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Abstract: The fall armyworm (FAW), native to the Americas, has rapidly invaded the whole of
Southern China since January 2019. In addition, it can survive and breed in the key maize- and rice-
growing area of the Yangtze River Valley. Furthermore, this pest is also likely to continue infiltrating
other cropping regions in China, where food security is facing a severe threat. To understand the
potential infestation area of newly-invaded FAW from the Yangtze River Valley, we simulated and
predicted the possible flight pathways and range of the populations using a numerical trajectory
modelling method combining meteorological data and self-powered flight behavior parameters of
FAW. Our results indicate that the emigration of the first and second generations of newly-invaded
FAW initiating from the Yangtze River Valley started on 20 May 2019 and ended on 30 July 2019.
The spread of migratory FAW benefitted from transport on the southerly summer monsoon so that
FAW emigrants from the Yangtze River Valley can reach northern China. The maize-cropping areas
of Northeastern China, the Korean Peninsula and Japan are at a high risk. This study provides a basis
for early warning and a broad picture of FAW migration from the Yangtze River Valley.

Keywords: Spodoptera frugiperda; exotic pest; windborne migration; atmospheric circulation; trajectory
analysis; forecasting

1. Introduction

The fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae),
an important crop and forage pest native to the Americas [1,2], is Africa’s and Asia’s “winged
invader and farmers’ latest foe” [3–5]. In much of North and South America, FAW outbreaks are
sporadic but can be severe [2,6]. FAW larvae attack a total of 353 host plant species belonging to 76
plant families [7], and threaten a variety of crops including maize, rice, sugarcane, sorghum, and
cotton [2]. Two biotypes, corn strain and rice strain, were identified, distinctly differing in host
plant preferences [8,9]. Because it lacks a diapause to survive during winter in temperate zones,
FAW overwinters only as far north as the southernmost areas of Texas and Florida [1,2,10]. In the
overwintering range in the U.S., the FAW generations are continuous and the total developmental
duration is approximately 4 weeks during the summer (June–August), and three months during
winter (December to February) [6]. Each spring, tropical-originating FAW undertake a succession of
northward migratory flights to re-infest cropping areas in the mid-latitude temperate zone, where
it can also breed continuously when the climate is suitable and the host plants are available [11].
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By the end of the growing season in North America, Ontario and Québec, Canada, have been
recorded as the northernmost regions regularly infested by FAW [12,13]. Conversely, the southward
(return) migration of FAW was also supported by the analysis of pheromone trap catch data and
associated wind currents [13,14]. The multi-generational and nocturnal long-distance migration of
FAW adults benefiting from high-altitude winds has been well demonstrated in North America using
multiple techniques, such as large-scale pheromone/light traps, radars, and atmospheric simulation
models [15–18].

In early 2016, FAW appeared on maize crops in West Africa [3,19], the first time a population was
reported outside of the Americas. The most likely route of invasion to Africa is by air transportation,
but subsequent natural migratory flight resulted in FAW colonizing 28 African countries by August
2017 [19]. This pest had caused millions of dollars of losses in Africa [11,20]. As a strong flyer, FAW
has continued to spread beyond Africa and was confirmed to be established in India in May 2018 [4].
By January 2019, Yemen [21], Thailand [22], Sri Lanka [23], Bangladesh [24], Myanmar [25], and Yunnan
in China [26] all reported being invaded by the FAW population. A previous study indicated that
Myanmar is one of the key source regions of FAW immigrants threatening the crop yield in the tropical
and southern subtropical zones of China [27], which comprise Yunnan (YN), Guangxi (GX), Guangdong
(GD) and Hainan (HI) (Figure 1). At present, this exotic pest has formed a resident population in these
zones [28] and invaded up to 17 provinces and one municipality since its first invasion in China in
January 2019 [29]. Among 18 regions mentioned above, the Yangtze River Valley, which has been
largely colonized by FAW originating from the tropical and southern subtropical China [28], is located
in Central China and consists of 11 provinces (including two municipalities): Sichuan (SC), Chongqing
(CQ), Guizhou (GZ), Hubei (HB), Hunan (HN), Anhui (AH), Jiangxi (JX), Jiangsu (JS), Zhejiang (ZJ),
Fujian (FJ), and Shanghai (SH) (Figure 1). However, FAW invaders are unable to survive the winter
in these locations [30]. Based on numerous analyses of migration patterns of insects in China, such
as the oriental armyworm Mythimna separata [31], cotton bollworm Helicoverpa armigera [32], rice leaf
folder Cnaphalocrocis medinalis [33], and brown planthopper Nilaparvata lugens [34], the Yangtze River
Valley is also supposed to be essential for both supporting FAW invaders which would colonize the
North China in summer and receiving returning migrants from North China in autumn. Furthermore,
FAW individuals in China collected from 131 counties and cities of 13 provinces, viz. YN, GX, GD,
HI, SC, GZ, HN, HB, FJ, ZJ, JX, CQ and SH, belonged mostly to the corn strain [35].As the annual
East Asian summer monsoon can effectively transport migrating insects on its prevailing southerly
winds [28,36], FAW developing in the Yangtze River Valley has a huge potential to disperse northward;
where the staple crop is maize. Therefore, studying and predicting the possible migratory pathways
and distributions of the newly-emerged generations of the early arrivals of FAW in the Yangtze River
Valley are critical. This information would also assist in raising awareness, monitoring for early
detection, and formulating appropriate management strategies both nationally and regionally [30].

In this study, we collected the first-reported date of FAW appearance for each monitoring site in the
Yangtze River Valley by systematic field investigations. As highly active flights of moths occur during
dominant periods of emergence [37,38], and air temperature is one of the most important climatic
factors in FAW’s development, we then determined the eclosion peak days as the emigration dates of the
first and second generations of the newly-invaded FAW populations by analyzing the historical daily
mean temperatures. Subsequently, large-scale synoptic patterns in corresponding periods of both the
last five years from 2014 to 2018 and 2019 were studied to illustrate and interpret the rapid aerial spread
of FAW. Lastly, we simulated and predicted the possible flight pathways of migratory FAW populations
taking off from the Yangtze River Valley using a numerical trajectory modelling method combining
the self-powered flight behavior parameters (initiation time, flight altitude selection, duration, flight
heading, self-powered airspeed) combined with high-resolution meteorological conditions provided
by the Weather Research and Forecasting (WRF) model [39]. In addition to the effects of airspeed and
orientation on migratory displacement, unfavorable atmospheric factors or phenomena terminating
insect flight, such as low temperature [36], were also considered during the simulation process.
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Figure 1. The fall armyworm (FAW) invasion situation before June 2019 and the study area in China. 
Abbreviations: AH: Anhui, BJ: Beijing, CQ: Chongqing, FJ: Fujian, GD: Guangdong, GS: Gansu, GX: 
Guangxi, GZ: Guizhou, HA: Henan, HB: Hubei, HE: Hebei, HI: Hainan, HK: Hongkong, HN: Hunan, 
HL: Heilongjiang, JL: Jilin, JS: Jiangsu, JX: Jiangxi, LN: Liaoning, MO: Macao, NM: Inner Mongolia, 
NX: Ningxia, SC: Sichuan, SD: Shandong, SH: Shanghai, SX: Shanxi, SN: Shaanxi, TJ: Tianjin, TW: 
Taiwan, XJ: Xinjiang, XZ: Xizang(Tibet autonomous region), YN: Yunnan and ZJ: Zhejiang. 
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In particular, SC, GZ, and CQ are surrounded by the Tibetan Plateau, Hengduan Mountains, Yunnan-
Guizhou Plateau, and Sichuan Basin, with an altitude of 200–2000 m, whereas the Lower Yangtze 
River Valley is < 1000 m. Xinyang City, Henan province (HA, Figure 1) was also included in the 
present study because this city is near the Yangtze River Valley region. 

Figure 1. The fall armyworm (FAW) invasion situation before June 2019 and the study area in China.
Abbreviations: AH: Anhui, BJ: Beijing, CQ: Chongqing, FJ: Fujian, GD: Guangdong, GS: Gansu, GX:
Guangxi, GZ: Guizhou, HA: Henan, HB: Hubei, HE: Hebei, HI: Hainan, HK: Hongkong, HN: Hunan,
HL: Heilongjiang, JL: Jilin, JS: Jiangsu, JX: Jiangxi, LN: Liaoning, MO: Macao, NM: Inner Mongolia, NX:
Ningxia, SC: Sichuan, SD: Shandong, SH: Shanghai, SX: Shanxi, SN: Shaanxi, TJ: Tianjin, TW: Taiwan,
XJ: Xinjiang, XZ: Xizang(Tibet autonomous region), YN: Yunnan and ZJ: Zhejiang.

2. Materials and Methods

2.1. Study Area and Field Investigations of Invasive FAW before June 2019 in the Yangtze River Valley

Map data were derived from the China National Platform for Common GeoSpatial Information
Services (National Geomatics Center of China, Beijing, China). The Yangtze River Valley has a
diverse range of topography, including mountains, plateaus, basins (tributaries), hills, and plains
(Figure 2). In particular, SC, GZ, and CQ are surrounded by the Tibetan Plateau, Hengduan Mountains,
Yunnan-Guizhou Plateau, and Sichuan Basin, with an altitude of 200–2000 m, whereas the Lower
Yangtze River Valley is < 1000 m. Xinyang City, Henan province (HA, Figure 1) was also included in
the present study because this city is near the Yangtze River Valley region.
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Systematic field investigations throughout the Yangtze River Valley were conducted by the China
National Agro-Tec Extension and Service Center (NATESC) (Beijing, China). Therefore, the first
invasion date and the host plants of FAW were recorded.

2.2. Estimations of Emigration Periods of the First and Second FAW Generations of Newly-invaded Populations

As the timing of certain life history stages is extremely difficult to be observed directly in the field,
we used evidence of the effects of temperature on FAW’s life cycle [40,41] to estimate the emergence
period of FAW from the studied region. According to the main life history stage investigated in
fields of the Yangtze River Valley, our laboratory experiments indicated that the number of days from
fourth instar larvae to eclosion at the constant temperatures of 20 ◦C and 25 ◦C were 30 and 20 days,
respectively. FAW needs 50 and 30 days to complete a life cycle at these temperatures [42]. This result
is consistent with previous literatures related to the effect of temperature on the development of FAW
in the Americas [40,41].

We used the daily mean surface air temperature (DMSAT) (Version 3.0; dataset code:
SURF_CLI_CHN_MUL_DAY; National Meteorological Information Center, Beijing, P. R. China)
in our study. Due to the lack of meteorological data (i.e., temperature, wind, pressure etc.), from June to
August 2019, we firstly evaluated the differences between the historical DMSAT from 2014 to 2018 and
that of 2019 by comparing the DMSAT of each day from 20 April to 30 May. The analysis was conducted
throughout the Yangtze River Valley by a Wilcoxon signed-rank test in JMP Version 13.2.0 software
(SAS Institute Inc., Cary, NC, USA). All p-values ≤ 0.05 were considered statistically significant.

Before estimating emigration periods of the next generations of newly-invaded populations in the
Yangtze River Valley, we calculated the number of generations that can develop in this region from the
FAW arrival date of 20 April 2019. The threshold temperature and effective accumulated temperatures
for development of FAW were 9.16 ◦C and 680.02 degree-day, respectively [42]. We extracted the
DMSATs from 20 April to 20 July 2014 through 2018, for the Yangtze River Valley. The results show that
at least two generations of FAW can survive in the Yangtze River Valley after 20 April, if the host plants
are available. Hence, migration trajectories of the first and second generations of the newly-invaded
FAW population from the Yangtze River Valley were simulated in this study.

According to the field investigation, the temperature data were arranged in groups A to D with
10-day time intervals. The emigratory timings of the first and second generations of the newly-invaded
FAW populations were also grouped and identified based on the mean of the historical DMSAT among
groups A to D, named A1, A2, B1, B2, C1, C2, D1 and D2. We used the historical meteorological data
from 2014 to 2018 to estimate the emigration periods for the first and second generations of FAW adults,
and conducted the trajectory analysis using historical meteorological data.

Based on the evaluation detailed above, the DMSATs of all stations (472 locations in 11 provinces)
from 20 April to 20 August (possible longest developmental duration for two generations is 80 days)
were extracted from the five-year historical data from 2014 to 2018 by applying the Grid Analysis
Display System (GrADS) Version 2.0.1 (COLA, Fairfax, VA, USA). Because stations investigated in
nature had fluctuating temperatures, we considered each group from A to D as having a constant
temperature of 20 ◦C if the average value of the DMSATs of all locations in each group was lower than
22.5 ◦C. Conversely, the group had a constant temperature of 25 ◦C if the average value of the DMSATs
of the grouped locations was more than 22.5 ◦C. As proposed above, each group had four possibilities
for the developmental durations of the first and second generations of newly-invaded FAW adults:
30 and 50 days, 30 and 30 days, 20 and 50 days, and 20 and 30 days. We tested the mean of the DMSATs
of each group during each possible developmental duration; thus, the emigration periods for the first
and second FAW generations of FAW adults could be reasonably suggested.
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2.3. Analysis of Migratory Flight Relative to Atmospheric Support

The National Centers for Environmental Prediction (NCEP; http://www.ncep.noaa.gov/) Final
Analysis data (FNL) [43] were applied as transporting conditions for the migration of FAW. The FNL
data with grid distances of 1◦ × 1◦ were operationally exported every 6 h. In the present study,
nocturnal wind conditions at 925 hPa (approximately 800 m above ground level (AGL)) were extracted
and displayed by adopting GrADS V2.0.1 (COLA, Fairfax, VA, USA) to elucidate associations between
wind currents and the FAW migration processes.

2.4. Numerical Trajectory Modelling Method

The WRF model, which is a next-generation meso-scale numerical weather research model,
has been well descried in previous studies [36,44]. We implemented the WRF model to conduct
detailed simulations and predictions of FAW migratory pathways. The 1◦ × 1◦ and 6-h FNL data were
applied as the initial and boundary conditions for driving the WRF model. We used WRF model
simulations to obtain meteorological variable values at 1-h intervals for running a three-dimensional
trajectory program written in Fortran Language [45] (China National Copyright of Computer Software
No. 2015SR090706, 2015) that calculates FAW meso-scale migratory trajectories. The model domain
occupies all study provinces shown in Figure 1. The model scheme and parameterizations were
previously listed [27,28].

The possible migratory trajectories of FAW at a meso-scale were calculated using the forward
trajectory program, and the calculations were determined by the following assumptions: (1) FAW
migrates downwind and its aerial movement is dominated by the wind vector and a constant airspeed
of 4.5 m·s−1 [17,46,47]; (2) FAW exhibits a common orientation to the right of the downwind vector,
and the crab angle (i.e., difference between the insect alignment and wind displacement direction) is
30◦ [17]; (3) migrants typically take-off at 18:00 the local time, and migrate at around 500 AGL for a
flight duration of up to 12 h [13,14,18]; (4) migrants undertake one way and up to three consecutive
night flights and can land at any time along the migratory route [18]. For the second/third night flight,
trajectory simulation continued from the last calculated locations of the first/second night’s trajectories;
and (5) FAW cannot fly at atmospheric temperatures <10.0 ◦C [48,49]. Specifically, a forward trajectory
starting at a given departure location where FAW was detected during the field investigations was
calculated from 18:00 the local time for up to 12-h each night during the emigration periods of FAW
populations colonizing in the Yangtze River Valley and HA.

The starting flight heights of FAW were set to 500, 750, 1000, and 1250 m above mean sea level
(AMSL) at source sites with a flat and broad topography, including HA, JS, SH, ZJ, AH, JX, FJ, HN and
HB. In contrast, the AMSL values of the starting flight heights of FAW for sites in mountainous SC,
GZ and CQ were set to 1500, 1750, 2000 and 2500 m.

We removed endpoints calculated to land in regions without susceptible maize plants or
terminating over the sea (e.g., the Yellow Sea between China and the Korean Peninsula) along
the 12-h flight routes. Therefore, the invasion rate (%) could be defined as the ratio of the number of
valid endpoints within a specific province or region to the total number of valid endpoints [36].

3. Results

3.1. Large-scale Invasions of Immigratory FAW in the Yangtze River Valley

Six counties in GZ and two in HN confirmed the colonization of FAW in late April (20–30 April
2019; Figure 2); however, the number of newly-invaded counties abruptly increased to 61 in early
May (1–10 May 2019) and seven newly-occupied provinces, viz. CQ (the first report date was 1 May),
ZJ (2 May), FJ (6 May), SC (8 May), HB (8 May), JX (8 May), and HA (10 May), were also detected.
In mid-May (10–20 May 2019), a total of 168 counties throughout the above-mentioned provinces
were attacked by FAW larvae. Corn crops in 40 counties in HN, 29 in SC, 26 in GZ, 21 in JX, 18 in AH,
11 in HB, 11 in ZJ, 7 in CQ, 5 in FJ and 3 in SC were all damaged by FAW. Other 235 counties were

http://www.ncep.noaa.gov/
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checked for the occurrence of invasive FAW in late May (21–30 May 2019), and the dates of the
first-reported damage in SH and JS were on 22 May and 24 May, respectively. FAW colonized new
habitats in the lower Yangtze River Valley comprising HB, HN, JX, and AH. The newly-invaded
distribution of FAW mostly occurred in plains below 500 m, although populations also established in
mountainous areas like the Yunnan-Guizhou Plateau. The host plants were all maize, and the FAW
detected in the Yangtze River Valley during 20 April to 30 May were mostly IV and V instar caterpillars.

3.2. Temperature Dynamics in the Yangtze River Valley During the FAW Invasion Period

The regional DMSATs from 2014 to 2018 were investigated to evaluate the change in temperature
in FAW-invaded provinces over the Yangtze River Valley in 2019 (Figure 3). The DMSATs for group A
to D were separately analyzed (Figure 3). The DMSATs of 2019 in the Yangtze River Valley during
20 April to 31 May were not significantly different from those of the past five years (n = 41, Wilcoxon
signed-rank test: p > 0.1). Therefore, the emigration dynamics of the newly-invaded FAW population
in the Yangtze River Valley could be accurately inferred using the historical DMSATs.

The averages of the historical DMSATs for both A1 and A2 arriving in the target provinces
(GZ and HN), i.e., the first and second generations of the newly-invaded FAW populations during late
April, were less than 22.5 ◦C during two successive periods of 20 April to 30 May and 31 May to 30 July
(Figure 4); the average DMSATs for B1 was also lower than 22.5 ◦C during 1 May to 10 June, whereas
the value for B2 from 11 June to 10 July in their target provinces was 22.80 ◦C, the value was 21.55 ◦C
for C1 from 11 May to 20 June, and 23.69 ◦C for C2 from 21 June to 20 July. The temperature increased
during July, and the averages DMSATs were 22.49 ◦C and 24.48 ◦C for D1 during the time period from
21 May to 30 June and D2 from 1 July to 30 July, respectively. We concluded that the temperature from
20 April to 30 July was suitable for the development of the invasive FAW.
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generations of newly-emerged adults in the Yangtze River Valley from 30 April to 30 July of 2014–
2018. The bottom and top of the black box indicate the lower and upper quartile values, respectively. 
The horizonal solid black line shows the median for each category, and the black dashed line 
represents the mean. Whiskers indicate the 5th and 95th percentiles; the black circle represents the 
outlier for the data set of 2014–2018. Furthermore, A1 and A2 are the first and second generations of 
newly-emerged adults, respectively, for counties in provinces suffering from invasions of FAW in late 
April 2019; B1 and B2 are the freshly-infested counties in early May; C1 and C2 are for counties 
infested in mid-May; and D1 and D2 are for counties in late May. 

  

Figure 3. Daily mean surface air temperature in the Yangtze River Valley for 20 April to 31 May
of 2014-2018 (black box) and 2019 (blue dot). Based on our field surveys, the Daily Mean Surface
Atmospheric Temperature (DMSAT) of late April in two provinces (GZ and HN, grouped by A),
early May in 9 provinces (GZ, HN, CQ, ZJ, FJ, SC, HB, JX and HA, grouped by B), of mid-May in
10 provinces (HN, SC, GZ, JX, AH, HB, ZJ, CQ, FJ, and SC, grouped by C), and late May in 11 provinces
(HN, GZ, JX, AH, HB, ZJ, CQ, FJ, SC, JS, and SH, grouped by D) were plotted. The bottom and top of
the black box indicate the lower and upper quartile values, respectively. The horizonal solid black line
shows the median for each category and the black dashed line represents the mean. Whiskers indicate
the 5th and 95th percentiles, and the black circle represents the outlier for the data set of 2014–2018.
The blue dot represents the observation value in each studied province for 2019, whereas the red circle
is the mean for each category.
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Figure 4. Daily mean surface air temperature for the estimated emigration dates of the first and
second generations of newly-emerged adults in the Yangtze River Valley from 30 April to 30 July
of 2014–2018. The bottom and top of the black box indicate the lower and upper quartile values,
respectively. The horizonal solid black line shows the median for each category, and the black dashed
line represents the mean. Whiskers indicate the 5th and 95th percentiles; the black circle represents the
outlier for the data set of 2014–2018. Furthermore, A1 and A2 are the first and second generations of
newly-emerged adults, respectively, for counties in provinces suffering from invasions of FAW in late
April 2019; B1 and B2 are the freshly-infested counties in early May; C1 and C2 are for counties infested
in mid-May; and D1 and D2 are for counties in late May.

3.3. Migration Arena

The migration activities of FAW taking-off from the Yangtze River Valley would mostly start from
20 May and last until 30 July. Specifically, the migration peak of the first next-generation adults was
between 20 May and 30 June, and the peak of the second next-generation adults was from 1 July to
30 July.

The nocturnal wind currents on the estimated emigration days in 2014–2018 blew to the north
during the emigration periods over the whole region of East China (Figure 5), which is a key agricultural
cropping area. Therefore, FAW migrants already in flight can be efficiently carried northward by the
prevailing southerly airstreams. From 20 May to 30 June, easterly winds also occurred in the middle
Yangtze River Valley, which may encourage newly-emerged adults to proceed westwards (Figure 5A).
In particular, winds were much stronger in July with wind speeds varying from 3 to 6 m·s–1 than those
moving across the East Asia during 20 May to 30 June and greater than the airspeed of FAW migrants
at 4.5 m·s−1 (Figure 5B).
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3.4. Simulated Flight Trajectories, Landing Sites and Distribution Regions

The wind fields resulted in the spread of the downwind FAW emigrants during the studied
periods from 20 May to 30 July (Figure 6). In particular, the estimated first generation of newly-invaded
FAW emerged on 20–30 May for A1, on 1–10 June for B1, on 11–20 June for C1, and on 21–30 June for
D1, whereas the peak adult emergence of the second generation was suggested to occur on 20–30 May
for A1, 1–10 June for B1, 11–20 June for C1, and 21–30 June for D1, repectively. The first generation of
FAW from the Yangtze River Valley primarily migrated northeastward to maize production areas in
East China arriving there by late June (Figure 6(A1, B1, C1, D1)). As presented in Figure 7, migrations
initiating before 10 June mostly fly within the southern parts of the Yellow River. The first generation
of FAW initiating their flights from the Yangtze River Valley can also spread into Northeastern China,
the Korean Peninsula (Figure 6(A1, B1, C1, D1) and Figure 7), and as far as Japan, if they undertake
two or three successive night flights (Figure 6(B1, C1, D1)). Simulated FAW migration of the second
generation from the Yangtze River Valley would occur in July and spread northeastward across East
China into Northeastern China and the Korean Peninsula (Figure 6(A2, B2, C2, D2)). There are
substantial northern landing endpoints beyond the Yellow River and those of the first-night travel
covering much of northern China including the provinces of SD, HA, JS and Shaanxi (SN) (Figure 8).

In total, 684,960 and 924,055 endpoints of the first (Figure 6(A1, B1, C1, D1)) and second
(Figure 6(A2, B2, C2, D2)) simulated emigration waves were obtained, respectively. For both emigration
waves, the trajectory endpoints were largely concentrated in the provinces of SN (8.59% and 12.72%
for the first and second waves, respectively), SD (10.50% and 12.56%), and HA (15.59% and 15.27%).
JS, which had very few invaded locations, was also included as the damaged destination in this study,
where the proportions of the first and second simulated emigration waves were 18.89% and 13.33%,
respectively (Figures 7 and 8).

The tropical and southern subtropical zones of China including YN, GX, GD and HN (Figure 1),
containing 32.40% and 22.02% of all calculated endpoints for first and second migration waves,
respectively, were also destinations of FAW from the Yangtze River Valley (Figures 7 and 8). Of all the
endpoints, 8.33% were located in the Korean Peninsula. Gansu (GS), Liaoning (LN), Hebing (HE) and
Shanxi (SX) were also under the threat of FAW invasion with total invasion rates of 3–5%.
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Figure 6. Migration trajectories of the first (left) and second (right) generations of the newly-invaded
FAW populations from the Yangtze River Valley of China. A1 and A2 are the migration trajectories
of the first and second generations of newly-emerged adults during the peak periods of emigrations,
respectively, for the counties in provinces suffering from invasions of FAW in late April 2019; B1 and B2
for the freshly-infested counties in early May; C1 and C2 for the freshly-infested counties in mid-May;
and D1 and D2 for the freshly-infested counties in late May.
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4. Discussion

As of late April and May 2019, the presence of newly-invaded FAW feeding on maize plants
was confirmed in all 472 studied counties in the Yangtze River Valley (Figure 2). Our results are
consistent with the analysis of molecular characteristics of FAW individuals sampled from 131 counties
throughout the south of China, including FJ, GZ, HB, HN, JX, SC, SH, ZJ and CQ in the Yangtze River
Valley, which proves that the FAW primarily belonged to the corn strain [35].

However, according to the most recent personal observations by our research group, FAW
larvae were also able to attack sugarcane and sorghum in YN, GX, HI, GZ and CQ in China [50].
FAW damage to sugarcane was also reported in Maharashtra, India [51]. In Particular, India has
reported the detection of the rice strain in the state of Karnataka [52]. Different genotypes of FAW in
China have also been discovered [35,53]; thus, the FAW populations infesting China are suspected to
originate from offspring of the hybrid population of both the corn and rice strains [35], which suggests
that regions growing rice, like the middle and lower Yangtze River Valley, should be aware of the
potential risk from FAW.

Previous studies illustrated a strong correlation between the numbers emerging each night and
the peak volume density measured by radar during the following evening [37,38]; thus, the accuracy
of calculation of the FAW dispersal can be improved by identifying the peak emergence days of
FAW investigated in maize fields, which are determined by the development of FAW responding to
the surrounding temperature [40]. The most commonly studied factor of the relationship between
life-history stage and environment is the effect of air temperature [30]. In this study, the minimum
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DMSAT in the Yangtze River Valley from 20 April to 30 July in 2014–2018 was much higher than
13.8 ◦C, which is the lowest temperature threshold for FAW development [40], indicating a suitable
temperature in the Yangtze River Valley, where FAW has been successfully surviving and breeding.
The emigration dates for the first and second generations of the newly-invaded FAW from the Yangtze
River Valley were concentrated from 20 May to 30 July.

Previous studies showed that the long-distance migration pathways of FAW are facilitated by
transport on suitable winds and synoptic wind patterns in the nighttime [10,18,47,54]. In this study,
we employed a unique trajectory analysis modeling approach by linking the flight characteristics and
development of FAW to the meteorological data from the past five years. This approach has been
validated and widely deployed in simulating trajectories of migratory insect pests worldwide [36,44],
especially of moths including FAW [27,28,55]. The FAW migration routes we identified are encouragingly
accurate, and our analysis thus underlines the role of nocturnal wind patterns on the studied nights
in the emigration process and subsequent infestation of FAW populations in the Yangtze River Valley.
The development of the summer monsoon over East China through May to July produces highly
favorable winds [28,36,56] for carrying the winged FAW from the Yangtze River Valley northwards
into Northern China, the Korean Peninsula and Japan. However, windborne insects en route at high
altitudes can become concentrated and forced to descend or land because of unfavorable atmospheric
factors [36]. In the present study, we considered a lower temperature threshold for the development and
flight behaviors of FAW; however, other abiotic factors or phenomena, such as strong downdrafts and
rainfall [36,57], which affect insect flight initiation and termination, were not incorporated in the current
analysis because the mechanisms specific for FAW moths have not been clarified. Additional analyses
are therefore still needed to fully understand the effects of meteorological cues on the migration process
of this invasive pest, and these insights will lead to the creation and introduction of better monitoring,
forecasting, and control strategies.

Our results also identified that the Korean Peninsula (15,178 endpoints of the total landing in
South Korea, 8661 endpoints falling into North Korea) and Japan (2352 endpoints) would be infested
by the first generation of the newly-invaded FAW originating from the Yangtze River Valley as early
as during 5–7 June, but before 30 June, which is in good agreement with occurrences of invasive
caterpillars of FAW monitored in these countries [58,59]. As reported, 1–3 instar FAW larvae in
South Korea were first detected on 14 June 2019, whereas Japan confirmed the first appearance of FAW
on 27 June 2019. Our results suggest that source populations of the earliest FAW invading the Korean
Peninsula and Japan mostly originated from HN (Figure 1), in which the newly-invaded population
was investigated from 1–10 May 2019. In addition to HN, GD, located in the tropical and southern
subtropical zones (comprising YN, GD, GX and HI, Figure 1), can also provide migrants to colonize
the Korean Peninsula if the FAW conducts more than two successive night flights [28]. Transoceanic
migrations of insects were frequently reported [60], and strong flyers, such as moths and butterflies,
can even complete two-to-three-day journeys by crossing the 2000 km of ocean between Australia and
New Zealand [61]. Moth travelers surviving during migrations over the Bohai Sea of China have also
been commonly recorded [62]. As anticipated, FAW moths have crossed the Mozambique Channel
that has a maximum width of 419 km to breed in Madagascar [63]. These pioneering works and the
firstly-observed occurrences of FAW in South Korea and Japan provide strong evidence that FAW
populations from the Yangtze River Valley are able to migrate long distances across the sea and possibly
are the source of FAW colonizing these two neighboring countries.

Previous analyses emphasized that FAW populations from tropical and southern subtropical
zones of China have been continuously immigrating into the Yangtze River Valley from March to
August [28,55]. Myanmar is one of the key source regions of FAW immigrants in YN [27]. Indeed in
YN, FAW generations are present throughout the coldest part of the winter (January), wherever the
host plants are available [27,28]. Our results could further suggest that the possibility of population
communication between the Yangtze River Valley and the tropical and southern subtropical zones
populations is relatively high when the winds blow toward the south or southwest at night. Briefly,
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substantial mixing of the migrants would occur among the populations of the tropical and southern
subtropical zones followed by a southward return, and FAW is establishing itself as one of the major
pests in China. Therefore, further studies should be carried out to identify impacts of non-native
invasive FAW on agricultural production, biodiversity and ecosystem function.

5. Conclusions

Our extensive study of migration patterns and biometeorological processes elucidated the
population dynamics of newly-invaded FAW in the Yangtze River Valley, and we confirmed the
importance of the Yangtze River Valley as the source of migrants colonizing Northern China during
May to July. We proposed that the migration of FAW between the Yangtze River Valley (i.e., middle
and northern subtropical zones of China) and the tropical and southern subtropical zones of China
would form a circuit due to the advance and retreat of the prevailing southerly winds. Simulation
and prediction of migratory insect pests such as FAW, which are too small to be directly tracked,
remains challenging. Our data provide a basis for monitoring and early warning of FAW emigrating
from the Yangtze River Valley of China. Further work is required to monitor and quantify the
migration magnitude, combined with an atmospheric trajectory model, systematic field investigation of
populations and long-term-operated radars, which would increase our predictive capabilities relating
to migratory pests.
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