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Abstract

Characterization of the evolutionary constraints acting on cis-regulatory sequences is crucial to comparative genomics and
provides key insights on the evolution of organismal diversity. We study the relationships among orthologous cis-regulatory
modules (CRMs) in 12 Drosophila species, especially with respect to the evolution of transcription factor binding sites, and
report statistical evidence in favor of key evolutionary hypotheses. Binding sites are found to have position-specific
substitution rates. However, the selective forces at different positions of a site do not act independently, and the evidence
suggests that constraints on sites are often based on their exact binding affinities. Binding site loss is seen to conform to a
molecular clock hypothesis. The rate of site loss is transcription factor–specific and depends on the strength of binding and,
in some cases, the presence of other binding sites in close proximity. Our analysis is based on a novel computational
method for aligning orthologous CRMs on a tree, which rigorously accounts for alignment uncertainties and exploits
binding site predictions through a unified probabilistic framework. Finally, we report weak purifying selection on short
deletions, providing important clues about overall spatial constraints on CRMs. Our results present a complex picture of
regulatory sequence evolution, with substantial plasticity that depends on a number of factors. The insights gained in this
study will help us to understand the combinatorial control of gene regulation and how it evolves. They will pave the way for
theoretical models that are cognizant of the important determinants of regulatory sequence evolution and will be critical in
genome-wide identification of non-coding sequences under purifying or positive selection.
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Introduction

Gene regulation is well recognized as a major determinant of

how an organism functions [1], and is also gaining recognition as

an important evolutionary substrate [2,3]. Transcription control is

one of the most common forms of gene regulation, and is known to

be implemented through regulatory sequences often in the

neighborhood of genes. Binding of transcription factors (TFs) to

certain positions within regulatory sequences enhances or inhibits

transcription and these bound sequences are called transcription

factor binding sites (TFBSs). In the case that a gene has to be

combinatorially regulated by multiple transcription factors, the

cognate TFBSs of those regulating factors tend to be clustered

together in ,1 Kbp-length sequences called ‘‘cis-regulatory

modules’’ (CRMs), or simply ‘‘modules’’ [4].

Despite significant recent efforts [5–8], we lack a good

understanding of the organizational principles of CRMs, e.g.,

the requirements on strengths and arrangements of binding sites

within a particular CRM. Inter-species comparison of modules

provides a major opportunity to improve our understanding of

such principles: (i) Evolution of CRM sequences is constrained by

functional requirements, so the study of CRM evolution should

allow us to infer which underlying features are more important,

and to what extent. (ii) One may hope to find certain evolutionary

signatures of CRM sequences through careful inter-species

analysis [9], greatly facilitating the identification of yet unknown

CRMs. (iii) The study of CRM evolution will also enable us to

better understand the path ‘‘from DNA to diversity’’ [10].

Transcription factor binding sites are commonly predicted

based on the assumption of their evolutionary conservation [11].

However, the exact nature of their conservation presents a

complex picture. The study by Moses et al. [12] in yeast revealed

that the rates of change of nucleotides of a TFBS depend on the

binding profile of that TF–the positions of more specific protein-

DNA binding permit lower rate of change. It should therefore be

possible to leverage the position-specific substitution pattern to

better predict TFBSs, as was done in [13]. This pattern has also

been reported in bacteria [14] and vertebrates [15], but not in

Drosophila. Given that this evolutionary pattern has already been

assumed in practical analysis [16], it seems worthwhile to verify it

in Drosophila. Moses et al. [13] further assumed that evolution of

nucleotides at different positions are independent, and existing

models of binding site evolution [17,18] rely on this assumption;

however, its validity is not obvious, given that a binding site

typically functions as a unit. Empirical evidence either for or

against this assumption has been lacking, except for a study in

bacterial evolution [19] (where the evidence was against it). There

is thus a clear need to test existing and new models of binding site

evolution on the multi-species data from different phyla.

Even the most fundamental assumption of regulatory compar-

ative genomics, that binding sites are evolutionarily conserved, has

been challenged–Emberly et al. [20] found that binding sites are
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not substantially more conserved than their adjacent sequences in

Drosophila; also, TFBSs are often found to have an unexpected

amount of flux (gain or loss) in known CRM sequences [21–23]

and in TF-bound regions in in vivo binding assays [24,25]. It has

been suggested that this flux is in part due to expression changes in

the genes controlled by these sequences [24], and in part due to

weak selection on individual sites even if the expression pattern of

the target gene is conserved [26]. However, quantitative

estimation of the strength of selection on binding sites has rarely

been made, and requires extensive data on sets of orthologous

binding sites. Moreover, the question of what leads to the observed

levels of TFBS loss and gain is far from being resolved. For

example, are the sites with higher binding affinities more likely to

be conserved in evolution? How does the local context, i.e., the

presence of other sites in the neighborhood, affect the probability

of loss of a site? Does the loss probability correlate with overall

selective pressure (substitution rate) of the CRM?

Cameron et al. [27] showed that insertions or deletions

(‘‘indels’’) may be a powerful predictor of CRM sequences in sea

urchin, as long indels were suppressed inside CRMs relative to

their neighboring sequences. Lunter et al. [28] speculated that

such a selection pattern may be particularly relevant to CRMs, as

the ‘‘fitness’’ of these sequences may be sensitive to the length of the

sequences between adjacent TFBSs, but not their exact nucleotide

composition. In several earlier studies involving a number of well-

studied CRMs in Drosophila, such a pattern has not been fully

observed [23,29]. So the following question remains: is indel-

purifying selection in regulatory sequences a general evolutionary

force, common to different organisms? The answer will affect our

understanding of CRM organization; e.g., how tolerant a CRM

sequence is to the change of spacing between TFBSs.

Earlier attempts to characterize the evolutionary patterns of

regulatory sequences used a few well-studied CRM sequences.

These studies were limited in their scope [21,23,29]. The

availability of 12 Drosophila species [30] and a large collection of

experimentally verified Drosophila CRM sequences [31] enable a

large-scale and more systematic study of the evolutionary patterns

of CRM sequences. Such studies also crucially depend on accurate

computational tools for sequence comparison. Commonly used

multiple alignment tools [32–34] that treat regulatory sequences as

no different from other types of DNA (or for that matter amino

acid) sequences are known to be a source of errors in evolutionary

analysis [35,36]. Even if the alignments are accurate, the step of

annotating gaps as insertions or deletions (usually done by ad hoc

parsimony criteria) may lead to inaccurate inferences [37]. We

have previously developed new methods for inter-species sequence

analysis, that are specially designed with the properties of

regulatory sequences in mind. These include (i) Morph [38],

which optimizes pair-wise sequence alignment by using the known

binding profiles of relevant transcription factors, and (ii) Indelign

[39], which uses a realistic probabilistic model of insertions and

deletions to annotate ‘‘indel’’ events in a given multiple alignment.

In this work, we take advantage of and extend these new methods

to study the CRMs involved in Drosophila early development. This

data set is ideally suited for such research because (i) the biological

system is very well studied [8] and the relevant transcription

factors are known, thereby limiting the false positives in binding

site annotation, and (ii) much of the previous work on metazoan

cis-regulatory evolution has been in this system [7,23,26]. Our

study significantly extends the earlier work done on this dataset

[40] and provides answers to many of the burning questions

alluded to above.

Results

TFBS-Conscious Multiple Alignment and Binding Site
Annotation

We begin with our findings on the evolutionary behavior of

transcription factor binding sites. We collected 68 D. melanogaster

CRMs and seven TF motifs involved in the control of anterior-

posterior segmentation in the blastoderm stage embryo. These

CRMs (source: REDfly [31]) have been experimentally deter-

mined, without using evolutionary conservation for discovery, and

are hence suitable for evolutionary studies without introducing

ascertainment bias. Orthologous sequences of these CRMs were

extracted from 11 other Drosophila species and were aligned by a

special multiple alignment program, called ‘‘ProbconsMorph’’.

This is a new computational tool that we have developed, and is

geared towards multiple alignments of regulatory modules in a

TFBS-conscious manner (see Methods). It avoids propagating

pair-wise alignment errors to the entire multiple alignment by

combining the ‘‘consistency transformation’’ (see Methods) of

Probcons [41] with posterior alignment probabilities obtained

from Morph [38]. We also repeated most of our tests using the

alignment tool ‘‘Pecan’’ [42] that does not use TF motifs, and we

point out differences, if any, between results from the two types of

alignment.

We annotated binding sites for each transcription factor, in the

subset of D. melanogaster CRMs that overlap with ChIP-bound

regions from Li et al. [43], if such data was available. Site

prediction was based on the p-value of match to the respective

PWM (‘‘position weight matrix’’) motif. We contrasted the density

of these binding site predictions (in ‘‘bound’’ CRMs) with those in

‘‘unbound’’ intronic sequences, and typically found 2–3 fold

enrichment in the former. (See Text S1, ‘‘False positive proportion

estimation’’.) We also predicted sites in each of the 11 other species

separately, using the same method. Considering a binding site to

be conserved if it is present in all other species in the D. melanogaster

subgroup, we found that conserved sites were 2–3 fold enriched in

CRMs than in intronic sequences. (See Text S1, ‘‘False positive

proportion estimation’’.) Our findings are consistent with earlier

Author Summary

The spatial–temporal expression pattern of a gene, which
is crucial to its function, is controlled by cis-regulatory DNA
sequences. Forming the basic units of regulatory sequenc-
es are transcription factor binding sites, often organized
into larger modules that determine gene expression in
response to combinatorial environmental signals. Under-
standing the conservation and change of regulatory
sequences is critical to our knowledge of the unity as well
as diversity of animal development and phenotypes. In this
paper, we study the evolution of sequences involved in
the regulation of body patterning in the Drosophila
embryo. We find that mutations of nucleotides within a
binding site are constrained by evolutionary forces to
preserve the site’s binding affinity to the cognate
transcription factor. Functional binding sites are frequently
destroyed during evolution and the rate of loss across
evolutionary spans is roughly constant. We also find that
the evolutionary fate of a site strongly depends on its
context; a pair of interacting sites are more likely to survive
mutational forces than isolated sites. Together, these
findings provide new insights and pose new challenges
to our understanding of cis-regulatory sequences and their
evolution.

Evolution of Drosophila Regulatory Sequences
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results in Li et al. [43], suggesting that the majority of predicted

sites are likely to be functional.

Binding sites from different species, that overlap each other in

the multiple alignment, are collectively referred to as an

‘‘orthologous TFBS set’’. Sites in such an orthologous set were

re-aligned locally in order to correct for any errors in their precise

alignment. Graphic visualizations (Figure S1) of these 12-species

CRM alignments, with binding site annotation, are available at

our site http://europa.cs.uiuc.edu/TFBSevolution/.

Binding Sites Have Position-Specific Substitution Rates
Different positions in binding sites have different contributions

to the binding affinity of the TF. Positions that form the core

regions for TF-DNA binding are more specific (less variation

allowed) in the motif, and should be under stronger selective

constraints. We thus expect different positions of TFBSs to have

different degrees of evolutionary conservation. The specificity of a

position can be expressed by the information content (IC) of the

corresponding column in the PWM (position weight matrix), and

the evolutionary rate by the number of substitutions in that

position in orthologous binding sites (see Methods). We observed

highly significant negative correlations between specificity and

evolutionary rate in five of seven TFs (i.e., all except Cad and Tll)

(Table 1; Figure 1; Figure S2). Thus, our results confirm earlier

similar findings in bacteria, yeast and vertebrates [12,14,15]. To

avoid a bias introduced by the use of PWM-guided alignments, we

used Pecan alignments (see Methods) of five closely related species

for this particular analysis. The results were reproduced when

using ProbconsMorph alignments (Table S1; Figure S3).

Selection Acts on Entire Binding Sites
While substitution rates in a TFBS are position-specific, this

does not imply that different positions evolve independently,

although such an assumption is often made in existing evolution-

ary models [17,18,44]. It is easy to see that the exact same

substitution can have drastically different effects on the function-

ality of a site, depending on how strong the site was to begin with.

A site that is close to optimal will probably remain a site even if a

crucial nucleotide is changed, thus this substitution is likely to be

fixed. On the other hand, the same nucleotide change inside a

weak site may have a larger functional consequence (the site loses

its binding functionality), thus will be less likely to be fixed. It

therefore seems plausible that the substitution rate of a position

should depend on the entire site.

To study evolution at the level of binding sites, as opposed to

nucleotides, we developed a simple mathematical model of binding

site evolution, called ‘‘Site-level Selection’’ or ‘‘SS’’ model, that

treats binding sites as single evolutionary units. Under this

population genetics-based model, the fitness of a site can take

two values, 1 if the binding affinity of this site is below some

threshold, and 1zs if the affinity is above this threshold, for sw0.

(We use the same threshold as that used for defining a binding

site.) The rate of substitution from site a to b, u a,bð Þ, is determined

by the fitness difference between a and b according to this

equation from population genetics theory [19,45]:

u a,bð Þ~2Nm a,bð Þ 1{exp {2 F bð Þ{F að Þð Þ½ �
1{exp {4N F bð Þ{F að Þð Þ½ � ð1Þ

where N is effective population size, m a,bð Þ is the mutation rate

of a to b, and F :ð Þ is the fitness function defined above.

When F að Þ~F bð Þ, we have u a,bð Þ~m a,bð Þ; when F bð Þ~
1zs, F að Þ~1, i.e., there is a site gain, we apply the approxima-

tion that e{2s&1{2s:

u a,bð Þ~m a,bð Þ 4Ns

1{e{4Ns
ð2Þ

When F bð Þ~1, F að Þ~1zs, i.e., there is a site loss, similarly

we have:

u a,bð Þ~m a,bð Þ 4Ns

e4Ns{1
ð3Þ

Note that N and s are inseparable in the above equations, so we

will use the single quantity 4Ns as measuring the intensity of

selection.

We tested how well this model fits the data on binding site

evolution, and compared it to another model, called the ‘‘Halpern-

Bruno’’ or ‘‘HB’’ model [17], which assumes positional indepen-

dence and purifying selection at each position of the TFBS. The

HB model has been used previously in cis-regulatory analyses (e.g.,

Moses et al. [13]). We considered predicted binding sites in D.

melanogaster and their respective aligned sequences (whether

designated binding site or not) in a closely-related species (D.

yakuba), arbitrarily calling the former sites ‘‘ancestral’’ and the

latter sites ‘‘descendant’’. Assigning an ‘‘energy score’’ to each

binding site based on its similarity to the PWM [46], we calculated

the difference in energy score between the ancestral and

descendant sites, and used this as the statistic to represent binding

site evolution. We computed, for each TF, the histogram of this

‘‘energy difference’’ statistic, and asked how well this histogram fits

theoretical predictions from simulations using either the SS or the

HB model (Table 2). For every motif, the SS model showed a

significantly better fit to the data than the HB model. (Table 2;

Figure 2A; Figure S4). (See Methods for details of how statistical

significance was estimated, while accounting for the additional free

parameter in the SS model. The results were reproduced when

using Pecan alignments; see Table S2 and Figure S5.) Our

estimated level of selection (4Ns in the range 8–19) is consistent

with an early estimate from bacterial regulatory sequences [19]

and our results argue in favor of models treating entire binding

sites as evolutionary units.

However, in absolute terms, neither model explains the data

very well (Figure 2A; Figure S4), and there is a greater amount of

Table 1. Correlation between the specificity of a TFBS
position and its evolutionary rate, with Pecan alignments.

Factor
Number of
TFBSs

Width of
motif

Correlation
coefficienta P-value

bcd 160 8 20.75 0.0153

cad 175 9 20.48 0.0969

dstat 129 9 20.83 0.0031

hb 170 8 20.69 0.0347

kni 85 12 20.82 0.0005

kr 177 11 20.53 0.0457

tll 185 10 20.38 0.1375

aSpearman’s correlation coefficient.
doi:10.1371/journal.pgen.1000330.t001

Evolution of Drosophila Regulatory Sequences
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conservation (energy differences close to zero) in the observed data

than predicted even with strong selection. A similar analysis was

performed with the evolutionary statistic being the number of

substitutions between ancestral and descendant sites, and we found

that there is an excessive number of fully conserved sites (no

substitutions) than expected under either the HB or the SS model

(Binomial test, p-value,10212) (Figure 2B; Figure S6; Figure S7

with Pecan alignments). This seems to indicate that for many sites,

the allowed binding affinities fall in some narrower range, instead

of being determined by a single threshold (lower bound). It has

been suggested that in order to produce the correct expression

pattern, a binding site may prefer some specific affinity level, and

both stronger and weaker binding tend to be less functionally

optimal [47]. Our results provide support for this hypothesis.

TFBS Turnover Follows a Molecular Clock
Even though TFBS loss and gain (henceforth called ‘‘turnover’’)

have been commonly observed, it is not clear whether these

changes are adaptive [48] or not [26]. If adaptive selection is the

main force behind binding site turnover, it is likely that the process

Table 2. Comparison of HB and SS models.

Factor Median SSEa
P-valueb 4Nsc

HB model SS model

bcd 0.19 0.10 ,2.20E-16 8

cad 0.23 0.16 ,2.20E-16 8

dstat 0.12 0.06 ,2.20E-16 11

hb 0.10 0.07 ,2.20E-16 15

kni 0.21 0.15 ,2.20E-16 19

kr 0.19 0.15 ,2.20E-16 8

tll 0.18 0.10 ,2.20E-16 17

aMedian values of sum of squared errors (SSE) from 100 different simulations
with the model.

bP-value from paired Wilcoxon signed-rank test.
cOptimal value of the free parameter of SS model.
doi:10.1371/journal.pgen.1000330.t002

Figure 1. Correlation between the specificity of a TFBS position and its evolutionary rate in transcription factors Dstat and Kni, with
Pecan alignments.
doi:10.1371/journal.pgen.1000330.g001

Figure 2. Distributions of evolutionary changes in observed binding sites (Observed), and those simulated by Halpern-Bruno (HB)
and Site-level Selection (SS) models for the transcription factor Bcd in D. melanogaster and D. yakuba species pair. (A) Distribution of
energy difference between a predicted binding site in D. melanogaster and its orthologous site in D. yakuba. The x and y axes represent energy
difference and frequency respectively. (B) Distribution of the number of substitutions between D. melanogaster and D. yakuba sites. The x and y axes
represent the number of substitutions and frequency respectively. SSE denotes the sum of squared errors between the observed and the simulation-
based distributions and ‘‘4Ns’’ denotes the optimal value of this free parameter of the SS model.
doi:10.1371/journal.pgen.1000330.g002
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will show a lineage-specific pattern; on the other hand, a molecular

clock has been known to be suggestive of the absence of adaptive

selection, as per the neutral theory of evolution [49]. We

considered the fraction of binding sites in D. melanogaster that have

an ortholog (above threshold) in a second species, and plotted this

fraction as a function of evolutionary divergence from the second

species (Figure 3; Figure S8). For all transcription factors, the

fraction of shared binding sites decreases linearly (R2.0.90,

Table 3) as the divergence time increases, a clear sign of a

molecular clock. One problem that may confound the analysis is

the presence of false positive binding sites predictions, which are

expected to follow a molecular clock. To examine this effect, we

calculated a correction term in the fraction of conserved sites, and

regressed this with divergence time, using the false positive

proportion as a free parameter. High values of the adjusted R2 were

obtained (Table 3), confirming the presence of the molecular clock.

We repeated the exercise with sites for randomly created PWMs, and

found a similar linear relationship. The rate of loss (negative slope of

the line) for these random sites is higher than the rates for binding

sites, for six of the seven transcription factors (Table 4), the difference

being significant for Bcd and Kr. We note that the sites predicted by

random PWMs do not represent neutral sequences, but reflect the

average constraint in CRM sequences. This has been shown

previously in [43]. The results were reproduced when using Pecan

alignments (Table S3 and S4; Figure S9).

Evolution of TFBSs Is Affected by Binding Site Strength
and Local Context

Having characterized some general patterns of TFBS evolution,

in this section we study what specific factors may influence the

conservation and turnover of binding sites.

Binding site strength. We defined the strength of a site as

the degree of match of this site to the corresponding motif, as

measured by a log-likelihood ratio (LLR) score ([46], also see

Methods). TFBS turnover was defined as the number of TFBS

losses in unit evolutionary time (see Methods for the exact

definition). We focused on TFBS losses to avoid a possible

ascertainment bias due to spurious binding site annotations when

analyzing binding site gain events. We observed significant

negative correlations between TFBS strength and turnover, for

six TFs (i.e., all but Cad) (Table 5; also see Methods for details of

test). We note that our alignment procedure, which uses motifs to

construct and adjust the alignment, will tend to put strong sites in

aligned positions and thus make them seem more conserved. We

tested for such a bias by repeating the exercise with random

PWMs that preserve the information content and G/C content of

the original motifs. For each of the six motifs with significant

correlations, their 100 randomized versions almost always had less

significant correlations (see Table 5). The results were reproduced

when using Pecan alignments (Table S5).

Figure 3. The fraction of D. melanogaster TFBSs that are conserved in a related species (y-axis), as a function of the divergence time
to that species (x-axis), for transcription factors Cad and Dstat.
doi:10.1371/journal.pgen.1000330.g003

Table 3. Goodness-of-fit of a linear model for the fraction of
conserved binding sites over divergence time.

Factor R2 (raw data)a Adjusted R2 (corrected data)b FPc

bcd 0.9813 0.9631 0.14

cad 0.9857 0.9693 0.29

dstat 0.9913 0.9831 0.26

hb 0.9114 0.9180 0.24

kni 0.9642 0.9883 0.31

kr 0.9698 0.9097 0.27

tll 0.9894 0.9515 0.32

aR2 from raw data without correcting for the false positive rate.
bAdjusted R2 from data corrected for the false positive rate.
cEstimated false positive rate obtained by regression.
doi:10.1371/journal.pgen.1000330.t003

Table 4. Comparison of loss rates of binding sites using real
and random motifs.

Random PWMs

Factor Loss rate Mean Stdev

bcd 0.1865 0.2530 0.0217

cad 0.1969 0.2444 0.0213

dstat 0.2471 0.2642 0.0172

hb 0.1470 0.1937 0.0211

kni 0.2315 0.2551 0.0170

kr 0.1811 0.2666 0.0172

tll 0.2147 0.2389 0.0191

These rates are without false positive correction.
doi:10.1371/journal.pgen.1000330.t004

Evolution of Drosophila Regulatory Sequences
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Constraint on CRM. Another potential determinant of

turnover is the overall evolutionary constraint on the CRM to

which the site belongs. We estimated the substitution rate for each

CRM using the Paml software [50] and correlated it with the

overall TFBS turnover rate of that CRM (see Methods). We found

a significant correlation only for one of the seven factors (Dstat, p-

value 0.0127, Table S8), but this finding was not confirmed by the

Pecan-based alignments (Table S9).

Homotypic clustering. A ‘‘homotypic TFBS cluster’’ [51] is

a group of binding sites of the same TF, often found in the

enhancers controlling early development in Drosophila. A

homotypic TFBS cluster is thought to impart redundancy to the

cis-regulatory apparatus, and should exhibit greater tolerance

towards the loss of sites as compared to a CRM that has only one

or two binding sites of the same factor. To test this, we computed

the degree of homotypic clustering in a CRM as the number of

putative D. melanogaster sites in the sequence (normalized by the

sequence length), and correlated it to the overall TFBS turnover

rate of the CRM (see Methods). However, no significant

correlation was observed (data not shown).

We next examined spatial proximity of homotypic binding sites

at a finer granularity: if two adjacent sites of the same factor are

closely located, there may be cooperative binding of the factor to

these sites, leading to stronger selective pressure. Such cooperative

binding by proximal sites is known for the Bcd transcription factor

[52]. We calculated, for each TFBS, the distance to the closest site

of the same factor and the distance was correlated with the

turnover rate (Table 6). We found significant positive correlations

for the factors Cad, Hb and Tll. The only difference from Pecan-

based alignments (Table S6) is the positive but weaker correlation

for Cad (p-value 0.15), perhaps due to misalignments (see

Discussion). Surprisingly, Bcd did not exhibit any significant

correlation in our tests with both types of alignments.

Proximity or overlap of heterotypic sites. Binding sites

often ‘‘interact’’ with sites of other factors in their neighborhood.

Such interactions may include, for example, cooperative binding to

DNA or short-range repression. We next examined the effect of

spatial context of ‘‘heterotypic’’ binding sites on evolutionary

constraint. In a procedure similar to that of Hare et al. [53], we

classified sites as belonging to the ‘‘proximal’’, ‘‘distal’’ or ‘‘overlap’’

class depending on whether the closest site of another factor was

within 10 bp, more than 10 bp away, or overlapping. We found sites

in the ‘‘overlap’’ or ‘‘proximal’’ categories to be more conserved

(present in all 12 species) as opposed to sites in the ‘‘distal’’ category

(p-value 4.3961025 in ProbconsMorph based alignments, p-value

0.001 in Pecan alignments, Hypergeometric test).

We next tested the effect of the above spatial categories

individually for each factor. Comparing the ‘‘proximal’’ and ‘‘distal’’

classes (Table 7, column ‘‘P vs D’’), we found Dstat and Tll sites to be

significantly more conserved when having a proximal partner site (p-

value 0.021 and 0.027 respectively). The same results were found

using Pecan alignment (Table S7). Interestingly, Bcd sites had a

significant (p-value 0.012) tendency to be non-conserved (i.e., not

present in all 12 species) if they had a proximal partner (Table 7).

In a similar comparison of the ‘‘overlap’’ class with its

complement (‘‘proximal or ‘‘distal’’) (Table 7, column ‘‘O vs

NO’’), Cad, Hb, and Kr sites showed a tendency to be more

Table 5. Correlation between TFBS strength and TFBS turnover rate.

Factor Number of TFBS sets Correlation coefficienta P-value Random PWMb

bcd 163 20.71 0.0002 0

cad 168 20.30 0.0974 18

dstat 129 20.46 0.0221 11

hb 168 20.62 0.0030 0

kni 86 20.58 0.0025 4

kr 191 20.72 0.0002 0

tll 188 20.86 ,2.20E-16 0

aSpearman’s correlation coefficient.
bNumber of random PWMs (out of 100 simulations) that show greater correlation than the real motif.
doi:10.1371/journal.pgen.1000330.t005

Table 6. Correlation between the distance between two
adjacent homotypic sites and TFBS turnover rate.

Factor Number of TFBSs Correlation coefficienta P-value

bcd 157 0.04 0.3969

cad 162 0.38 0.0184

dstat 112 0.00 0.5000

hb 156 0.30 0.0406

kni 82 0.24 0.1270

kr 183 0.14 0.2212

tll 178 0.30 0.0479

aSpearman’s correlation coefficient.
doi:10.1371/journal.pgen.1000330.t006

Table 7. Binding site conservation and its spatial context.

Factor P vs Da O vs NOb

bcd 0.9981* 0.5910

cad 0.5626 0.0015

dstat 0.0213 0.8981

hb 0.2141 0.0174

kni 0.4784 0.2425

kr 0.2071 0.0387

tll 0.0275 0.0806

Numbers are P-values from hypergeometric test.
aP means proximal and D means distal.
bO means overlap and NO means non-overlap.
*The opposite p-value is 0.0124.
doi:10.1371/journal.pgen.1000330.t007
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conserved when having an overlapping partner (p-values 0.002,

0.017, and 0.039 respectively). These results were reproduced

when using Pecan alignments (Table S7).

In summary, five of the seven motifs showed a significant

tendency to be conserved when they had a partner either

overlapping with or proximal to them. Kni was the only motif

examined without such a property, and it is worth noting that Kni

has the fewest sites in our collection. We also repeated the above

test with the requirement that the ‘‘partner’’ site be that of a

repressor (Kni, Kr) when studying an activator TF (Bcd, Cad, Dstat)

and vice versa. We found a significant result only for one TF (Cad,

p-value ,0.05), and not for other factors, potentially due to small

sample sizes (data not shown).

Deletions but Not Insertions Are Significantly
Underrepresented in CRMs

Finally, we analyzed insertions and deletions in known

regulatory sequences, to study the extent of indel-purifying

selection. Among 370 non-overlapping D. melanogaster CRMs from

the REDfly database [31], we chose 128 CRMs that have clear

orthologous sequences in D. simulans, D. yakuba, and D. erecta. This

choice of species was dictated by simulation-based assessment of

the limits of our indel annotation capability (see Methods). Because

insertions and deletions (indels) may have different functional

consequences on CRMs, we treat them differently. We estimated

the number of short insertions and deletions in CRMs using Pecan

[42] for alignment and Indelign [39] to annotate the indels. For

each CRM, the insertion or deletion count was defined as the

average of the respective counts in the four species, weighted by

the branch length. We compared indel frequencies in CRMs to

those in ‘‘background sequences’’, chosen to be the regions

flanking the CRMs. We found that (i) the number of short

deletions (less than 20 bp in length) in CRMs is significantly

smaller than that in background regions (paired Wilcoxon signed-

rank test, p-value 0.0074; 1970 in CRMs and 2183 in length-

matched background regions) and (ii) there was no statistically

significant difference (p-value 0.5464) in the number of insertions

(1932 in CRMs and 1870 in background). The number of long

indel events (20 bp or longer) in our data set was relatively small

(CRM: 107 insertions and 175 deletions, background: 115

insertions and 178 deletions) and no significant difference was

observed in this regard between CRMs and background regions.

Another related question is the indel pattern in the ‘‘spacer’’

region between CRMs and transcription start site (TSS) of the

target genes. Transcriptional regulation depends on the commu-

nication between CRMs and promoter sequences [54], which may

pose some requirements on the length of the spacer sequences. We

thus repeated the above analysis on these spacer regions. (We only

consider 63 upstream CRMs in this experiment.) No significant

differences in frequencies of insertions or deletions were observed

between these regions and background sequences (data not

shown).

Our results show that indel-purifying selection exists on CRM

sequences, but such selection acts most strongly on deletions. We

did not find clear suppression of long-indels, as has been observed

before [27].

Discussion

The study of cis-regulatory evolutionary patterns has provided

important insights on regulatory sequence function [23,55], and

proves valuable for prediction of these sequences in genomes

[9,56]. Yet, our understanding of cis-regulatory evolution is limited

at best. While we have theories as well as a large volume of

empirical data on protein evolution, we essentially have no theory

and have made limited observations on the evolution of regulatory

sequences. Our goal here is to begin to bridge the gulf between the

vast amount of genomic sequence data and our poor understand-

ing of regulatory sequences and their evolution. We have

conducted a detailed evolutionary analysis of a large collection

of experimentally verified CRM sequences, taking advantage of

the recently sequenced 12 Drosophila genomes. Our analysis has

revealed several interesting patterns, some along expected lines

(but not confirmed previously), and some contrary to our

expectations. We believe that our work will furnish evidence

orthogonal to experimental characterization for understanding the

organizational principles of CRMs, and will be important for

developing a theory of regulatory evolution in the future.

There are several technical issues that were important to

address in our analysis. Evolutionary comparison depends on the

alignment of orthologous sequences, but in general, alignments

cannot be perfectly determined and may be a source of biased

conclusion [36]. This may be a particularly serious problem for the

analysis using 12 Drosophila species because of the relatively large

divergence. We addressed this concern by developing a new

multiple alignment program tailor-made for regulatory sequences.

It combines the power of a pair-wise regulatory sequence

alignment tool, Morph [38], and a probabilistic multiple

alignment framework Probcons [41]. We have made this new

software (ProbconsMorph) available freely for public use, to

facilitate future studies of this genre. Nevertheless, the use of motifs

to construct alignment may artificially boost the conservation level

of TFBSs. We carefully addressed this potential bias whenever it

may affect our conclusion. For example, when testing the

positional variation of substitution rates, we use Pecan-based

alignments without using motifs and limited ourselves to five

closely related species. Similarly, when testing the correlation of

binding site strength to turnover rates, we use randomized PWMs

(as ‘‘negative controls’’) to validate our finding. We also repeated

all our analyses with Pecan-based alignments. The various trends

seen in Results were almost always reproduced. One notable

difference was that the correlation between nearest homotypic site

distance and evolutionary rate (Table 6) for Cad was statistically

significant (p-value 0.02) in ProbconsMorph alignments, but

insignificant (p-value 0.15) in Pecan alignments. We suspect that

this may be due to the tendency of standard alignment tools (such

as Pecan) to misalign one or two nucleotides at the boundary of

binding sites, especially if the motif contains short repeats such as

TTTT [38], as is the case for Cad.

Another critical component of our analysis is the prediction of

TFBSs. By using the same PWMs for all the genomes, we have

made the assumption that the PWM of any TF is fully conserved

across 12 Drosophila genomes. This is questionable, as researchers

have found in yeast that the change of TF binding specificities can

be an important part of the evolutionary change of regulatory

networks [57]. For the seven motifs we analyzed, however, there is

prior computational evidence that the binding specificities have

not changed between D. melanogaster and D. pseudoobscura [58].

Another issue related to TFBS prediction is that predicted binding

sites tend to have a high proportion of false positives [59]. We

believe this problem is mitigated by our focus on the segmentation

network, the fact that we restrict ourselves to transcription factors

and CRMs experimentally known to be involved in regulating the

segmentation genes, and our use of ChIP-based binding

information wherever possible. We also believe that within a

CRM, any computationally predicted binding site for a relevant

transcription factor can ‘‘attract’’ transcription factor molecules,

and contribute to the expression pattern, and should thus be
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considered ‘‘functional’’ in a broad sense. The results from

Janssens et al. [60] seem to support this point. In practice, we may

still have a small number of false predictions because of

inaccuracies of the PWMs and we have attempted to estimate

the false positive proportion by various methods (see Text S1). Also

note that while false site predictions may obscure the evolutionary

pattern of functional binding sites, they will not, in general,

introduce spurious patterns (since, by definition, these sites are not

under selection). In cases where the false sites may affect our

interpretation of results, for example, in the test of molecular clock

for binding site turnover, we have tried to make appropriate

corrections. In addition, in estimating TFBS turnover rates, we

have emphasized on losses rather than gains of sites, because a

predicted TFBS loss event has stronger supporting evidence than a

gain event (the ‘‘gained’’ site is more likely to be a false positive

prediction).

Our model of binding site evolution, the ‘‘Site-level Selection’’

(SS) model, is a special case of the population genetic model

proposed by Mustonen and Lassig [19]. Under their model, the

fitness of a site is determined by its binding energy. The difference

of the energy distribution of known sites and of the neutral sites

allows one to estimate the fitness of any energy value. A binding

site evolves in the space of all possible sequences, with the

transition rate between any two sequences determined by the

fitness values of the two sequences, given by Equation (1). For most

known TFs, however, the number of known sites is too small to

reliably estimate a fitness function and the simplification

introduced in our model is probably necessary. Our SS model is

also similar to the model in Raijman et al [61]. Under this model,

a site always tends to preserve its current functional status, that is,

the substitution in a binding site that makes is nonfunctional will

have a lower rate, and similarly, a substitution that creates a

functional site in an originally neutral site will also have a lower

rate. However, their model is not formulated in population genetic

terms and the transition from a non-site to site is always selected

against (this will be favored under the Mustonen-Lassig model and

ours). We found that the SS model better explains the evolutionary

pattern of binding sites than the HB model, which assumes the

independence of substitutions at different positions of a site. A

recent study [62] also reported this dependence of binding site

positions, though without directly comparing two kinds of models.

Admittedly, the presence of false sites may complicate our analysis.

It is difficult to directly address this issue, say, through a mixture

model approach as done in [22] because of the difficulty of

computing probabilities under the SS model. However, we note

that if we were to remove false sites from the observed data, we

would see a greater proportion of conserved sites, implying that

the SS model will continue to be closer to the observation than the

HB model (see Figure 2). Next, we observe an overrepresentation

of fully conserved sites (no mutations) compared to what is

expected from both SS and HB models (Figure 2B). This argues

for the conservation of precise affinities, a hypothesis consistent

with our current knowledge about the dependence of expression

pattern on precise binding affinities [63,64], though this

phenomenon has not been statistically observed previously.

Finally, we note that the findings of position-specific substitution

rates and site-level selection are not contradictory; as pointed out

in [19], each position of the site contributes separately to the fitness

of the site, which depends on the sum-total of these contributions.

Our findings of a molecular clock extend earlier results on a

small number of well characterized CRMs [65] across three

Drosophila species, suggesting that this is a property common to

developmental CRMs across a large evolutionary range. Even

though we cannot exclude the presence of adaptive selection in

individual cases, our results seem to suggest that negative selection

to maintain the existing binding sites is the dominant mode of

evolution, coupled with the occasional loss of sites due to random

drift. The rate of site loss likely reflects the strength of purifying

selection.

Our tests point out that stronger binding sites are conserved

more often than weaker sites. This is consistent with an earlier

study [66], which found that stronger Dorsal binding sites were

more likely to reside in conserved blocks. A simple explanation for

this is that stronger sites are more likely to be important to CRM

function, thus under stronger constraint. An alternative explana-

tion is that there is a ‘‘quality’’ threshold that defines functionality

and once a site drops below that threshold, it is impervious to

selective forces. Assuming this is true, we note that a weaker site is

closer to the threshold than a stronger site, and may thus be lost

more easily. A recent paper [61] seems to support the latter

hypothesis. It is likely that the forces of natural selection as well as

those of mutation/random drift together determine the evolution-

ary fate of a binding site, as suggested by Mustonen and Lassig

[19].

An unexpected result of our analyses is that the degree of

homotypic clustering does not affect turnover rate. This is contrary

to the notion that more binding sites of the same type will lead to

greater redundancy, easing the selective pressure on the individual

sites. Instead, the number of binding sites seems to be important to

CRM function. This observation is similar to one of the

implications of our findings of site-level selection: that exact

affinities of binding sites are functionally important. Both

observations are consistent with the so called ‘‘gradient threshold

model’’ [47], which suggests that different genes may respond to

different concentration levels of the same TF by harnessing

different numbers of binding sites with varying affinities. The exact

binding affinities and number of sites are important under this

model. In a more detailed analysis of homotypic clustering, now

considering the binding site arrangement, we observed that for

some factors, if a site is adjacent to another site of the same factor,

this site will be less likely to be lost during evolution. This may be

indicative of cooperative activity of proximal homotypic binding

sites, leading to stronger selective pressure. For instance, the

significant result (p-value 0.0184, Table 6) for Cad is consistent

with anecdotal evidence of Cad sites being located as proximal

pairs [67–69], although we are not aware of any biochemical

evidence for such cooperativity. There is also some evidence in the

literature for DNA binding by homodimers of Tll [70] and Hb

[71]. Our observation also suggests that sites that have a proximal

‘‘partner’’ are perhaps less likely to be spurious sites, which will

provide a useful additional guideline to binding site prediction

[72]. Surprisingly, we did not observe significant result for Bcd,

even though it is known to bind cooperatively [52]. This negative

result is a reminder that the sensitivity of our statistical tests may be

reduced due to a variety of factors, e.g., alignment errors, false

sites, etc. These factors are unlikely, however, to produce spurious

statistical signals.

We found that the presence of a binding site for a different

factor, either overlapping or proximal to a binding site, can

strongly affect the latter’s evolution. Different mechanisms of local

interactions between sites are known in developmental CRMs,

e.g., cooperative binding between two factors [73,74], short-range

quenching [75,76], competitive binding to overlapping sites [74],

etc. In all these cases, the loss of a single binding site may disrupt

the interaction and create a larger change of expression than if the

binding sites act in an additive fashion. As a consequence, these

locally interacting site pairs may be under stronger selection. Our

results support the importance of context in determining
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evolutionary fate of binding sites. A recent paper reports similar

results for four CRMs of the even-skipped gene [53]. By working on

a much larger set of CRMs, we confirm this context-dependence

as a general evolutionary pattern. We also found some interesting

specific cases, for example, the Kr sites that overlap with another

TF site, appear more conserved, consistent with the known role of

Kr as a repressor with the ability of competitive binding. In

addition, the difference of the evolutionary patterns of the seven

TFs suggests that they may depend on different mechanisms for

their function. For example, both Kr and Tll are repressors, but Tll

is more conserved if it is adjacent to some other site, while Kr is

more conserved if it overlaps with another site. This seems to

suggest that the relative importance of competitive binding and

short-range quenching may be different in Kr and Tll.

We did not find strong evidence of suppression of large indels

within CRMs relative to their flanking sequences. Our results are

different from an earlier study of indel patterns of CRMs in sea

urchins, which reports that large indels (.20 bp in length) are

virtually absent inside CRM sequences [27]. There is an

alternative explanation for this discrepancy: it has been known

that Drosophila has a very compact genome as the neutral deletion

rate is very high [77] and a large fraction (40–50% from different

estimates) of intergenic non-coding sequences is under evolution-

ary constraint [48,78]. Consequently, the flanking sequences of

CRMs may not be entirely neutral, and the distinction between

CRM and flanking sequences may not be as pronounced as in

other species. (Our options were limited with respect to the

‘‘background’’ sequence to contrast with, since long repeats often

used as neutral sequence in mammalian genomes [79] are rare in

Drosophila.) The fact that short deletions are more constrained than

short insertions is likely due to different effects of insertions and

deletions on CRM sequences: any deletions that extend to an

existing binding site will annul its functionality, while insertions,

unless occurring exactly inside TFBSs, will only change the

distance between sites, but not destroy them. In Text S1, we

outline an illustrative calculation, suggesting that under simple but

reasonable assumptions, short deletions are maybe twice as more

likely to interfere with a binding site than are short insertions.

These results combined with the lack of strong constraint on

spacer sequences suggest that CRM structure is overall flexible,

permits relatively quick evolutionary change, and functions

without being very sensitive to the precise distances between

binding sites. In terms of its implications for bioinformatics, our

results seem to indicate that the indel signature can be a useful

CRM predictor but not strong enough to work alone, somewhat

contrary to prior expectations [27,28].

Methods

Data
12 Drosophila genome sequences from D. ananassae (Feb. 2006

assembly), D. erecta (Feb. 2006 assembly), D. grimshawi (Feb. 2006

assembly), D. melanogaster (Apr. 2006 assembly, release 5), D.

mojavensis (Feb. 2006 assembly), D. persimilis (Oct. 2005 assembly),

D. pseudoobscura (Feb. 2006 assembly), D. sechellia (Oct. 2005

assembly), D. simulans (Apr. 2005 assembly), D. virilis (Feb. 2006

assembly), D. willistoni (Feb. 2006 assembly), and D. simulans (Nov.

2005 assembly) were compiled from UCSC Genome Browser

database [80]. To predict the positions of putative TFBSs, position

weight matrices (PWMs) for seven TFs, Bcd (Bicoid), Cad (Caudal),

Dstat, Hb (Hunchback), Kni (Knirps), Kr (Kruppel), and Tll (Tailless) were

compiled from FlyReg [81] and the literature. We used the

phylogenetic tree and branch lengths for the 12 species in [82] and

for the four species (D. melanogaster, D. simulans, D. yakuba, and D.

erecta) in [25]. Orthologous sequences of each D. melanogaster CRM

were obtained by the liftOver program from the UCSC Genome

Browser database. The background region corresponding to a

CRM was defined as the region upstream of the farthest known

CRM of its target gene, equal in length to its corresponding CRM.

Multiple Sequence Alignment and Insertion/Deletion
Annotations

For the analysis of TFBS evolution, we developed a new multiple

alignment program, ‘‘ProbconsMorph’’, by integrating Probcons

[41], a consistency based multiple sequence alignment program, and

Morph [38], a pair-wise sequence alignment program that is

specially designed to align regulatory modules. Morph uses a pair-

HMM as a generative model for alignment of two orthologous

CRMs, and is parameterized by the given motifs, as well as various

evolutionary rate parameters that it fits to the data. It uses maximum

likelihood inference to simultaneously perform TFBS annotation

and alignment. It reports for every pair of positions in the two

sequences, the posterior probability that they are aligned. Morph

was run to produce such a probabilistic alignment of every pair of

species. Probcons takes such pair-wise alignment probabilities and

builds a multiple sequence alignment progressively, while using the

‘‘consistency transformation’’: the probability of alignment of two

nucleotides x and y is updated based on the alignment probabilities

of x and z and of y and z, where z is a nucleotide from a third species.

We have shown previously that Morph provides practical benefits for

inference of evolutionary events and rates by computing a better

alignment; ProbconsMorph is an effective and efficient extension of

this program to more than two species. We made two simple

modifications to Probcons to integrate it with Morph: firstly,

Probcons was made to work on DNA sequences (the current

implementation handles protein sequences only), and secondly, it

was made to accept a phylogenetic tree as input, rather than estimate

the tree at run-time. The ProbconsMorph software is publicly

available at our site http://europa.cs.uiuc.edu/TFBSevolution/.

Pecan [42] was used for the alignment of four species in the

analysis of indels in CRMs and spacers. We have performed

extensive studies on simulated data to determine the limits of indel

annotation, and estimated that accurate labeling of insertions and

deletions is only possible for the four closely related species D.

melanogaster, D. simulans, D. yakuba, and D. erecta. (Kim and Sinha, in

preparation.) Pecan alignments of these four species, and D.

sechellia, were also used for the study of position-specific

substitution rates in binding sites (Table 1).

Insertion and deletion annotations were done using our

previously published Indelign program [39] that is based on a

probabilistic model of indels and annotates indels as being

insertions or deletions based on maximum likelihood. We used a

mixture of two geometric distributions as a model of the length

distribution of indels. As shown in Figure S10, this mixture model

is a much better fit to the indel length distributions empirically

observed in D. melanogaster CRMs used in this study and their

orthologous sequences in D. simulans, D. yakuba, and D. erecta. The

new version of the Indelign program is available at our site http://

europa.cs.uiuc.edu/TFBSevolution/.

TFBS Analysis
Binding Site Annotation. The seven PWMs were used to

scan D. melanogaster CRMs and their orthologous sequences for

binding sites. For each substring of PWM-length, the log-

likelihood ratio (LLR) scores for both orientations were

computed. The LLR score with p-value 0.001 was used as the

default threshold for prediction of binding sites. (The threshold

was computed by an efficient recursive method in [13].) We used
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ChIP-based binding data [43] on Bcd, Cad, Hb, Kr, and Kni to limit

the binding site annotation only to those CRMs that overlapped a

ChIP-bound region (1% FDR) by at least 50%. We estimated the

false positive proportion in our binding site predictions, in four

different ways, as is described (with results) in Text S1. An eighth

motif, Giant, that had been chosen for analysis, was discarded at

this stage, due to very high estimated false positive proportions.

Binding Site Strength. The LLR score of a site is the

logarithm of the ratio of (i) the likelihood of sampling the site from

a PWM to (ii) the likelihood of sampling it from a background

frequency distribution. TFBS strength was computed as the

average of the LLR scores in the orthologous TFBS set.

Position-Specific Evolutionary Rates. For each

orthologous TFBS set containing binding sites in all species, a

parsimony cost for each position was computed. The average of

this parsimony cost, over all orthologous TFBS sets, was used as

the evolutionary rate of the position. For this analysis, orthologous

TFBS sets were obtained differently: Pecan alignments of five

closely related species (D. melanogaster, D. sechellia, D. simulans, D.

simulans, D. erecta) were used, binding sites were predicted only in D.

melanogaster and no PWM-based realignment was done in the other

four species. This was done in order to avoid a bias in the analysis,

and alignment errors were not a major concern since the species

are very closely related.

Simulation of Binding Site Evolution. To simulate the

evolution of a binding site, we repeat two steps: (i) compute the

rate of each substitution event at each position according to HB

model [12] or Equations (2) and (3) of SS model, and (ii) choose a

substitution event with probability proportional to the rates of the

event. The site is then updated according to this event, and the

time is also incremented by an exponential random variable with

mean equal to the inverse of the total rates of all events. The

procedure is run until a pre-specified time (the divergence between

two species studied) has been reached. We simulate a large

number of sites to generate the histograms in Figure 2. For the

mutation rates needed in HB and SS models, we use the HKY

model and the parameters estimated from an earlier study [25].

The nucleotide frequencies in the background sequences are 0.3,

0.2, 0.2 and 0.3 for A, C, G, T respectively, and the transition-

transversion bias equals to 2.0.

Comparison of Site-level Selection (SS) and Halpern-

Bruno (HB) models. For each factor, the collection of sites was

divided into two randomly chosen subsets: the first, called the

training set, was used to learn a value of 4Ns for the SS model, and

the second, called the test set, was used to compare the two models.

The histogram of energy difference values of sites in the test set was

compared to a predicted histogram from either model (previous

paragraph), using a ‘‘sum of squared errors’’ or SSE. The random

split into training and test sets was repeated 100 times, and the SSE

scores of each model were compared using a paired Wilcoxon signed

rank test. The predicted histogram of a model was obtained as

follows: a D. melanogaster binding site was chosen at random from the

test set, and subjected to simulated evolution under the model, for

the divergence time of D. melanogaster and D. yakuba, thus giving us a

site pair, and its energy difference. This was then repeated 106 times,

to obtain a histogram of energy difference values. To obtain the SSE

values shown in Figure 2 and Figure S4 and S5, we used the entire

collection of sites as the training as well as test set.

Molecular Clock and Loss Rates. Let y be the fraction of

binding sites in D. melanogaster that have an ortholog in species S that is

also a binding site, and let x be the divergence time between the two

species. We plotted y versus x for different values of x representing 11

different species, fitting to a line y~mx. The negative slope, i.e., {m
is called the ‘‘loss rate’’ in Table 4. Random motifs were obtained

from the real motifs used in our analysis (see Methods). Sites for

random PWMs were predicted and their loss rate calculated in the

same way as for TFBSs. The mean and standard deviation of loss rate

over 100 random PWMs is shown. The molecular clock test was

repeated with a ‘‘correction’’ for false positive sites, as follows: If F is

the false positive proportion, then in a collection of n predicted sites, n-

nF are expected to be true sites, and if we observed m of the original n

sites to be conserved, then an estimated m-nFr of these sites are true

sites, where r is the proportion of ‘‘false’’ sites that are conserved

(estimated from intronic regions not bound in ChIP assays). This

would give us a ‘‘corrected’’ conservation probability as (m2nFr)/

(n2nF). We performed regression analysis of this corrected

conservation probability (versus time), while simultaneously

estimating a false positive proportion F, i.e., leaving F as a free

parameter. Adjusted R2 values were computed as 12(n21)(12R2)/

(n2k21) where k+1 is the number of free parameters (2 in our case–

the false positive proportion and the slope of the line; the intercept

was fixed at 1.) The optimal values of F are reported in Table 3.

(These estimates of false positive proportion range between 15% and

32%, depending on the motif.)

TFBS Turnover Rate. We first constructed a phylogenetic

tree for each orthologous TFBS set by labeling a leaf node as ‘‘1’’ if

its corresponding species has the site and 0 otherwise; a subtree

rooted at the least common ancestor of leaf nodes labeled 1 was

then identified. The turnover rate was defined as the parsimony

cost calculated in the subtree, divided by the sum of branch lengths

of the subtree. The overall TFBS turnover rate across multiple

orthologous TFBS sets was defined as the sum of the parsimony

costs of the individual orthologous TFBS sets, divided by the sum

of branch lengths (obtained as described above) (see Figure S11 for

the example of turnover rate calculation). The subtree should have

at least 2 leaf nodes. We note that our definition of turnover rate is

closely related to the Branch Length Score (BLS) used in [83].

When the least common ancestor is a binding site, then the inverse

of our turnover rate is the expected time the site is conserved, i.e.,

the expected BLS.

Local Evolutionary Rates. The evolutionary rate of a CRM

was defined as the sum of branch lengths estimated by Paml [50]

with a given phylogenetic tree and the multiple alignment of the

CRM. The test was done separately for each TF, and binding sites

of that TF were ‘‘masked out’’ before estimating the CRM

evolutionary rate. The ratio of the evolutionary rate in a CRM to

that of introns in its neighboring gene was used as the local

evolutionary rate.

Random PWMs. These were constructed by starting with

one of the seven original PWMs, randomly permuting columns,

and then randomly permuting rows for A and T, and rows for C

and G, to obtain a random PWM that retains the information

content and G/C content of the original.

Correlation Test. Bins were defined by the values of statistic

(i.e., TFBS strength, rate of CRM, or distance between adjacent

TFBSs). For the collection of samples in each bin, the overall

TFBS turnover rate and the average of statistic were calculated,

and the correlation test between them was performed.

Supporting Information

Figure S1 An example of the graphic visualization of alignments

of CRMs with binding site annotation.

Found at: doi:10.1371/journal.pgen.1000330.s001 (1.25 MB

DOC)

Figure S2 Correlation between the specificity of a TFBS

position and its evolutionary rate, with Pecan alignments.
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Found at: doi:10.1371/journal.pgen.1000330.s002 (0.84 MB

DOC)

Figure S3 Correlation between the specificity of a TFBS

position and its evolutionary rate, with ProbconsMorph align-

ments.

Found at: doi:10.1371/journal.pgen.1000330.s003 (0.93 MB

DOC)

Figure S4 Distributions of energy difference from observed

binding sites (Observed), and those simulated by HB (HB) and

Site-level Select (SS) models, with ProbconsMorph alignments.

Found at: doi:10.1371/journal.pgen.1000330.s004 (0.83 MB

DOC)

Figure S5 Distributions of energy difference from observed

binding sites (Observed), and those simulated by HB (HB) and

Site-level Select (SS) models, with Pecan alignments.

Found at: doi:10.1371/journal.pgen.1000330.s005 (0.93 MB

DOC)

Figure S6 Distributions of the number of substitutions from

observed binding sites (Observed), and those simulated by HB

(HB) and Site-level Selection (SS) models, with ProbconsMorph

alignments.

Found at: doi:10.1371/journal.pgen.1000330.s006 (0.69 MB

DOC)

Figure S7 Distributions of the number of substitutions from

observed binding sites (Observed), and those simulated by HB

(HB) and Site-level Selection (SS) models, with Pecan alignments.

Found at: doi:10.1371/journal.pgen.1000330.s007 (0.80 MB

DOC)

Figure S8 The fraction of D. melanogaster TFBSs that are

conserved in a related species (y-axis), as a function of the

divergence time to that species (x-axis), with ProbconsMorph

alignments.

Found at: doi:10.1371/journal.pgen.1000330.s008 (0.47 MB

DOC)

Figure S9 The fraction of D. melanogaster TFBSs that are

conserved in a related species (y-axis), as a function of the

divergence time to that species (x-axis), with Pecan alignments.

Found at: doi:10.1371/journal.pgen.1000330.s009 (0.58 MB

DOC)

Figure S10 Comparison of the two different indel length

distributions, a single geometric distribution and a mixture of

two geometric distributions.

Found at: doi:10.1371/journal.pgen.1000330.s010 (0.22 MB

DOC)

Figure S11 An example of the calculation of TFBS turnover rate.

Found at: doi:10.1371/journal.pgen.1000330.s011 (0.05 MB

DOC)

Table S1 Correlation between the specificity of a TFBS position

and its evolutionary rate, with ProbconsMorph alignments.

Found at: doi:10.1371/journal.pgen.1000330.s012 (0.03 MB

DOC)

Table S2 Comparison of HB and SS models, with Pecan

alignments.

Found at: doi:10.1371/journal.pgen.1000330.s013 (0.03 MB

DOC)

Table S3 Goodness-of-fit of a linear model for the fraction of

conserved binding sites over divergence time, with Pecan

alignments.

Found at: doi:10.1371/journal.pgen.1000330.s014 (0.03 MB

DOC)

Table S4 Comparison of loss rates of binding sites using real and

random motifs, with Pecan alignments.

Found at: doi:10.1371/journal.pgen.1000330.s015 (0.03 MB

DOC)

Table S5 Correlation between TFBS strength and TFBS

turnover rate, with Pecan alignments.

Found at: doi:10.1371/journal.pgen.1000330.s016 (0.03 MB

DOC)

Table S6 Correlation between the distance between two

adjacent homotypic sites and TFBS turnover rate, with Pecan

alignments.

Found at: doi:10.1371/journal.pgen.1000330.s017 (0.03 MB

DOC)

Table S7 Binding site conservation and its spatial context, with

Pecan alignments.

Found at: doi:10.1371/journal.pgen.1000330.s018 (0.03 MB

DOC)

Table S8 Correlation between evolutionary rate of CRM and

TFBS turnover rate, with ProbconsMorph alignments.

Found at: doi:10.1371/journal.pgen.1000330.s019 (0.03 MB

DOC)

Table S9 Correlation between evolutionary rate of CRM and

TFBS turnover rate, with Pecan alignments.

Found at: doi:10.1371/journal.pgen.1000330.s020 (0.03 MB

DOC)

Text S1 Supporting text.

Found at: doi:10.1371/journal.pgen.1000330.s021 (0.09 MB

DOC)
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