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Abstract: Most current approaches applied for the essential identification of adulteration in edible
vegetable oils are of limited practical benefit because they require long analysis times, professional
training, and costly instrumentation. The present work addresses this issue by developing a novel
simple, accurate, and rapid identification approach based on the magnetic resonance relaxation fin-
gerprints obtained from low-field nuclear magnetic resonance spectroscopy measurements of edible
vegetable oils. The relaxation fingerprints obtained for six types of edible vegetable oil, including
flaxseed oil, olive oil, soybean oil, corn oil, peanut oil, and sunflower oil, are demonstrated to have
sufficiently unique characteristics to enable the identification of the individual types of oil in a sample.
By using principal component analysis, three characteristic regions in the fingerprints were screened
out to create a novel three-dimensional characteristic coordination system for oil discrimination
and adulteration identification. Univariate analysis and partial least squares regression were used
to successfully quantify the oil adulteration in adulterated binary oil samples, indicating the great
potential of the present approach on both identification and quantification of edible oil adulteration.

Keywords: adulteration; oil identification; edible vegetable oils; relaxation fingerprints; low-field
nuclear magnetic resonance spectroscopy

1. Introduction

Edible vegetable oils are basic foodstuffs that are very commonly used worldwide.
Many different types of commercial vegetable oils are currently available, which range
from traditional and generally inexpensive canola oil, peanut oil, soy oil, and sunflower
oil to more exotic and expensive flaxseed oil and olive oil. Although most commercially
available edible vegetable oils are produced by responsible vendors, economic motivations
have led to the unreported adulteration of vegetable oils with less expensive vegetable
oil substitutes by unscrupulous vendors [1,2]. This is a serious issue not only because it
represents consumer deception, but also because it can lead to health and safety issues [3].
Therefore, the identification of adulteration in edible vegetable oils represents an essential
operation that must be conducted to protect consumers from unreported adulteration.

A number of conventional analytical techniques have been applied for identifying
adulteration in edible vegetable oils, which include gas chromatography (GC) [4], high-
performance liquid chromatography (HPLC) [5], and GC combined with mass spectrometry
(GC-MS) [6]. However, these techniques are destructive, and often require laborious and
time-consuming sample pretreatment and preparation. These issues have been addressed
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by the application of non-invasive analytical techniques requiring very little sample pre-
treatment and preparation, such as near-infrared (NIR) spectroscopy [7], mid-infrared
(MIR) spectroscopy [8], Raman spectroscopy [9], fluorescence spectroscopy [10], electronic
nose (e-nose) systems [11], ion mobility spectrometry (IMS) fingerprints [12], ultraviolet–
visible (UV–Vis) spectroscopy [13], and high-resolution nuclear magnetic resonance (NMR)
spectroscopy [14–16]. However, most of these approaches have limited practicality owing
to the need for long analysis times, professional training, and high-cost instrumentation.
Therefore, the development of relatively simple, accurate, and rapid approaches for identi-
fying adulteration in edible vegetable oils is urgently required for supporting both public
safety and business interests worldwide.

These issues can be potentially addressed by low-field NMR (LF-NMR) spectroscopy,
which has been widely used as a powerful analytical tool in food analysis for quality
monitoring and process supervision [17–20]. For example, Ancora et al. [21] demonstrated
that LF-NMR relaxation measurements could be applied to determine the occurrence
of adulteration in EVOO samples when mixed with four different edible vegetable oils.
Moreover, Wang et al. [22] applied this methodology to detect the adulteration of sesame
oil samples with soybean oil, and the adulteration ratios were estimated using principal
component analysis (PCA) and partial least squares (PLS). Similarly, Zhu et al. [23] applied
discriminant analysis (DA) for estimating the adulteration ratios of peanut oil adulterated
with soybean oil, rapeseed oil, or palm oil based on LF-NMR relaxometry measurements.
The accuracy of edible oil adulteration detection and analysis based on these LF-NMR re-
laxometry techniques has been further enhanced by applying machine learning algorithms,
such as support vector machine (SVM) [24], convolutional neural network (CNN) [25],
and combined SVM and CNN machine learning approaches [26]. These studies have
demonstrated the substantial potential for applying LF-NMR relaxometry for the rapid
identification of oil adulteration. However, subsequent research has demonstrated that the
identification capability of conventional LF-NMR relaxometry is often limited by the fact
that the relaxation properties of individual edible oils can be very similar to those of com-
plex mixtures including two or more edible oils [27]. As a result, the relaxation properties
of edible oils captured by conventional LF-NMR spectroscopy may lack the discrimination
capability required for meeting the needs of public safety and business interests.

The present study addresses this issue by increasing the discrimination capability
of LF-NMR relaxometry measurements for detecting and analyzing edible oil adulter-
ation through the application of magnetic resonance fingerprinting (MRF) [28–30]. The
relaxation fingerprints obtained for six types of edible vegetable oil, including flaxseed
oil (FO), olive oil (OL), soybean oil (SO), corn oil (CO), peanut oil (PO), and sunflower
oil (SFO), are demonstrated by PCA to have sufficiently unique characteristics to enable
unambiguous identification. The application of PCA to the relaxation fingerprints enables
the development of a novel three-dimensional (3D) coordination system for obtaining a
unique identifier for any arbitrary vegetable oil sample. This identifier provides a direct
and simple means of distinguishing between different edible vegetable oil samples when
correlated with clusters associated with each specific type of vegetable oil within that
characteristic coordination system. The proposed methodology is employed to investigate
the adulteration of FO samples by various concentrations of SO in detail. Moreover, the
application of univariate regression and PLS regression (PLSR) models is demonstrated
to enable the SO concentration in adulterated FO oil samples to be determined easily,
accurately, and quantitatively.

2. Materials and Methods
2.1. Oil Sample Preparation

A total of 28 edible vegetable oils were selected for this study, including 4 brands of
SO, 4 brands of PO, 5 brands of CO, 5 brands of OL, 5 brands of FO, and 5 brands of SFO.
All of the oil samples were purchased from a local market and were subjected to testing
within the warranty period.
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The adulteration of FO samples was investigated by adding SO in various concen-
trations of 10%, 20%, 30%, 50%, 70%, and 90% by volume using the brands randomly
selected. Each mixture sample was prepared in a vial which was shaken for 30 s to ensure
well-mixing. Another series of mixed FO-SO samples (20%, 30%, 40%, 50%, 70%, and 80%)
were prepared using the same brands of SO and FO used as a validation set.

All oil samples were sealed in a glass tube and kept in a refrigerator at 4 ◦C prior to
conducting NMR spectroscopy experiments.

2.2. NMR Measurements

All NMR measurements were conducted at a temperature of 28 ◦C using a VTMR20-
010V-I NMR spectrometer (Niumag Corp., Ltd., Shanghai, China) with a magnetic field of
0.5 T, which corresponds to a 1H resonance frequency of 21.3 MHz.

2.3. NMR Relaxation Fingerprints

The developed NMR pulse sequence employed for the present study is illustrated in
Figure 1a. The first part of this pulse sequence is a Carr-Purcell-Meiboom-Gill (CPMG) [31,32]
train used to record the T2 relaxation behavior of the sample. The signs of x and y represent
the phase of pulses (i.e., the 90◦ pulses and the 180◦ pulses), respectively. The delay τ1
and the number of loops n can be varied to select the different T2 relaxation components.
Following the CPMG train is a combination of a 90◦ pulse and a delay τ2. Varying τ2 can
introduce the T1 relaxation modulation into the NMR signals.
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Figure 1. (a) The NMR pulse sequence used for recording relaxation fingerprints. (b) The procedure for generating
relaxation fingerprints: (i). NMR relaxation data of a specific vegetable oil sample, which represents the signal intensity
f (τ1, n) acquired using the pulse sequence in (a); (ii). reference relaxation data f ref(τ1, n), which is a curved surface obtained
by fitting the average relaxation data of six different vegetable oil samples; (iii). heat map plot of the relaxation fingerprints
F(τ1, n) = f (τ1, n) − f ref(τ1, n).

We first examined the relaxation behaviors of the six vegetable oil samples by applying
the inversion recovery sequence and the above-defined CPMG sequence to obtain the T1
and T2 relaxation times of the samples, respectively [33,34]. The other experimental param-
eters applied were 4 scans, 90◦ pulse width of 2.72 µs, 180◦ pulse width of 5.12 µs, 50 ms
acquisition time, and a 2 s recycle delay time to allow all the protons to return to thermal
equilibrium. The T1 and T2 relaxation curves obtained for the six different vegetable oil
samples are presented in Supporting Information (Figure S1), and the corresponding T1 and
T2 values are listed in Table S1. The high degree of similarity in the relaxation behaviors
of the oil samples clearly demonstrates the need for applying more distinguishable NMR
relaxation fingerprints in the identification process.

The NMR relaxation fingerprints are two-dimensional (2D) characteristic NMR relax-
ation data that can be recorded by varying the values of τ1 (the 1st dimension) and n (the
2nd dimension) in a stepwise fashion. Accordingly, the relaxation fingerprints experiments
employed τ1 values of 100 µs, 150 µs, 200 µs, 250 µs, 300 µs, 400 µs, and 500 µs, and n
values of 3, 5, 10, 20, 40, 80, 100, 150, 200, 250, 300, 400, 500, 700, 900, 1200, 1500, and 2500.
Meanwhile, the value of τ2 was fixed at 100 ms in all experiments. Based on the above
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experimental conditions, recording one NMR relaxation fingerprint dataset takes about
15 min in total for one sample.

The procedure employed for generating the NMR relaxation fingerprints is illustrated
in Figure 1b. Applying the pulse sequence in Figure 1a with the above-defined parameters
for a specific oil sample produces a series of NMR free decay signals of intensity f under
the stepwise variation in τ1 and n. The signals were normalized by dividing the intensity
of the signal from the single pulse excitation experiment. The resulting 2D relaxation data
f (τ1, n) is plotted in Figure 1b(i). The same process is applied to six different vegetable oil
samples, and the average intensity of the 2D relaxation data for the six samples is plotted
as the reference signal f ref(τ1, n) in Figure 1b(ii). Finally, the NMR relaxation fingerprint of
the specific oil sample is obtained as F(τ1, n) = f (τ1, n) − f ref(τ1, n), which is plotted in the
form of a heat map in Figure 1b(iii). All the data processing procedures were performed
using Matlab software (Matlab R2020b, Mathworks, Natick, MA, USA).

2.4. Statistical Analysis

The original relaxation fingerprint data were normalized by dividing the intensity
of the signal acquired by using the single pulse excitation experiment with the same
experimental conditions. Edible oil analysis methods have relied heavily on PCA owing
to its high reliability and versatility [35–37]. In this work, PCA was applied to verify the
capability of the relaxation fingerprints approach in edible vegetable oils discrimination.
In PCA, the intensity values of the eight regions, named from A to H (Figure 3a), from the
relaxation fingerprints of the 28 samples form a 28 × 8-matrix as the input data. The data
were scaled by mean centering (Ctr). The matrix-type to analyze for PCA is a correlation
matrix, and the singular values decomposition (SVD) algorithm was used for matrix
decomposition. The loadings, which are the coefficients for principal components, are
obtained by calculating the eigenvector of the correlation matrix.

The univariate linear regression analysis and PLSR of relaxation fingerprints data
were performed to quantitatively detect the flaxseed oil adulterated with soybean oil.
3 SO samples, 4 FO samples, and 6 mixed FO-SO samples were randomly assigned to the
calibration dataset. The remaining 1 SO, 1 FO, and 6 mixed FO-SO samples were used as
the validation dataset. Univariate linear regression analysis used the intensity of B, E, G
region in the relaxation fingerprint as independent variables, and used the true adulteration
ratio as a dependent variable. In PLSR analysis, the intensity values of the eight regions
from the relaxation fingerprints of the samples in the calibration set and validation set
were considered as independent variables, and the adulteration ratios of the samples were
considered as a dependent variable. Accordingly, two matrices with the dimension of
13 × 9 and 8 × 9 were formed and analyzed. SVD was used to compute extracted factors,
and the cross-validation uses the leave-one-out scheme, leaving out one observation each
time and using other observations to construct the model and predict responses for the
observation [38]. Both univariate and multivariate statistical analyses were performed with
the software OriginPro 2021 (OriginLab Corporation, Northampton, UK) and p < 0.05 was
considered to be statistically significant.

3. Results and Discussion
3.1. Relaxation Fingerprints

The NMR relaxation fingerprints obtained in the form of heat map plots for single
brands of the six vegetable oils are presented in Figure 2. The NMR relaxation finger-
prints obtained for a number of other oil brands are presented in Supporting Information
(Figures S2–S4). It was observed that while the T1 and T2 relaxation behaviors of the oil
samples are highly similar, the NMR relaxation fingerprints of the six edible vegetable
oils differ widely, and clearly represent an objective basis for oil identification. We note
that, from a chemical point of view, edible vegetable oils are mainly composed of triglyc-
erides linked to various saturated fatty acids, polyunsaturated, and monounsaturated fatty
acids [39]. However, due to the different local molecular arrangements, the environments
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of the oil molecule in different oils often differ, resulting in the different local molecular dy-
namics and, in turn, the different relaxation properties, including the T1 and T2 relaxation
times [40]. In addition, trace paramagnetic metal ions (Iron, Manganese, etc.) may exist in
vegetable oils and influence the T1 and T2 relaxation times [41]. The relaxation properties
of different vegetable oils can be greatly amplified in the signals acquired by using the
pulse sequence in Figure 1. The different relaxation properties were further clearly revealed
by the difference in the heat maps in Figure 2.
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Figure 2. The NMR relaxation fingerprints in the form of heat map plots for six edible vegetable
oils, including soybean oil (SO), corn oil (CO), sunflower oil (SFO), olive oil (OL), flaxseed oil (FO),
and peanut oil (PO). Based on the experimental parameters described in the experimental section,
recording one NMR relaxation fingerprint dataset takes about 15 min totally.

Moreover, the NMR relaxation fingerprints obtained for a given edible oil are very
similar and distinctive regardless of the brand involved. The differences present in the
fingerprints of the same type of oils but having different brands probably can be attributed
to the different production processes and/or the different places of origin of raw material.
A study of the influences from the production process and the place of origin is the subject
of ongoing studies in our laboratory. Finally, the capture of equivalent f (τ1, n) data in the
eight regions A–H of the NMR relaxation fingerprint defined in Figure 3a for the same
FO sample using the same instrument on the same day but at different times (Figure S5)
demonstrates that the proposed method provides highly stable results. We note that based
on the experimental parameters described in the experimental section, recording one NMR
relaxation fingerprint dataset takes about 15 min totally for one sample.

3.2. Characteristic Coordinate System

The signal intensities of the NMR relaxation fingerprints in the eight regions A–H in
Figure 3a were initially used as the feature variables in PCA. These regions were tentatively
selected to reduce the amount of data and thus the characteristic dimensions. The selection
of these regions was based on visual comparison across the fingerprints of the six oil
samples. The application of PCA to the NMR relaxation fingerprints of the 28 vegetable oil
samples using the signal intensities of the eight regions as feature variables indicated that
the first two principal components (PC1 and PC2) explain 98.5% of the data variance, and
therefore represent the original data with reasonable reliability. The biplot results obtained
for the 28 different vegetable oil samples using the signal intensities of the eight regions as
feature variables are presented in Figure 3b along with the vectors associated with regions
A–H in PC1-PC2 space. The biplot presents distinct clusters for each oil type. However,
several data points in the SO cluster are very close to those in the SFO cluster, indicating
that the two principal components for the eight regions offer insufficient discriminative
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ability. In order to improve the discriminative ability, the representativeness of the regions
was considered. Three regions B, E, and G were focusing solely. The biplot results obtained
for the 28 vegetable oils using the signal intensities of the three regions B, E, and G as the
feature variables are presented in Figure 4a. It can be observed that the overlap between the
SO and SFO clusters has disappeared entirely, and the other four clusters remain reasonably
well distinguished from each other. This demonstrates the feasibility and potentiality of
the three regions for relaxation fingerprints in differentiating vegetable oil types.

Foods 2021, 10, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 3. (a) The eight regions (A–H) defined in a representative heat map plot for conducting PCA. (b) The biplot of the 
first and second principal components of PCA for 28 vegetable oil samples using the average signal intensity of the eight 
regions as variables. The ellipses represent the 95% confidence ranges associated with the corresponding edible vegetable 
oil clusters. 

3.2. Characteristic Coordinate System 
The signal intensities of the NMR relaxation fingerprints in the eight regions A–H in 

Figure 3a were initially used as the feature variables in PCA. These regions were tenta-
tively selected to reduce the amount of data and thus the characteristic dimensions. The 
selection of these regions was based on visual comparison across the fingerprints of the 
six oil samples. The application of PCA to the NMR relaxation fingerprints of the 28 veg-
etable oil samples using the signal intensities of the eight regions as feature variables in-
dicated that the first two principal components (PC1 and PC2) explain 98.5% of the data 
variance, and therefore represent the original data with reasonable reliability. The biplot 
results obtained for the 28 different vegetable oil samples using the signal intensities of 
the eight regions as feature variables are presented in Figure 3b along with the vectors 
associated with regions A–H in PC1-PC2 space. The biplot presents distinct clusters for 
each oil type. However, several data points in the SO cluster are very close to those in the 
SFO cluster, indicating that the two principal components for the eight regions offer in-
sufficient discriminative ability. In order to improve the discriminative ability, the repre-
sentativeness of the regions was considered. Three regions B, E, and G were focusing 
solely. The biplot results obtained for the 28 vegetable oils using the signal intensities of 
the three regions B, E, and G as the feature variables are presented in Figure 4a. It can be 
observed that the overlap between the SO and SFO clusters has disappeared entirely, and 
the other four clusters remain reasonably well distinguished from each other. This demon-
strates the feasibility and potentiality of the three regions for relaxation fingerprints in 
differentiating vegetable oil types. 

Figure 3. (a) The eight regions (A–H) defined in a representative heat map plot for conducting PCA. (b) The biplot of the
first and second principal components of PCA for 28 vegetable oil samples using the average signal intensity of the eight
regions as variables. The ellipses represent the 95% confidence ranges associated with the corresponding edible vegetable
oil clusters.

Foods 2021, 10, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 4. (a) The biplot of the first and second principal components of PCA for 28 vegetable oil samples using the three 
regions B, E, and G as the variables. (b) The 3D characteristic coordinate system with six vegetable oil clusters and their 
corresponding 95% confidence ellipsoids. 

Note that the biplot of PCA using all data in the fingerprints as the variables (i.e., 126 
variables from the 18 × 7-matrix) shows similar distinguishing effects for these vegetable 
oil samples (see Figure S6). This strongly indicates that the selected characteristic regions 
can be used to well describe the difference in the entire fingerprints of the different oil 
samples. 

The distinctiveness of the clusters associated with the six oil types can be increased 
considerably by plotting the signal intensities of the 28 NMR relaxation fingerprints in the 
B, E, and G regions within a 3D coordinate system, as shown in Figure 4b. Also included 
here are the 95% confidence ellipsoids corresponding to the individual clusters, where the 
different areas of the ellipsoids can be related to minor variations in the properties of the 
different oil brands obtained for a given oil type. In this case, even the 95% confidence 
ellipsoids obtained for the six corresponding vegetable oils are entirely distinct from each 
other. Accordingly, the 95% confidence ellipsoids can be correlated directly to the differ-
ent oil types. In this context, it is considered that the confidence ellipsoids can be used for 
evaluating the genuineness and quality of edible vegetable oils when they are generated 
from a sufficient number of samples for the same type of oil. 

3.3. Adulteration Identification 
The heat map plots obtained for FO and SO samples, and a series of mixed FO-SO 

samples with different adulteration ratios are presented in Figure 5. It can be observed 
that the heat maps vary systematically with an increasing proportion of adulteration. 
These changes in the heat maps are better represented by their plots within the 3D char-
acteristic coordinate system in Figure 6, along with the 95% confidence ellipsoids corre-
sponding to the FO and SO clusters. Included here is the identifier corresponding to a 
mixed FO-SO sample with an adulteration ratio of 10%, which is used to demonstrate the 
limits of the proposed approach. 

Figure 4. (a) The biplot of the first and second principal components of PCA for 28 vegetable oil samples using the three
regions B, E, and G as the variables. (b) The 3D characteristic coordinate system with six vegetable oil clusters and their
corresponding 95% confidence ellipsoids.

Note that the biplot of PCA using all data in the fingerprints as the variables (i.e.,
126 variables from the 18 × 7-matrix) shows similar distinguishing effects for these veg-
etable oil samples (see Figure S6). This strongly indicates that the selected characteristic
regions can be used to well describe the difference in the entire fingerprints of the different
oil samples.

The distinctiveness of the clusters associated with the six oil types can be increased
considerably by plotting the signal intensities of the 28 NMR relaxation fingerprints in the
B, E, and G regions within a 3D coordinate system, as shown in Figure 4b. Also included
here are the 95% confidence ellipsoids corresponding to the individual clusters, where the
different areas of the ellipsoids can be related to minor variations in the properties of the
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different oil brands obtained for a given oil type. In this case, even the 95% confidence
ellipsoids obtained for the six corresponding vegetable oils are entirely distinct from each
other. Accordingly, the 95% confidence ellipsoids can be correlated directly to the different
oil types. In this context, it is considered that the confidence ellipsoids can be used for
evaluating the genuineness and quality of edible vegetable oils when they are generated
from a sufficient number of samples for the same type of oil.

3.3. Adulteration Identification

The heat map plots obtained for FO and SO samples, and a series of mixed FO-SO
samples with different adulteration ratios are presented in Figure 5. It can be observed that
the heat maps vary systematically with an increasing proportion of adulteration. These
changes in the heat maps are better represented by their plots within the 3D characteristic
coordinate system in Figure 6, along with the 95% confidence ellipsoids corresponding to
the FO and SO clusters. Included here is the identifier corresponding to a mixed FO-SO
sample with an adulteration ratio of 10%, which is used to demonstrate the limits of the
proposed approach.
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The adulteration identification can be achieved by monitoring the position of the
identifier corresponding to an oil sample in the 3D characteristic coordinate system in
Figure 6. This is exemplarily demonstrated by using the identifiers of a series of mixed
FO-SO samples. It can be observed from Figure 6 that the identifiers of all adulterated
samples with adulteration ratios of 10% or greater reside outside the 95% confidence
ellipsoids of FO and SO, and that the identifiers move predictably from the FO cluster
to the SO cluster with increasing adulteration ratio. Similar observations were made for
the validation dataset samples (Figures S7 and S8). Meanwhile, it can be observed that
the mixed samples are distributed near the red dash line connected by the center points
of the two confidence ellipsoids, indicating that this approach has possibly potential to
identify adulterants in binary mixture oil samples. These results strongly indicate that
adulteration in edible vegetable oils can be well-identified using the proposed identifiers
and the 95% confidence ellipsoids in the characteristic coordinate system for the mixed
FO-SO oils with adulteration ratios of 10% or greater. Moreover, the uniformity in the
changes in the identifiers with increasing adulteration ratio suggests that the concentration
of the adulterant can be estimated from these results as well.

3.4. Quantitative Analysis of Oil Adulteration

The simplest means of conducting a quantitative analysis of adulteration for a binary
oil mixture is to assume that the changes in the signal intensities obtained in the B, E, and
G regions with respect to changes in the adulteration ratio are linear. Then, univariate
regression models can be obtained by fitting the known signal intensities captured for pure
and mixed samples in the individual B, E, and G regions to straight lines with respect to the
known adulteration ratios. Then, the unknown adulteration ratios of independent samples
can be estimated from the regression models based on their captured signal intensities in
the individual B, E, and G regions.

The individual regression models associated with the B, E, and G regions were estab-
lished based on the NMR relaxation fingerprints obtained for 3 SO samples, 4 FO samples,
and 6 mixed FO-SO samples in the calibration dataset. The remaining 1 SO, 1 FO, and
6 mixed FO-SO samples were used as the validation dataset. The regression model obtained
for the adulteration ratio (Y) versus the intensity in region B (X) is presented in Figure 7a.
The regression models obtained from regions E and G are presented in Figure S8. We note
that the assumption of linearity is well justified by the coefficient of determination R2 value
of nearly 1.0. The obtained linear function was applied to establish the Y values of the
samples in the validation dataset according to their known intensity values X, and the
predicted values are plotted with respect to their actual values in Figure 7b. A slope of 1.0
for the fitted line would represent a perfect correlation between the actual and predicted
values on average. Therefore, a slope value of 1.004 represents an excellent agreement,
which is further verified by the corresponding R2 value approaching 1.0. The performances
of all three regression models are presented in Table 1 according to the root mean square
error of calibration (RMSEC) obtained for the calibration dataset and the root mean square
error of prediction (RMSEP) obtained for the validation dataset. We note that the low RM-
SEC and RMSEP values obtained for all three of these models individually represent both
good calibration accuracy and good adulteration ratio prediction accuracy, respectively.

The application of PLSR has been demonstrated to be particularly useful when the
predicted variables have severe multicollinearity and the number of samples is less than
the number of variables [42]. Accordingly, PLSR was applied in addition to univariate
linear regression analysis in this study to establish a regression model with high prediction
accuracy (Figure 8). The best PLSR model was obtained with one factor, which has a
minimum root mean predicted residual sum of squares (PRESS) [43] value of 0.128 by
using cross-validation. The performance of this PLSR model is also listed in Table 1.
The corresponding PRESS plot, coefficients plot, and variable importance plot (VIP) are
presented in Supporting Information (Figure S8). It is shown that the PLSR model obtained
lower RMSEC and RMSEP values than the univariate regression models.
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Figure 7. (a) The univariate regression model for the signal intensities of FO, SO, and mixed FO-
SO samples in region B of the corresponding heat map plots as a function of the adulteration
ratio. (b) The plot of actual adulteration ratio values versus the values predicted by the univariate
regression model.

Table 1. Performance of univariate regression and PLSR (partial least squares regression) models.

Univariate
PLSR

Model 1 Model 2 Model 3

Input variables B E G A–H

Accuracy RMSEP 6.39% 5.88% 5.92% 5.46%
RMSEC 4.66% 4.66% 6.55% 4.45%

Calibration
Slope −1.027 −0.515 1.021 0.988

Intercept 0.978 0.949 0.829 0.005
R2 0.987 0.987 0.974 0.988

Validation
Slope 1.004 0.990 1.027 1.024

Intercept −0.031 −0.030 −0.056 −0.035
R2 0.967 0.976 0.984 0.977

Foods 2021, 10, x FOR PEER REVIEW 10 of 13 
 

 

Table 1. Performance of univariate regression and PLSR (partial least squares regression) models. 

 
Univariate 

PLSR 
Model 1 Model 2 Model 3 

 Input variables B E G A–H 

Accuracy RMSEP 6.39% 5.88% 5.92% 5.46% 
RMSEC 4.66% 4.66% 6.55% 4.45% 

Calibration 
Slope −1.027 −0.515 1.021 0.988 

Intercept 0.978 0.949 0.829 0.005 
R2 0.987 0.987 0.974 0.988 

Validation 
Slope 1.004 0.990 1.027 1.024 

Intercept −0.031 −0.030 −0.056 −0.035 
R2 0.967 0.976 0.984 0.977 

The application of PLSR has been demonstrated to be particularly useful when the 
predicted variables have severe multicollinearity and the number of samples is less than 
the number of variables [42]. Accordingly, PLSR was applied in addition to univariate 
linear regression analysis in this study to establish a regression model with high predic-
tion accuracy (Figure 8). The best PLSR model was obtained with one factor, which has a 
minimum root mean predicted residual sum of squares (PRESS) [43] value of 0.128 by 
using cross-validation. The performance of this PLSR model is also listed in Table 1. The 
corresponding PRESS plot, coefficients plot, and variable importance plot (VIP) are pre-
sented in Supporting Information (Figure S8). It is shown that the PLSR model obtained 
lower RMSEC and RMSEP values than the univariate regression models. 

 
Figure 8. The Plots of the known adulteration values with respect to the predicted values obtained 
by PLSR models for the different datasets: (a) the calibration dataset; (b) the validation dataset. 

We note that the developed method in the present work still has several limitations 
in oil adulteration identification. Firstly, the method only provides an approach to rapidly 
identify the presence of oil adulteration, and is difficult to analyze and identify the possi-
ble oil components in an unknown oil sample. In this context, therefore, the method can 
be considered as a good way for the quality identification of individual types of oils. Sec-
ondly, it must be noted that at least one of the components of an oil sample will always 
be known beforehand, and this should be considered in the analysis. However, this is not 
a significant issue because oil adulteration is generally restricted to the adulteration of one 
known specific expensive oil with inexpensive oils. Besides, the method in this work so 
far was applied only on the binary oil mixtures. In principle, the method should be appli-
cable to the more complicated oil mixtures. The related work is the subject of ongoing 
studies in our laboratory. 

  

Figure 8. The Plots of the known adulteration values with respect to the predicted values obtained
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We note that the developed method in the present work still has several limitations in
oil adulteration identification. Firstly, the method only provides an approach to rapidly
identify the presence of oil adulteration, and is difficult to analyze and identify the possible
oil components in an unknown oil sample. In this context, therefore, the method can be
considered as a good way for the quality identification of individual types of oils. Secondly,
it must be noted that at least one of the components of an oil sample will always be known
beforehand, and this should be considered in the analysis. However, this is not a significant
issue because oil adulteration is generally restricted to the adulteration of one known
specific expensive oil with inexpensive oils. Besides, the method in this work so far was
applied only on the binary oil mixtures. In principle, the method should be applicable to
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the more complicated oil mixtures. The related work is the subject of ongoing studies in
our laboratory.

4. Conclusions

The present work proposed a simple, accurate, and rapid identification approach for
identifying adulteration in edible vegetable oil samples based on their magnetic resonance
relaxation fingerprints obtained from LF-NMR spectroscopy measurements. The relaxation
fingerprints obtained for six types of edible vegetable oil, including FO, OL, SO, CO, PO,
and SFO, were demonstrated by PCA to have sufficiently unique characteristics to enable
unambiguous identification. The PCA results were applied for developing a novel 3D
coordination system to obtain a unique identifier for the arbitrary vegetable oil samples,
which was then demonstrated to provide a direct and simple means of distinguishing
between different edible vegetable oil samples when correlated with clusters associated
with each specific type of vegetable oil within that characteristic coordination system. It is
further demonstrated that the coordination system not only facilitates the identification
of individual edible vegetable oil types but can also identify the adulteration of the oil
samples comprising two different oils, demonstrating the great potential for the quality
identification of individual types of oils. Moreover, the application of univariate regression
and partial least squares regression models enables SO concentration in adulterated FO oil
samples to be determined easily, accurately, and quantitatively. In future work, we aim
to improve the accuracy of this approach by expanding the vegetable oil database with
more oil types, more samples within each type, and multiple adulterants for better define
clustering in a characteristic coordinate system, thus achieving widespread application of
this approach.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/foods10123068/s1, Table S1: T1, T2 relaxation time of six edible vegetable oils, Figure S1:
Relaxation curves of the six edible vegetable oils: (a) T2; (b) T1, Figure S2: NMR relaxation fingerprints
in the form of heat map plots obtained for four different brands of OL and FO, Figure S3: NMR
relaxation fingerprints in the form of heat map plots obtained for four different brands of CO and
SFO, Figure S4: NMR relaxation fingerprints in the form of heat map plots obtained for three different
brands of SO and PO, Figure S5: Results of method stability testing, Figure S6: NMR relaxation
fingerprints in the form of heat map plots for FO and SO samples, and a series of mixed FO-SO
samples with different adulteration ratios in the validation dataset, Figure S7: Signal intensities of the
B, E, and G regions of the heat map plots in Figure S6 within the 3D characteristic coordinate system
with the 95% confidence ellipsoids corresponding to the FO and SO clusters, Figure S8: (a) Root mean
PRESS values obtained for factors 1–8 from cross validation as a metric for determining the number
of significant factors in the PLSR model. (b) Variable importance plot (VIP) of independent variables
A–H. (c) Coefficient plot for the PLSR model.
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