
Modeling the Spread of Vector-Borne Diseases on
Bipartite Networks
Donal Bisanzio1,2, Luigi Bertolotti1,2, Laura Tomassone1, Giusi Amore1, Charlotte Ragagli3, Alessandro

Mannelli1, Mario Giacobini1,2*., Paolo Provero2,4*.

1 Department of Animal Production, Epidemiology and Ecology, University of Torino, Torino, Italy, 2 Molecular Biotechnology Center, University of Torino, Torino, Italy,

3 Ministry of Forestry and Agricultural Politics, State Forestry Department, Territorial Unit for Biodiversity, Lucca, Italy, 4 Department of Genetics Biology and Biochemistry,

University of Torino, Torino, Italy

Abstract

Background: Vector-borne diseases for which transmission occurs exclusively between vectors and hosts can be modeled
as spreading on a bipartite network.

Methodology/Principal Findings: In such models the spreading of the disease strongly depends on the degree distribution
of the two classes of nodes. It is sufficient for one of the classes to have a scale-free degree distribution with a slow enough
decay for the network to have asymptotically vanishing epidemic threshold. Data on the distribution of Ixodes ricinus ticks
on mice and lizards from two independent studies are well described by a scale-free distribution compatible with an
asymptotically vanishing epidemic threshold. The commonly used negative binomial, instead, cannot describe the right tail
of the empirical distribution.

Conclusions/Significance: The extreme aggregation of vectors on hosts, described by the power-law decay of the degree
distribution, makes the epidemic threshold decrease with the size of the network and vanish asymptotically.
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Introduction

Many natural, social and technological systems can be described

in terms of self-organized networks of interacting entities. These

networks often display topological properties, such as scale-free

degree distributions, community structure and small-world

phenomenon, which set them apart from simpler networks such

as lattices and random networks (see e.g. [1]).

In particular, the spreading of a transmissible disease can be

studied by modeling the population as a network of individuals, in

which an edge is placed between two individuals if there is the

possibility of transmission between them. It was shown [2] that

degree distribution of the network has dramatic consequences on

the spreading of the disease: while regular lattices and random

networks have a non-zero epidemic threshold, that is a critical

value of transmission probability under which the disease

eventually dies out, such threshold vanishes asymptotically in

scale-free networks. The latter degree distribution is charac-

teristic of many real-world networks, including social and

computer networks on which human diseases and computer

viruses propagate.

In some cases of practical interest modeling the propagation of

the disease requires the introduction of a bipartite network [3], in

which the nodes (individuals) belong to two mutually exclusive

classes and the edges (transmission) can occur exclusively between

individuals of different classes. For example, Gómez–Gardeñes

et al. [4] studied the spreading of sexually transmitted diseases in

heterosexual populations and showed that the bipartite nature of

the network must be taken into account to model the behavior of

the epidemic threshold.

In this work we introduce another context in which bipartite

networks provide the natural framework to study epidemic

spreading, namely those vector-borne diseases in which transmis-

sion occurs exclusively between vectors and hosts. The aim of this

study is twofold: first, we show that the analysis of bipartite

networks performed in [4] implies that the epidemic threshold

vanishes asymptotically even for bipartite networks in which the

degree distribution of one class of nodes is not scale-free, as long as

the other class is scale-free with exponent cƒ3.

Second, we analyze capture data of the tick Ixodes ricinus on their

hosts. These ticks can transmit the pathogens responsible for Lyme

disease (Borrelia burgdorferi) and the tick-borne encephalitis (TBE)

virus (see [5,6] for reviews). We show that the distribution of the

number of ticks found on hosts indeed follows asymptotically a

scale-free distribution compatible with a vanishing epidemic

threshold.
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Results

Epidemics spreading on bipartite networks
Analytical results. Consider a vector-borne disease which

can only be transmitted between vectors and hosts, and can thus

be modeled on a bipartite network. An edge placed between a host

and a vector represents the possibility for the disease to spread

from one to the other. Two separate degree distributions can be

defined for hosts and vectors.

Gómez–Gardeñes and collaborators [4] recently studied disease

spreading on scale-free bipartite graphs as a model of sexually

transmitted diseases in heterosexual populations. In a mean-field

approach they showed that the epidemic threshold for a bipartite

network with nodes falling into classes A and B is given by

l~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vkAwvkBw

vk2
Awvk2

Bw

s
ð1Þ

It follows that for the epidemic threshold to vanish asymptot-

ically it is sufficient that the second moment of the degree

distribution of one class of nodes diverges. Therefore it is enough

for the hosts (or vectors) to have a scale-free distribution of contacts

(with power-law exponent cƒ3) for the epidemic threshold to

vanish in the limit of infinite network size.

Simulations. Since these results were obtained in a mean-

field approximation, and the simulations corroborating them in [4]

were performed in the case where both degree distributions are

scale-free, we performed our own simulations in which the hosts

have a scale-free degree distribution, but the number of edges

touching a vector is Poisson-distributed. We simulated the SIS

model on such networks, measuring the dependence of the

epidemic threshold on the network size.

The results are shown in Fig. 1. When the degree distribution is

scale-free for the host and Poisson for the vectors the epidemic

threshold decreases with the network size following a power-law,

in agreement with the predictions made using Eq.1. As expected,

the epidemic threshold does not depend on the network size when

both vectors and host follow the Poisson degree distribution. The

conclusion is that the results of Ref. [4] hold also when one of the

degree distributions is not scale-free.

As noted in [4] taking into account the bipartite nature of the

network is necessary to get the correct scaling behavior of the

epidemic threshold. Consider for example the case in which hosts

have scale-free degree distribution while the one of the vectors is

Poisson. If one were to study the non-bipartite network obtained

by projecting on the hosts, one would get a scale-free network of

hosts: the theory of epidemic propagation on such network would

predict the epidemic threshold to behave as

l~
vkw

vk2
w

ð2Þ

where the expectation values are computed on the projected

network (see [7] for a discussion of bipartite network projections).

This in turn would lead to a scaling exponent equal to twice the

one predicted for the bipartite network.

A bipartite network model of Lyme disease and Tick-
Borne Encephalitis

In this section we show that the results described above apply in

particular to the propagation of two tick-borne pathogens, namely

the Lyme disease agent Borrelia burgdorferi and the TBE virus, since:

1. Transmission between vectors requires a common host.

2. The degree distribution of the hosts is scale free, with exponent

cƒ3.

It is well established that the main avenue for the transmission of

these pathogens between vectors requires a host: the pathogen is

either transmitted from a vector to a host and from the latter to

another host, or from a vector to another one feeding nearby on the

same host (co-feeding) [5,6,8]. Both modes of transmission require a

host and thus create a bipartite network. The role of transovarial

transmission, which is host-independent, is still under discussion, but

the consensus seems to be that, by itself, this mode of transmission is

not sufficient to maintain the zoonotic agent [9–11].

To determine the degree distribution of the bipartite network we

analyzed field data on the distribution of the number of ticks

(nymphs and larvae) found on hosts (mice and lizards), represented

in the model by the degree distribution of host nodes. Exhaustive

empirical surveys have shown that macroparasites, and in particular

ticks, are aggregated across host populations. This aggregative

behavior has important implications for the population and

evolutionary dynamics of the parasite and its host [12–14].

We used the methods described in [15] to assess whether the

distribution of ticks on hosts is indeed described by a power-law.

We conducted the analysis separately on the data reported in Ref.

[10] and on our own field data [16]. As explained in [15] when

fitting an empirical distribution to a power law not only the c
exponent, but also the cutoff kmin above which the data follow the

power-law must be determined. Table 1 shows that a power-law

distribution with exponent c*2:5 describes the right tail of the

distribution better than the commonly used negative binomial

distribution in both empirical datasets. The power-law distribution

is compatible with both datasets (respectively P~0:96,0:70 from

the goodness of fit test), while the negative binomial can be

Figure 1. Dependence of the epidemic threshold on the
network size for various degree distributions (logarithmic
scale on both axes). The circles represent the epidemic threshold
from our simulation, and the lines the predictions obtained with Eq.1.
Colors refer to combinations of degree distributions. Blue: Poisson
distribution for both hosts and vectors; red: Poisson distribution for
vectors, scale-free (c~2:5) for hosts.
doi:10.1371/journal.pone.0013796.g001
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excluded (Pv0:05). The empirical data and the best fitting power-

law distributions are shown in Fig. 2.

Let us stress that this applies to the right tail of the distribution: it

is instructive to plot the log likelihood ratio of the comparison

between power-law and negative binomial as a function of kmin

(Fig. 3): the negative binomial does fit the data better than a power-

law for low values of kmin, but the tail of the distribution is better

described by the power law. This might explain why the negative

binomial is commonly used to model the distribution of vectors on

hosts. On the other hand, only the right tail of the distribution is

relevant to the asymptotic behavior of the epidemic threshold.

Therefore we predict that in this system the epidemic threshold

will decrease as the network size increases and will vanish in the

limit of infinite network size. Figure 4 shows the time-dependence

of the fraction of infected nodes in networks of increasing size at

the same value of the transmission probability: larger networks are

able to sustain the epidemic for longer times; once the network size

crosses a critical value, the epidemic is sustained indefinitely.

Discussion

The distribution of vectors on hosts plays a fundamental role in

the transmission of vector-borne diseases. Since the work of

Woolhouse and coauthors [17], the aggregative distribution of

ectoparasites on hosts was recognized as a key factor in the

transmission of pathogens: ‘‘20% of host population contributes at

least 80% of transmission potential’’. This aggregative behavior

explains field observations such as those by Perkins and coauthors

[18], who observed that the removal of the most-infested mice

could reduce the potential transmission by 74% to 94%.

The negative binomial distribution was proposed in 1998 [19] to

describe the aggregative nature of the distribution of macroparasites

on hosts. Most mathematical models for tick-borne diseases are

Figure 2. Distribution of the number of ticks on hosts for the Slovakia and Tuscany datasets. The line represents the power-law
distribution with parameters c and kmin determined by Maximum Likelihood Estimation.
doi:10.1371/journal.pone.0013796.g002

Table 1. Distribution of vectors on hosts.

Dataset kmin N Power law Neg. bin. LR test

c P size P z P

Slovakia [26] 9 116 2.59 0.96 0.81 0.01 3.48 5.0e-4

Tuscany [16] 6 68 2.51 0.70 0.28 0.04 1.70 0.08

The right tail of the distribution of vectors (larvae and nymphae) on hosts (mice
and lizards) is described by a power-law distribution. For each dataset we
report: the MLE estimate of the value kmin of k above which the data are well
described by a power-law; the MLE estimate c of the power-law exponent; the
P-value of the goodness-of-fit test for the power-law; the MLE estimate of the
size of the negative binomial distribution; the P-value of the goodness-of-fit test
for the negative binomial; the z-statistic and the P-value of the Vuong test
comparing the two distributions.
doi:10.1371/journal.pone.0013796.t001

Figure 3. The dependence of the Vuong z-statistic on the
degree threshold kmin for the Slovakia and Tuscany datasets.
Positive (negative) values of z imply that the data are better described
by the power law (negative binomial) distribution. While the whole
distribution is better described by the negative binomial, the power law
is a better fit to the large-k behavior, which governs the asymptotic
behavior of the epidemic threshold.
doi:10.1371/journal.pone.0013796.g003
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based on this assumption. This law faithfully describes the leftmost

part of the distribution of ticks on hosts. However our analysis shows

that the negative binomial fails to describe the right tail of the

distribution of ticks on their hosts, which is instead well described by

a power-law decay. This implies that the epidemic threshold

decreases with the size of the network and vanishes asymptotically.

These results are in agreement with the observation [20] that the

density of rodent hosts (and the abundance of their food source) is a

much stronger predictor of the density of infected nymphs compared

to non-network related factors such as weather and density of deers.

Our results were obtained using a bipartite network to model

the spread of the disease. Deviations from strict bipartitedness,

provided for example by transovarial transmission, do not alter the

main conclusion of an asymptotically vanishing epidemic thresh-

old. Indeed the addition of edges to a network can only decrease

the epidemic threshold. Therefore if the bipartite network

obtained by considering only edges between vectors and hosts is

such that the epidemic threshold vanishes asymptotically, all

networks obtained from it by adding non-bipartite edges will have

the same property.

In conclusion, we have shown that the extreme aggregation of

vectors on hosts, described by the power-law decay of the degree

distribution, has dramatic consequences on the behavior of the

epidemic threshold, and must therefore be taken into account

when modeling the spread of those vector-borne diseases that can

be described as propagating on a bipartite network.

Figure 4. Dynamics of the fraction of infected nodes at constant transmission probability. The networks follow a scale-free degree
distribution with c~2:5 for the hosts and a Poisson degree distribution for the vectors. As the number N of hosts is increased, the epidemic is
sustained for longer times.
doi:10.1371/journal.pone.0013796.g004
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Materials and Methods

Simulations
Network generation. The networks used in the simulations

had the same number of vectors and hosts, ranging from 210 to

216. To generate the networks we first assigned ‘‘edge stubs’’ to the

nodes of the two classes according to their respective degree

distributions and them randomly joined the stubs to produce the

network.

We used a pure power-law distribution as a scale-free

distribution

P(k)~
1

f(c)
k{c

where

f(c)~
X?
k~1

k{c ð3Þ

and c~2:5; and the Poisson distribution

P(k)~
lke{l

k!
ð4Þ

for random degree distributions, with l~2.

Simulations. We produced 10 independent realizations of

each network. For each realization we simulated the SIS model

with recovery probability equal to one and initial fraction of

infected nodes equal to 1/2. The system was allowed to thermalize

for a number of iteration equal to the number of nodes; then the

mean and standard error of the number of infected individuals was

computed in successive windows of 1,000 iterations each. We

considered the system thermalized when the mean of a window

was within one standard error from the mean of the previous one.

By varying the transmission probability we located the epidemic

threshold for each network realization with a resolution of 10{4 in

the transmission probability (10{3 in the random-random case).

These 10 values were then used to compute the mean value of the

epidemic threshold for the network. The error on the epidemic

threshold is taken as the greater value between the standard error

computed from the 10 realizations and the resolution in

transmission probability.

The dynamics simulations shown in Fig. 4 were performed on

networks where the degree distribution is scale-free with c~2:5 for

the hosts and Poissonian for the vectors.

Theoretical predictions. The theoretical predictions for the

size-dependence of the epidemic threshold shown in Fig. 1 are

based on Eq.1 applied to the appropriate degree distributions.

Two technical issues arise in the computation:

1. The finite size behavior of vk2
w in the scale-free degree

distribution is driven by the existence of a cutoff value kc due to

the finite size of the network [21]. kc can be estimated [22] by

requiring

P(kwkc)ƒ
x

N

where N is the number of nodes and x is the number of nodes

with kwkc expected in the network: x~1 is used in [22], while

we found that better agreement with simulation data can be

found using a smaller x. The data in Fig. 1 are obtained with

x~0:15. To evaluate the theoretical epidemic threshold we cut

the degree distributions at min(kc,N).

2. For Poisson degree distributions, Eq. (4), vkw and vk2
w in

Eq. (1) must be computed only over nodes with kw0, giving:

vkw~
l

1{el
ð5Þ

vk2
w~

lzl2

1{el
ð6Þ

Field data analysis
The ‘‘Tuscany’’ dataset contains infestation data from field

work conducted in a natural reserve in Le Cerbaie hills, Pisa

province, central Italy. This area is characterized by Mediterra-

nean vegetation, an optimal habitat for ticks and their hosts [23],

and previous studies reported the presence of B. burgdoferi [24,25].

The sampling sessions were carried out, monthly, from March to

August 2006. Rodents and lizards were captured as described in

[25]. Two different hosts were considered, Apodemus spp. and

Podarcis spp. The animals were infested only by immature ticks

Ixodes ricinus. The number of mice and lizards examined are

reported in Table 2.

The ‘‘Slovakia’’ dataset refers to the distribution of larvae and

nymphs on mice, obtained from Fig. 3 of Ref. [26]. These data

were collected in the area of Bratislava (Slovakia), where TBE and

Lyme disease are present.

The power-law

y~ck{c ð7Þ

is assumed to describe the right tail of the degree distribution, that

is the nodes with degree k greater then or equal to a minimum

kmin. kmin was obtained with the method introduced in [15,27] and

based on the Kolmogorov-Smirnov (KS) statistic. c was estimated

by maximum likelihood estimation (MLE) performed on the data

with k§kmin. MLE was also used to find the parameters of the

negative binomial distribution

y~
(rzxz1)!

x!(r{1)!
pr(1{p)x ð8Þ

providing the best fit to the same data.

The goodness-of-fit tests were based on the empirical distribu-

tions of the Kolmogorov-Smirnov statistic obtained by Monte

Carlo methods as explained in [15]. Power-law and negative

Table 2. Field data.

mice lizards total

collected 161 86 247

non-infested 51 13 64

larvae-infested 110 58 168

nymphs-infested 19 44 63

co-infested 19 29 48

Number of mice and lizards examined to determine the distribution of vectors
on hosts in the Tuscany dataset.
doi:10.1371/journal.pone.0013796.t002
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binomial distributions were compared using the Vuong test on

likelihood ratios.
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