as

follows: cell viability (%) ¼ (absorbance of the experimental

group/absorbance of the control group) � 100. The absorbance

was measured using an iMark™ Microplate Reader (BIO-

RAD, Kyoto, Japan).

Drug-loaded MSNs

5-FU and CRC were dissolved in distilled water and 80% etha-

nol, respectively. A UV/Vis spectrophotometer was used to

measure the concentrations of 5-FU and CRC at 265 and 425

nm. The standard curves for 5-FU and CRC solutions were

established using concentration gradients. MSNs (100 mg)

were dispersed in 20-mL solutions of 5-FU (3 mg/mL) and

CRC (1 mg/mL). After being shaken for 24 hours at 37�C to

reach equilibrium, the drug-loaded MSNs were collected via

centrifugation. The encapsulation efficiency was calculated as

follows:

Encapsulation Efficiency ð%Þ ¼ We=W0 � 100%

2 Technology in Cancer Research & Treatment



where We is the weight of the drug loaded into MSNs and W0 is

the initial weight of the added drug.

The loading efficiency was calculated as follows:

Loading Efficiency ð%Þ ¼ We=W� 100%

where W is the weight of MSNs added.

Drugs Release Experiment

In total, MSNs loaded with 20 mg of 5-FU or CRC were dis-

persed in 5 mL of PBS at pH 5.0 and 7.2, respectively. The

solutions were shaken at 37�C. The 5-FU or CRC content of the

solutions was determined using a UV/Vis spectrophotometer at

each releasing time point.

Cellular Uptake Capacity of MSNs

For FITC loading, MSNs were mixed with 2 mL of FITC aqu-

eous solution (1 mg/mL). After being shaken for 24 hours at

37�C to reach equilibrium, the FITC-loaded MSNs were col-

lected via centrifugation. Hep-2 cells (2� 105) were seeded

onto coverslips in 12-well culture plates and grown overnight

as monolayers. The cells were incubated with FITC-loaded

MSNs at 37�C for 4 hours. Cells were then washed with PBS

three times and fixed with methyl alcohol for 20 minutes. After

three additional washes with PBS, cells were stained with

Hoechst 33258 for 5 minutes and then washed cells three times

with PBS. The coverslips were placed on microscope slides,

and the samples were visualized using an FV1000 confocal

laser-scanning microscope (Olympus, Tokyo, Japan).

Calculation of the Combination Index (CI)

The synergistic effects of 5-FU and CRC were calculated using

the CI and analyzed using CompuSyn software (ComboSyn,

Inc., Paramus, NJ, USA). Synergism was indicated by CI < 1.0,

additivity was indicated by CI ¼ 1.0, and antagonism was

indicated by CI > 1.0.38

Flow Cytometry

Hep-2 cells (3� 105) were seeded into each well of six-well culture

plates and grown overnight as monolayers. Cells were incubated

with 5-FU (20 mg/mL) and/or CRC (20 mg/mL) for 24 hours.

Apoptosis was assessed using an Annexin V-FITC/PI apoptosis

detection Kit (Wanleibio, Shenyang, China) according to the man-

ufacturer’s instructions. Cell cycle analysis was conducted using

PI/RNase Staining Solution (Sungene Biotech, Tianjin, China)

according to the manufacturer’s instructions. Both apoptosis and

cell cycle analysis were performed using a flow cytometer (guava

easyCyte, Merck Millipore, Burlington, MA, USA).

Western Blot Analysis

Western blot analysis was performed as previously described.39

Cells were harvested and lysed using RIPA buffer after

treatment with different drugs. For western blot analyses, 30

mg of total protein from each sample were separated on a 10%
SDS–polyacrylamide gel, transferred onto a PVDF membrane

(Merck Millipore), and incubated with the indicated antibodies.

Protein bands were visualized using a SuperSignal West Pico

Chemiluminescent Substrate kit (Pierce Biotechnology, Rock-

ford, IL, USA). Bands corresponding to the proteins of interest

were quantified by volume densitometry using ImageQuant

software (Molecular Dynamics, Sunnyvale, CA, USA). All

experiments were conducted on three separate occasions in

duplicate, and the results are presented as the mean + SD.

In Vivo Animal Studies

BALB/c-nu/nu female mice were purchased from Charles

River Laboratories (Beijing, China). All animal care proce-

dures complied with institutional guidelines, and ethical

approval was received from the Animal Experimental Ethics

Committee of Jilin University (approval number: 2019(53)).

Five groups of mice (n¼ 6 each) were injected subcutaneously

in the right flank with 5� 106 Hep-2 cells. Then, the five

groups of mice were randomly assigned to receive PBS,

unloaded MSNs, FU-loaded MSNs (20 mg/kg), CRC-loaded

MSNs (20 mg/kg), and 5-FU- and CRC-loaded MSNs once a

day for 12 days. Tumor volume was measured every 2 days

according to the following equation: tumor volume ¼ (tumor

length) � (tumor width)2/2.

Statistical Analysis

The data are expressed as the mean + SD. For both in vitro and

in vivo experiments, an unpaired t-test was used for single

comparisons between two groups. All experiments were

repeated at least three times. Statistical calculations were per-

formed using SigmaStat software (SPSS v20; IBM, Armonk,

NY, USA). P < 0.05 denoted statistical significance.

Results

Synergistic Effects of 5-FU and CRC against Hep-2 Cells

5-FU and CRC inhibit Hep-2 cell growth in vitro. To detect the

effects of 5-FU and CRC on cell growth, Hep-2 cells treated

with escalating concentrations of the drugs, and cell growth

was examined using the CCK-8 assay after 24, 48, and

72 hours. The results revealed a concentration-dependent

decline in cell viability (Figure 1A, B, and C). 5-FU had a

greater effect on cell viability at lower concentrations

(<30 mg/mL), whereas CRC had stronger effects at higher con-

centrations (>30 mg/mL).

Synergistic effects of 5-FU and CRC on viability. We next deter-

mined whether 5-FU and CRC could act in a synergistic man-

ner to suppress Hep-2 cell survival. As presented in Figure 1D

and E, the inhibitory effects of 5-FU on Hep-2 cell survival

were enhanced by 24 hours of co-incubation with 10 mg/mL
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CRC. Further analysis confirmed the synergistic effects of

5-FU and CRC on Hep-2 cell survival (CI ¼ 0.37).

Effects of 5-FU and CRC on apoptosis and cell cycle progression.
Flow cytometry and western blotting were performed to deter-

mine whether 5-FU and CRC suppress Hep-2 cell growth and

survival by inducing apoptosis and cell cycle arrest. As pre-

sented in Figure 2A and C, compared with the findings in the

untreated group (apoptosis rate ¼ 8.02 + 1.23%), Annexin

V/PI staining indicated that both 5-FU (apoptosis rate ¼
13.81 + 5.66%) and CRC (apoptosis rate ¼ 22.4 + 5.34%)

alone displayed significant pro-apoptotic effects. In addition,

the combination of these drugs resulted in a stronger pro-

apoptotic effect than noted for either treatment alone (apoptosis

rate ¼ 33.98 + 6.98%). Additionally, the expression of the

apoptosis indicator cleaved caspase 3 was also significantly

increased after treatment (Figure 4B and D). We next detected

the effects of 5-FU and CRC on cell cycle progression. As

illustrated in Figure 2B and D, compared with the results in

the untreated group (percentage of cells in each phase: G0/G1,

47.51 + 2.94%; S, 32.17 + 0.87%; G2/M, 20.32 + 1.48%),

5-FU arrested cells in G0/G1 (G0/G1, 57.84 + 0.53%; S,

27.65 + 0.85%; G2/M, 14.51 + 1.11%), whereas CRC

arrested cells in G2/M (G0/G1, 35.36 + 1.26%; S, 29.29 +
1.01%; G2/M, 35.35 + 2.5%). Meanwhile, cells treated with

both drugs accumulated in G2/M (G0/G1, 36.39 + 1.27%; S,

32.67 + 0.38%; G2/M, 30.77 + 0.81%), providing a possible

explanation for the synergistic effect of these 2 drugs with

different mechanisms of action.

MSNs as Carriers for 5-FU and CRC

Cytotoxicity and loading capacity of MSNs. To evaluate MSNs in

drug delivery, we first tested their cytotoxicity and loading

capacity. Cells exposed to different concentrations of MSNs

for 24 hours displayed no significant difference in cell viability

than untreated cells (Figure 3A). We then tested the toxicity of

MSNs over time. Similarly, 100 mg/mL MSNs exhibited no

cytotoxicity until 72 hours (Figure 3B). To confirm the loading

capacity of MSNs, FITC (molecular weight¼ 389) was used to

track the endocytosis and loading activity of MSNs. As pre-

sented in Figure 3C, after culture with FITC-loaded MSNs for

4 hours, fluorescence was detected in Hep-2 cells. Therefore,

we hypothesized that MSNs can serve as nanoparticles for

loading 5-FU and CRC.

MSNs can reinforce the effects of 5-FU and CRC on Hep-2 cells. To

confirm that MSNs can serve as drug delivery vehicles, we

first performed a cytotoxicity assay to determine the 50%
inhibitory concentration (IC50) of MSNs loaded with

5-FU and/or CRC (Figure 4A-F and Table 1). The IC50s

of both 5-FU and CRC in Hep-2 cells at 24, 48, and 72

hours were both significantly decreased when they were

loaded into MSNs.

Figure 1. Effects of 5-FU and CRC on Hep-2 cell viability alone and in combination. (A–C) The CCK-8 assay was used to analyze the effects of

5-FU and CRC on cell viability after 24, 48, and 72 hours. (D) Effects of 5-FU (gradient) and CRC (10 mg/mL) on cell viability. (E) The

synergistic effects were calculated using CompuSyn. 5-FU, 5-fluorouracil; CRC, curcumin.
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Drug encapsulation and loading efficiencies. The drug encapsula-

tion and loading efficiencies are used to evaluate drug delivery

systems. Physio-adsorption of drugs onto MSNs and the elec-

trostatic interactions between the positively charged moieties

of polymers contribute to the drug-loading capacity.30 The

loading capacity of MSNs for 5-FU and CRC is presented in

Table 2. Using our research conditions, the encapsulation effi-

ciencies of 5-FU and CRC were 30.8% and 67.8%, respec-

tively, and the loading efficiencies for these drugs were

18.53% and 13.56%, respectively.

Figure 2. Effects of 5-FU and/or CRC on apoptosis and cell cycle progression. Hep-2 cells were examined using a PI/Annexin V kit to assess

apoptosis (A and C) and stained with PI to assess cell cycle progression (B and D) after 24 hours of treatment with 5-FU (20 mg/mL) and/or CRC

(20 mg/mL). The results were obtained from three independent experiments and expressed as the mean + SD. *P < 0.05, **P < 0.01. 5-FU,

5-fluorouracil; CRC, curcumin.
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Release rate at different pH values. Solid tumors usually have a

weakly acidic (pH ¼ 6.0–7.0) environment. In addition, the pH

inside cancer cells is even lower (pH ¼ 5.0–5.5).34-36 Because

the MSNs we used in this research are pH-sensitive,32,37 we

conducted the release experiments under two pH conditions

(PBS buffer at pH ¼ 5.0 and pH ¼ 7.2). The release curves

are shown in Figure 3D and E. Both 5-FU- and CRC-loaded

MSNs exhibited higher release rates at pH 5.0, indicating that

MSNs preferentially release drugs in the tumor environment

and cancer cells than in normal tissues.

5-FU- and CRC-loaded MSNs downregulate oncogenes. We found

that MSNs loaded with both 20 mg/mL 5-FU and CRC more

strongly suppress viability than single drug-loaded MSNs after

24, 48, and 72 hours (Figure 4G). Thus, dual-loaded MSNs

can take advantage of both the synergistic effects of drugs

and the reinforcement function of MSNs. We then detected

the proteins influenced by 5-FU and CRC. As presented in

Figure 4H-J, western blot analysis demonstrated that protein

expression was altered by different degrees. Similarly

intense effects were observed for drug-loaded MSNs, sug-

gesting that MSNs could enhance the effects of anti-cancer

drugs on multiple levels.

In Vivo Study of MSNs Loaded with 5-FU and CRC

To investigate the efficacy of drug-loaded MSNs on tumor

growth, Hep-2 tumor-bearing nude mice (n ¼ 6) were

Figure 3. Cytotoxicity and drug-loading/release capacity of MSNs. The CCK-8 assay was used to analyze the viability of Hep-2 cells incubated

(A) for 24 hours with different concentrations of MSNs and (B) for 24, 48, or and 72 hours with the same concentration of MSNs (100 mg/mL).

(C) Confocal laser-scanning microscopy images displaying the cellular uptake of MSNs loaded with FITC. (D and E) The release rate of 5-FU-

and CRC-loaded MSNs at different pH values. MSNs, mesoporous silica nanoparticles; 5-FU, 5-fluorouracil, CRC, curcumin.
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randomly distributed into five groups: untreated, MSNs, 5-

FU-loaded MSNs, CRC-loaded MSNs, and 5-FU/CRC-

loaded MSNs. As illustrated in Figure 5A, the weight of the

mice was stable following treatment. Alternatively, there was

significant suppression of tumor growth in mice treated with

5-FU and/or CRC (Figure 5B and C) compared with the find-

ings in the untreated group. These results indicate that MSNs

could be safe chemotherapeutic drug carriers in mice with

Figure 4. Effects of 5-FU and CRC were enhanced by MSNs. (A-F) The inhibitory effects of MSNs loaded with difference concentrations of

5-FU (A–C) and/or CRC (D–F) on Hep-2 cells after 24, 48, and 72 hours. (G) The inhibitory effects of unloaded MSNs and MSNs loaded with

5-FU (20 mg/mL) and/or CRC (20 mg/mL) on Hep-2 cells. (H) c-Myc, cyclin B1, survivin, and caspase 3 protein expression in Hep-2 cells treated

with 5-FU and/or CRC (free or loaded into MSNs) was examined using western blotting. (I and J) Quantitative analysis of protein expression as

measured via the optical density of each band relative to b-actin. The results were obtained from three independent experiments and expressed as

the mean + SD. **P < 0.05, **P < 0.01. 5-FU, 5-fluorouracil; CRC, curcumin; MSNs, mesoporous silica nanoparticles.
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tumors. Additionally, the smaller tumor volume in the 5-FU/

CRC-loaded MSN group also supported the potential of this

drug combination.

Discussion

Laryngeal cancer, a common malignant head and neck tumor

with a low survival rate and poor prognosis, accounts for a

quarter of all malignant head and neck tumors.1,2 Laryngeal

cancer can be caused by many factors, most of which are

related to genetic and environmental factors. Lifestyle habits

including smoking and drinking, biliary tract diseases, gas-

troesophageal reflux, and human papillomavirus infection

can all increase the risk of laryngeal cancer in the popula-

tion.40,41 At present, surgical resection combined with che-

motherapy/radiotherapy is the main therapeutic option for

laryngeal cancer.3-5 However, patients with advanced laryn-

geal cancer are prone to recurrence and metastasis after

surgery, resulting in poor prognoses.4,5 In addition, the com-

mon side effects of chemotherapy drugs also limit their anti-

cancer efficacy.42

The combination of different chemotherapeutic drugs may

reduce the dose of drugs, their toxicity, and multidrug resis-

tance.43-45 Recent studies illustrated that the combination of

5-FU and CRC can have great efficacy in the treatment of

various cancers, including colorectal, breast, liver, and gastric

cancers.12,23,46-49 As a widely used anti-cancer drug, the main

mechanisms of action of 5-FU include the inhibition of thymi-

dylate synthase activity, DNA synthesis, and DNA repair via

the incorporation of its metabolites into the DNA/RNA of can-

cer cells.8 However, the efficacy of 5-FU in the clinic is limited

by dose-limiting toxicities and chemoresistance.11 In studies of

laryngeal cancer, CRC was revealed to inhibit cell proliferation

and promote apoptosis through the PI3K/Akt and JAK/STAT

pathways.25,26 In addition, CRC can also stimulate cisplatin-

induced cell death through TRPM2 channel activation. Studies

illustrated that the anti-cancer effects of CRC might be related

to mechanisms such as proliferation, transformation, invasion,

metastasis, and angiogenesis.22 Meanwhile, extensive research

has found that CRC can sensitize various tumors to chemother-

apeutic agents including 5-FU.50 Hence, the combination of

5-FU and CRC might also have promising anti-cancer effects

against laryngeal cancer. However, the toxicity and side effects

caused by the lack of tumor targeting remain problems to be

addressed.

In recent years, the use of nanomaterials to design drug

carriers targeting tumor sites has been an important research

direction for tumor-targeting drugs.29 Nanomaterials can pre-

vent drugs from being removed or ingested by the kidneys and

liver, permitting them to remain in the blood circulation for a

long time and maintain a high concentration in tumor tissues.

Tumor-targeting drug carrier nanomaterials include liposomes,

polymer nanoparticles, dendritic polymers, and nanoparti-

cles.29 MSNs, as nanoparticle drug carriers, have a unique

structure and remarkable properties.31

In this study, Hep-2 cells were used to detect the effects of

5-FU and CRC on cell growth at different concentrations and

exposure durations. The results demonstrated that 5-FU was

more effective at low concentrations, whereas CRC was more

effective at high concentrations. In addition, the two drugs

produced a synergistic effect on tumor growth, providing a

reliable experimental basis for combined drug therapy in the

clinical treatment of laryngeal cancer. Given the low targeting

potential and high side effects of chemotherapies, in line with

previous research,32,37 we used tumor-targeting MSNs with

pH- and temperature-sensitive properties as carriers for 5-FU

and CRC. MSNs deliver drugs to tumor sites according to the

pH and temperature of the tumor environment. In addition,

their pore structure permits them to slowly release drugs. The

results illustrated that using MSNs to deliver two drugs to Hep-

2 cells significantly improved their anti-tumor efficacy. More-

over, an analysis of protein expression also proved that MSNs

loaded with drugs could influence the expression of tumor-

related proteins, enhance the anti-tumor effect of drugs, and

reduce the dosage of drugs required for efficacy. We also ver-

ified the therapeutic effect of MSNs on tumors through animal

experiments. In vivo experiments demonstrated that MSNs

could deliver drugs to tumors in mice, and no obvious toxicity

or side effects were observed. This study demonstrated that 5-

FU and CRC have synergistic anti-tumor effects, effectively

inhibiting the growth of laryngeal cancer cells. In addition,

Table 2. Loading capacity of MSNs for 5-FU and CRC.

5-FU CRC

Encapsulation efficiency (%) 30.8 + 1.33 67.8 + 1.58

Loading efficiency (%) 18.53 + 0.09 13.56 + 0.18

5-FU, 5-fluorouracil; CRC, curcumin

Table 1. Effects of 5-FU and CRC were enhanced by loading into MSNs

IC50

24 hours 48 hours 72 hours

Unloaded Loaded Unloaded Loaded Unloaded Loaded

5-FU 132.6 + 15.53 34.4 + 10.23 40.4 + 8.40 15.3 + 2.54 8.1 + 1.05 1.6 + 0.34

CRC 69.1 + 13.62 21.3 + 2.32 34.5 + 4.66 13.6 + 2.78 24.2 + 2.02 10.6 + 0.72

All data are presented as mg/mL.

5-FU, 5-fluorouracil; CRC, curcumin; MSNs, mesoporous silica nanoparticles; IC50, 50% inhibitor concentration
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MSNs as tumor-targeting drug carriers, can further enhance the

synergistic effects of 5-FU and CRC on laryngeal cancer.
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