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Simple Summary: It is known that improving the welfare of cows increases dairy productivity.
A compost-bedded pack barn equipped with evaporative cooling pads to regulate the inside environ-
mental conditions of dairy seems to be a synergic combination to improve substantial the welfare
in dairy facilities. However, there is a lack of information about both techniques working together.
A computational model of a tunnel-ventilated compost-bedded pack barn with an evaporative pad
cooling system was developed to know the spatial distribution of temperature, relative humidity
and velocity of the air inside the barn. These variables allowed us to compute a thermal stress index
for dairy cattle to identify the geometric characteristics and operative conditions of the evaporative
pad cooling that provide the best environmental conditions inside the barn according to the outside
environmental conditions.

Abstract: Evaporative cooling is one of the most efficient techniques to reduce heat stress in cows
in agricultural facilities. Additionally, compost-bedded pack barn has been shown to improve the
welfare and production of cows. Two techniques were combined and analysed by developing a
computational fluid dynamics (CFD) model of a tunnel-ventilated compost-bedded packed barn that
integrated the heat and airflow dynamics of an evaporative pad cooling system. This allowed us to
study the distribution of dry-bulb temperature, relative humidity and airflow velocity inside the barn
based on the external environmental conditions, thickness of the pad, water temperature and specific
manufacturer characteristics of the pad, providing optimal cooling pad location, size and operating
conditions in the barn. Employing experimental data the CFD model was validated showing good
agreement. The Equivalent Temperature Index for dairy Cattle (ETIC) was used to determine the
level of stress of the cows considering the airflow velocity. It was found a moderate stress due to
high relative humidity and low airflow velocity. From the predicted results, it was recommended to
increase the airflow velocity above 3 m s−1 when simultaneously the external dry-bulb temperature
and relative humidity exceed 30 ◦C and 55%, respectively, simultaneously. Additionally, installation
of baffles at the pad outlet to drive the airflow to the floor was suggested to improve the drying of
the compost-bedded closed to the pads, where a low airflow velocity region was established.

Keywords: compost-bedded pack barn; tunnel-ventilated; animal welfare; thermal comfort; dairy
cattle; ETIC; CFD; evaporative cooling
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1. Introduction

Compost-bedded pack barn (CBP) is an animal housing system that provides a resting
area for dairy cows free of stalls or partitions, generating a healthy and comfortable open
environment with a floor surface made of absorbent and biodegradable material as sawdust
or straw [1,2]. CBP has received attention due to the increase in production, comfort and
health of the animals, in comparison with traditional freestall systems when properly
maintained CBP [3–6]. Scientific literature had been focused on determining the airflow
distribution inside dairy cow barns with natural [7–9] and mechanical ventilation [10–12]
for freestall and CBP systems, but none involve the distribution of the dry-bulb temperature
(Tdb) and relative humidity (φ).

On the other hand, evaporative cooling has been shown to be one of the most efficient
technique to reduce the thermal stress on cows through foggers, misters, sprinklers or baths, lo-
cated in specific zones of the barns [13–15]. However, the benefits of these methods last as long
as the skin of the animal remains wet and it depends on the coverage of the systems. Mean-
while, tunnel-ventilated barns with evaporative pad cooling provides micro-environmental
conditions that improve animal welfare inside the facility, increase the milk production and
minimizing the addition excess of water into the cow’s environment [16–20].

The use of evaporative pad cooling in tunnel-ventilated barns in tropical and sub-
tropical locations, which are characterized by high environmental φ levels, is controversial
due that this variable reaches high levels inside the facilities. However, it has been proved
that evaporative pad cooling provides comfort levels higher than those obtained on nat-
ural and mechanical ventilated barns, alleviating the thermal stress on cows when it is
needed [18]. Even though some research studies do not recommend the use of evaporative
cooling techniques with CBP barns due to the relation of high levels of φ inside the facility
with the poor drying rate of the bed [3]. However, the benefits of CBP and evaporative
pad cooling systems on cow welfare has promoted the use of both systems together, using
the air velocity to partially mitigate the impact of high relative humidity [3,17]. For this
reason, false ceiling and baffles are usually located on the roof to redirect and concentrate
the airflow over the cows, increasing the cooling effect [8,21] with airflow velocities above
3 m s−1 [8] which is the recommended value for tunnel-ventilated barns [17,22].

The Temperature–Humidity Index (THI) has been commonly used to quantify the
thermal stress level of the animals, linking the dry-bulb temperature and relative humid-
ity [23–25]. Wang et al. [26] recently proposed the Equivalent Temperature Index for dairy
Cattle (ETIC) as substituted of THI (Equation (1)), considering the environment dry-bulb
temperature (Tdb), relative humidity (φ), air velocity (u) and solar radiation effects (G)
in the computation of the index. The heat stress thresholds were characterized as mild
(18 ◦C ≤ ETIC < 20 ◦C), moderate (20 ◦C ≤ ETIC < 25 ◦C), severe (25 ◦C ≤ ETIC < 31 ◦C)
and emergency (ETIC ≥ 31 ◦C).

ETIC = Tdb − 0.038T(100− φ)− 0.1173u0.707(39.2− Tdb) + 1.86× 10−4TdbG (1)

A lot of studies are focused on the impact of microclimatic conditions over lactating
dairy cows and their spatial distribution freestyle barns facilities [27–30]. However, there
is scarce information about the distribution of the dry-bulb temperature and relative
humidity that could lead to improvements in CBP design. Thus, this research study serves
as a first approximation of modeling and simulation of the thermal distribution inside a
tunnel-ventilated CBP dairy barn with evaporative pad cooling system located in a tropical
environment, using computer fluid dynamics (CFD) simulations. This computer tool has
been widely shown to be an accurate complement to experimental field tests, leading to the
analysis of a wide range of operative conditions [31].
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2. Materials and Methods
2.1. Experimental Tests in Tunnel-Ventilated Compost-Bedded Pack Barn

Experimental tests were made in a tunnel-ventilated compost-bedded pack barn with
80 Holstein cows in the lactation cycle (about 600 kg and 11 m2 per cow) and equipped with
an evaporative pad cooling system (Figure 1) during the dry season in December of 2018.
The facility has an external length of 55 m, width of 26.4 m and height of 5 m at the ridge
and is located in the city of Viçosa, Minas Gerais, Brazil (latitude 20◦46′41′′ S, longitude
42◦48′57′′ W and altitude 657 m). It has a drive-through feed platform of 55 × 4 m2, a
feed alley of 55 × 4 m2 with four drinkers, a compost-bedded pack of wood shavings and
coffee husk of 55.0 × 16 m2, and a service alley of 55 × 2.4 m2. The floor of the three alleys
is made of concrete and the feed alley and the compost bedded is separated with 1.2 m
high concrete walls. The building has metallic roof with a plastic ceiling of polypropylene
fabric at 4.4 m of height, lateral walls of 1 m and lateral sides cover with polypropylene
fabric curtains. Five baffles of polypropylene fabric are located at 3 m above the floor and
separated 11 m from each other. In addition, a polypropylene fabric curtain from 2.2 m
above the floor to the ceiling is used to separate the drive-through feed alley from the other
areas. These are used to concentrate the airflow over the cows. The compost-bedded tilling
is performed with a modified cultivator on a small tractor when cows are milked, at 06:00
and 17:00 h every day.

(a) (b) (c)
Figure 1. Tunnel-ventilated compost-bedded pack barn. (a)—Fan exhaust. (b)—Inside. (c)—Evaporative
cooling pads.

Five exhaust fans (BigFan®, 3.5 m of diameter, six blades, airflow of 150,000 m3 h−1 and
2.0 hp, Airway-Engenharia e Equipamentos Ltda, Caxias do Sul, Rio Grande do Sul, Brazil)
force the air to pass through five cellulose pads each one of 3.6 × 3.6 m (45◦ × 15◦ angles,
CIABRAPE, Empresa Brasileira de Papéis Especiais, Campinas, Brazil) continually wetted
and oppositely located at a distance of 55 m. The airflow through the feed alley was driven
meanly by one exhaust fan and one cooling pad, while for the compost bedded area four
exhaust fans and four cooling pads were used. The exhaust fans stayed on all the time
while the evaporative cooling system was turned on only when a temperature and relative
humidity sensor located in the middle of the facility measured a temperature above 21 ◦C
and a relative humidity below 75%.

Twenty five measurements points were defined in the compost bedded area and five
points in the feed alley area at a high of 2 m above the floor, the sensors were arranged as
shown in the Figure 2. Dry-bulb temperature and relative humidity were measured using
digital sensors (DHT22; range measurements: 0 to 100% for relative humidity and −40 to
80 ◦C for dry-bulb temperature; accuracy: ±2% and ±0.5 ◦C; Aosong Electronics Co., Ltd.,
Guangzhou, China). Thermal conditions outside the facility were also measured using
the same type of sensors inside a meteorology cover. Several Arduino Mega 2560 Rev. 3
open-source electronic developed platform (https://www.arduino.cc/, accessed on 3 July
2022) were used as dataloggers to collect the data, with up to four sensors per device.

https://www.arduino.cc/
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Figure 2. Dimensions and measured points inside the closed compost dairy barn building.

The air velocity inside the barn was measured manually using a hot-wired anemometer
(INSTRUTHERM®, TAFR-180 model with an accuracy of ±0.1 m s−1, Instrumentos de
Medição Ltda, São Paulo, Brazil) in the measurement points previously defined. It was
found that the variation of the air velocity for each point was near to the sensor error, and
consequently an average air velocity was considered.

2.2. CFD Model of Evaporative Cooling Pad

A pad section of 0.5 m of height, 0.01 m of width and 0.1 m of thickness was meshed,
modelled and simulated. The commercial ANSYS CFX® (ANSYS Academic Student Re-
leased 2020 R1, ANSYS Inc., Canonsburg, PA, USA) CFD software was used to solve the
equations of conservation of mass, momentum, turbulence, heat and mass transfer for
incompressible and turbulent fluid in steady state, through a fully-couple finite volume
solver. The turbulence k-ε model with scalable wall function was employed to simulate
the turbulence. From the ANSYS CFX® CFD software, a solver advection scheme option
of high resolution, corresponding to a second order upwind scheme, was selected. As
convergence criteria the RMS residual type was used with a RMS residual target of 1× 10−4

for all models.
A structured mesh with linear order elements was used to meshing the pad model.

Element sizes of 0.025 and 0.01 m were defined along the height and width of the pad
section, respectively. Several refinements of the mesh in the flow direction (thickness) were
compared. Five inflation layers with a first layer 0.002 m and 1.2 of growth rate were
defined in the top and bottom regions of the pad. The pad meshing for 50 divisions in the
flow direction (x-axis) is shown in Figure 3a.

The cellulose pad was modelled as a homogeneous isotropic porous medium with
a porosity of 0.94, permeability of 1.4853 × 10−6 m−2, coefficient of Forchheimer of
22.2652 m−1 corresponding to a water flow across the pad of 6.2 L min−1 m−1, and specific
surface area (ζ) of 297.16 m−1 [32]. The inlet air was considered as an ideal gas mixture of
dry air and water vapour modelled using the species transport model, where the kinematic
diffusivity of water vapour in dry air (DAB) was considered as a function of dry-bulb
temperature (Tdb [◦C]) and the air pressure (P [Pa]) as can be seen in Equation (2) [33].

DAB =
926× 10−6

P
(Tdb + 273.15)2.5

Tdb + 518.15
[m2 s−1] (2)

The inlet boundary condition of the pad was established as an opening of entrainment
type with 93,620 Pa as relative pressure, and the turbulence boundary condition was set
as zero gradient turbulence. The psychometric properties of the air at inlet of the cooling
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pad and the mass fraction of water vapour were established according to the experimental
measurements. The boundary at the pad output was defined as outlet with a normal
speed of 1.2 m s−1 according to the experimental measurements. Wall boundary types
were selected for the upper and lower surfaces with adiabatic thermal conditions and the
lateral surfaces were defined as symmetry boundary types. The procedure to convert the
relative humidity to mass fraction of the water vapour, required at the inlet boundary
condition, is presented in the Appendix A. Those boundaries are shown by arrows in the
Figure 3b. The inlet and outlet boundaries conditions are represented with double and
single arrows, respectively.

(a) (b)
Figure 3. Meshing (a) and boundaries setup (b) of the pad model in the ANSYS CFX® software. The
inlet and outlet of the pad are represented with double and single arrows, respectively.

The temperature of the surface of the porous medium (Ts) was supposed equal to
the inlet air wet-bulb temperature due to the adiabatic cooling process existing through
the wetted pads (equilibrium temperature between the air and the water flow) [34]. Heat
transfer between the pad surface and the wet air was modelled using the thermal energy
model. The convective heat transfer coefficient (hH) was computed using the correlation of
Hilper modified for cellulose cooling pads (3) [32] and was included in the porosity settings
of the domain of the pads to include the dynamics of the heat transfer between the fluid
and the solid (pad).

hH = 1.042
(

le
L

)0.426
Re0.617Pr1/3 (3)

where Re (Equation (A6)), Pr (Equation (A7)) and Sc (Equation (A8)) were Reynolds, Prantl
and Schmidt dimensional numbers, respectively [35]; le is the specific length, compute as
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the inverse of ζ, L is the thickness of the cooling pad, k is the thermal conductivity of wet
air (Equation (A11)) and DAB is the mass diffusion coefficient.

The convective mass transfer coefficient (hM) that was computed using the correlation
of Hilper modified for cooling pads (Equation (4)) [32] was used to predict the water
evaporated rate (ṁe, Equation (5)) from the wetted pad surface. This value was added as a
mass source to the equation of species transport solved by the CFD software.

hM = 0.385
(

le
L

)0.513
Re0.724Sc1/3 (4)

ṁe = hM As

(
ρv@Ts

− ρv@Tf

)
(5)

where As was the wetted surface area computed as the product of the specific surface
area by the volume of the pad simulated, ρv@Ts

and ρv@Tf
were the density of the water

vapour (Equation (A14)) at the surface temperature of the pad (Ts) and the free flow air
temperature (Tf ), respectively.

To evaluate the goodness of the CFD model, 50 random measurements from the ex-
perimental tests [32] were selected and compared with the CFD model results by means
of the Root Mean Square Error (RMSE), the Wilcoxon rank sum test (ranksum function,
MATLAB® Released 2018a, The MathWorks, Inc., Tokyo, Japan) and regression analy-
sis. The measurements and the predicted dry-bulb temperatures and relative humidity
were compared.

2.3. CFD Model of Tunnel-Ventilated Compost-Bedded Pack Barn

The airflow domain of the CBP barn, including the evaporative pads, was modelled
using SOLIDWORKS® CAD software (released 2018, Dassault Systèmes SolidWorks Cor-
poration, Waltham, MA, USA) as shown in the Figure 4a. This model was imported into
the ANSYS® CFX software (ANSYS Inc., released 2019 R2) to meshing and simulation. A
multiblock hybrid mesh using structured mesh was employed to reduce the number of
elements [36]. Adaptive sizing was used with a resolution of three, to reproduce the airflow
around the roof curtains and columns geometry properly. A mesh sensibility analysis was
performed with coarse, medium and fine mesh sizes to select the one that provides an
adequate balance between computational accuracy and efficiency. In Figure 4b a medium
mesh sizes is shown.

(a) (b)
Figure 4. Model (a) and meshing (b) of the dairy cattle barn in the ANSYS CFX® software.

The ANSYS CFX® solver was used to simulate the facility. As convergence criteria the
RMS residual type was used with a RMS residual target of 1× 10−4 for all the models. The
fluid was considered as an ideal gas mixture of dry air and water vapour modelled using
the species transport model as defined before. To model the heat transfer between both
fluids the thermal energy model was used. The turbulent flow was modelled by the k-ε
model with scalable wall function. From the ANSYS CFX® CFD software, a solver advec-
tion scheme option of high resolution, corresponding to a second order upwind scheme,
was selected. The cooling pads and the exhaust fans were include in the computational
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domain of the barn. For this, the pads were modelled using the same procedure described
previously. The boundary condition of the exhaust fans were considered as outlet.

Thermographic camera (INSTRUTHERM®, ITTMV-100, accuracy of ±2% of mea-
surement, Instrumentos de Medição Ltda, São Paulo, Brazil) was used to measure the
temperatures inside the building (Appendix D). Due that the temperature of the surface
of the compost bed increases approaching to the exhaust fans, it was considered that it
changes proportionally to the distance from the pads (z), from 25.4 ◦C at the pads to 30 ◦C
at the exhaust fans. Table 1 summarizes the boundaries conditions used in the CFD model.

The convective heat loss from the cows was simulated as energy source points without
mass and without presenting any resistance in the air flow. They were located randomly
around the compost bedded and the feed alley at 1.2 m height (Figure 5, Appendix C).
For this, the correlation suggested by Wang et al. [37] for horizontal airflow was used to
compute the convective heat transfer coefficient from the Nusselt dimensionless number
as Nuc = 0.082Re0.707

c , where Reynolds number (Rec =
ulc
ν ) was computed in terms of the

airflow velocity (u, [m s−1]), the kinematic viscosity (ν, [m2 s−1]) and the characteristic
length for the cow (lc, [m]), which was considered equal to the heart girth (HG, [m]) and
body weight (BW, [kg]) of the cow as lc = HG = BW+324.52

417.5 [38,39].
The convective heat transfer coefficient was then obtained as hHc =

Nuck
lc

where k is
the thermal conductivity of the air (Equation (A11)). The convective heat loss from the
cow was computed as Qc = hHc SA(Tdb − Tb) [35]. Where SA is the skin surface area of the
cow, calculated in terms of the body weight of the cow as SA = 0.14BW0.57 [40], Tb is the
temperature of the surface of the cow and Tdb is the dry-bulb temperature of the airflow.

Table 1. Boundaries conditions used in the CFD compost dairy barn model.

Location Boundary
Type Mass and Momentum Thermal

Condition Value

Roof ceiling

Wall No slip wall—Smooth
wall roughness

Isothermal 34 ◦C

Lateral curtains Isothermal 34 ◦C

Baffles Adiabatic 0

Columns Adiabatic 0

Walls between columns Adiabatic 0

Doors Isothermal 32 ◦C

Drive-through alley floor Isothermal 27 ◦C

Feed alley floor Isothermal 27.5 ◦C

Compost bedded Variable
temperature 0.0836d + 25.4 ◦C *

Service floor Isothermal 28 ◦C

Fans support wall Isothermal 30 ◦C

Laterals of pad cooling Adiabatic 0

Pad cooling input Opening Entrainment: 95,320 Pa Isothermal 29.7 ◦C

Fans Outlet Normal speed: 1.2 m s−1 - -
* d is the distance from the cooling pads in meters.
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Figure 5. Setup model in the ANSYS CFX® CFD software. The spheres represent the source points
of convective heat loss from the cows, without mass, without presenting any resistance in the air
flow and spatially random distributed (Appendix C). The red arrows represent the interface between
the blocks meshed. The blue arrows are the opening boundary at the pad inlet and the black arrows
represent the boundary condition of the exhaust fans.

Additionally, the dry-bulb temperature and the mass fraction of the water vapour (see
Appendix A) was defined as the thermal conditions of the inlet air in the opening boundary.
A reference pressure of 95320 Pa was used in the CFD model.

To simulate the water evaporated from the compost bedded, the evaporation rate
found by Bjerg and Klaas [41] (2.2557× 10−4 kg d−1 per cow) was used. For this, it was
divided by the area available for each cow (11 m2), obtaining a water vapour mass flux of
2.0506× 10−5 kg m−2 s−1. This value was added as a water vapour source to the equation
of species transport solved by the CFD software.

The ETIC (Equation (1)) was used to analyse the thermal comfort inside the facility,
considering the solar radiation (G) equal to zero.

3. Results
3.1. CFD Modelling of Evaporative Cooling Pad

The analysis of mesh independence of the cooling pad model showed that when the
thickness of the pad was divide in 50 Sections (0.002 m element size), 0.57 ◦C and 1.55%
were obtained for RMSE values of the dry-bulb temperature and relative humidity of the
air at the pad outlet. When the number of divisions was increased up to 300, a difference of
0.03 ◦C and 0.49% with respect to 50 division were presented, not significant improvement
in results was obtained at the cost of an increase in the computational time. Then, 50 division
were selected as a properly value to meshing the thickness of the cooling pad.

Table 2 shows the statistics of the inlet and outlet psychometric properties of air for
the 50 random experimental tests used to validated the goodness of the CFD model.

Table 2. Statistics of the psychometric properties of the air measured at inlet and outlet of the cooling
pad of the compost bedded dairy barn. The statistics of the predicted outlet conditions are shown
between parenthesis µ is the mean, µ̃ is the median and σ is the standard deviation.

Dry-Bulb Temperature Relative Humidity

µ [◦C] µ̃ [◦C] σ [◦C] µ [%] µ̃ [%] σ [%]

Inlet 29.7 29.9 1.1 57.8 56.2 4.1

Outlet
24.4 24.4 0.7 82.1 81.8 2.4

(24.6) (24.7) (0.7) (82.1) (81.4) (2.6)

A comparison between the predicted values of dry-bulb temperature and relative
humidity at the pad outlet with the proposed CFD cooling pad model and the measure
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values is shown in Figure 6. A equality line (black solid line) is also plotted for comparison
purposes. Wilcoxon sum rank statistical tests were apply to both dry-bulb temperature
and relative humidity sets of data, obtained p-values of 0.054 and 0.920, respectively. This
indicates that there is not enough statistical evidence to conclude that the measure of central
tendency of the predicted values are different to the experimental measurements (α = 0.05).
Figure 7 shows how the dry-bulb temperature, relative humidity and pressure drop, change
inside the simulated cooling pad. The output provided for the CFD model for the dry-bulb
temperature, relative humidity and pressure drop are shown in Appendix B for an air
velocity of 1.2 m s−1 and external environmental conditions of 30.9 ◦C and 54.5%.
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Figure 6. Relationship between the thermal conditions at pad outlet predicted with the CFD model
(p) and experimental measurements (m). (a) —Outlet air dry-bulb temperature (Tdbo ). (b)—Outlet air
relative humidity (φo). Solid black line corresponds to the equality line.

Figure 7. CFD predictions of the dry-bulb temperature (a), relative humidity (b) and pressure drop
(c) changes inside the cellulose pad. For 30.9 ◦C, 54.5% and 1.2 m s−1 of dry-bulb temperature,
relative humidity and velocity of the air at inlet pad, respectively.

3.2. CFD Modelling of Tunnel-Ventilate Compost-Bedded Pack Barns
3.2.1. CFD Model Validation

Four mesh sizes of 1,048,893, 2,675,770, 4,655,442 and 10,236,714 nodes, defined as
coarse, medium, fine1 and fine2, respectively, were evaluated to determine if the results are
independent from the meshing process. For the average outside environmental conditions
obtained between 10:00 and 11:00 h (27.5 ◦C, 72.8% and 2.0 m s−1) simulations were performed.
When the fine2 mesh was employed in the simulations, 1.06 ◦C and 11.9% were obtained for
RMSE computed between the average measurements and the CFD predicted values for the
dry-bulb temperature and relative humidity, respectively. A variation up to 0.02 ◦C and 0.023%
were obtained for the RMSE values when the coarse mesh was used. This low variability
allows to conclude that the results are not influenced by the mesh sizes analysed. The medium
mesh size was selected for the following simulations to obtain a suitable representation of
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the distribution of the variables of interest inside the building. A detailed description of the
characteristics of the four mesh sizes evaluated is shown in Table 3.

Table 3. Properties of the meshes analysed.

Mesh Properties
Mesh Sizes

Coarse Medium Fine1 Fine2

Number of elements 331,386 796,694 1,358,107 2,989,746

Number of nodes 1,048,893 2,675,770 4,655,442 10,236,714

Maximum element size 0.4 m 0.25 m 0.2 m 0.15 m

Skewness
Average 0.19631 0.14428 0.11884 0.10174

Standard deviation 0.23201 0.20251 0.18236 0.16896

Orthogonal quality
Average 0.81062 0.86484 0.8893 0.90426

Standard deviation 0.23101 0.19997 0.18057 0.16633

Aspect ratio
Average 22.041 10.007 6.4221 3.6717

Standard deviation 44.33 30.339 23.628 16.129

The relationship between the measured and predicted values for the dry-bulb tem-
perature, relative humidity, air velocity and ETIC of the air inside the facility are shown
in Figure 8. Biased relationships were observed for the dry-bulb temperature and relative
humidity. The CFD model was unable to reach the high levels of dry-bulb temperature
measured and consequently, the relative humidity could not decrease, remaining in levels
above 70%. According to the statistics show in Table 4, the average mean bias deviations
were around 1.5 ◦C and up to 11% for the dry-bulb temperature and relative humidity,
respectively. Standard deviation values confirm that the variation of measurements are
higher that the predicted values. Despite of this, the ETIC relationship show less deviation
from the equality line, with an average mean bias of 0.26 ◦C and a prediction variability less
than 0.6 ◦C. A random distribution around equality line was observed for the air velocity
relationship, the CFD model predictions show a mean and variability similar to the mea-
surements. The variability between the experimental measurements and the CFD model
predictions was quantified using the average RMSE, obtaining 2.0 ◦C , 13.4%, 0.24 m s−1

and 1.1 ◦C for Tdb, φ, u and ETIC, respectively. Those values represent relative differences of
6.1%, 19.7%, 3.6% and 14.6%, for each of the simulated variables.

Figure 8. Regression analysis of the experimental measurements (m) and CFD predicted (p) conditions
inside the tunnel-ventilated compost packed dairy barn using the CFD model developed. (a)—Dry-
bulb temperature (Tdb [◦C]). (b)—Relative humidity (φ [%]). (c)—Airflow velocity (u [m s−1]). Solid
black line corresponds to the equality line. (d)—Equivalent Temperature Index for dairy Cattle (ETIC
[◦C]). Solid black line corresponds to the equality line.
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Table 4. Statistics of psychometric properties of the air measured (m) outside and inside the tunnel-
ventilated compost bedded dairy barn used to validate the proposed CFD model and the predictions
made with it (p). Tdb is the dry-bulb temperature ([◦C]), φ is the relative humidity ([%]), ETIC is the
Equivalent Temperature Index for dairy Cattle ([◦C]), u is the air velocity ([m s−1]), µ is the mean, µ̃

is the median and σ is the standard deviation.

Hour Interval
Outside Inside

µm µ̃m σm µm µp µ̃m µ̃p σm σp

T d
b

10–11 27.5 27.4 0.2 26.3 25.4 26.4 25.4 0.8 0.6

12–13 29.6 29.5 0.3 28.2 26.0 28.4 26.1 1.1 0.5

14–15 32.2 32.3 0.4 28.9 27.1 29.3 27.2 1.4 0.5

16–17 33.0 33.0 0.2 29.0 27.2 29.0 27.2 1.5 0.5

φ

10-11 72.8 73.0 1.6 74.1 84.9 73.5 84.3 6.5 2.3

12–13 62.6 62.5 1.2 67.3 80.5 68.0 79.9 7.2 2.4

14–15 52.7 52.6 1.9 62.3 75.0 63.0 74.7 6.1 1.9

16–17 47.5 47.4 1.6 59.8 71.2 61.0 71.0 7.5 1.8

ET
IC

* 10-11 24.6 24.6 0.1 21.8 22.0 21.9 22.2 0.7 0.6

12–13 25.1 25.3 1.0 23.1 22.2 22.8 22.4 0.9 0.5

14–15 26.1 26.4 1.2 23.3 22.8 23.2 23.0 1.1 0.4

15–16 26.4 26.4 0.2 23.0 22.5 23.0 22.6 1.0 0.4

u - - - - 1.4 1.3 1.4 1.3 0.1 0.2

* An air velocity of 0 m s−1 were considered for compute ETIC for the outside conditions.

Outside and inside dry-bulb temperature (Tdb) and relative humidity (φ) along the
centre of the compost bed for one day of experimentation are shown in Figure 9. Since
the activation of the evaporative pad cooling system (09:00), a significant gradient of the
thermal conditions is present from the pad outlet (measured at 5.5 m) up to a distance of
16.5 m, where is located the next sensor. No significant changes in the thermal conditions
were observed from this point to the end of the barn (measured at 49.5 m). The gradient
increment along the day, even if the external dry-bulb temperature decreased, and is more
significant for the sensors located closed to the exhaust fans. The maximum gradient is
presented around 14:00 h.

00:09 04:06 08:03 11:59 15:56 19:53 23:49

Time

(a)

20

22

24

26
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30

T
d

b
 [

°
C

]

00:09 04:06 08:03 11:59 15:56 19:53 23:49

Time

(b)

60

70

80

90

 [
%

]

Out

5.5 m

16.5 m

27.5 m

38.5 m

49.5 m

Figure 9. Dry-bulb temperature (Tdb, (a)) and relative humidity (φ, (b)) measurement for one day of
experimentation for the outside conditions and inside measurements along the centre of the compost
bed. The distance between sensors and the cooling pads is indicate.
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3.2.2. CFD Model Predictions

Figure 10 shows the distributions of the dry-bulb temperature, relative humidity, ETIC
and air velocity inside the studied barn at 1.6 m above the floor, for an air velocity at the
exhaust fans of 2 m s−1 and outside environmental conditions of 27.5 ◦C and 72% for dry-
bulb temperature and relative humidity. Figure 10a,b show that the dry-bulb temperature
and relative humidity follow the observed experimental behaviour, increasing the dry bulb
temperature and consequently decreasing the relative humidity from a distance around
17 m from the cooling pads. The ETIC distribution presented in Figure 10c shows a detailed
representation of the micro-environmental conditions inside the barn. It is observed that
the drive-through feed and service alley present high ETIC values along the barn and that
the feed alley increase the ETIC values around the first 30% of the barn. The distribution of
the air velocity (Figure 10d) shows that the curtain that divide the drive-through feed alley
from the feed alley satisfactory drive most of the cooled air over the feed alley, maintaining
in low levels the airflow in the drive-through feed alley. However, it is observed that the
increasing in the ETIC values over the feed alley is due to decreasing the airflow velocity for
the drinker walls and columns that limit the airflow from the others pads. The service alley
shows low airflow velocity because the columns that act as barriers limiting the free airflow.

(a) (b)

(c) (d)

Figure 10. Distribution of the air thermal variables analysed inside the tunnel-ventilated compost-
packed bedded dairy barn 1.6 m above the floor. (a)—Dry-bulb temperature (◦C). (b)—Relative
humidity (%). (c)—Equivalent Temperature Index for dairy Cattle (ETIC,◦C). (d)—Air velocity
(m s−1). The airflow direction is from left to right.

The distribution of the variables along the centre of the compost-bedded pack shown
in Figure 11 complements the aforementioned. The baffles successfully redirects the cooled
air to the cow’s level (Figure 11d), maintaining the ETIC values in the thermal comfort
zones along the barn (Figure 11c). However, zones of low airflow were created in the
volumes between the baffles, increasing the time of contact of the air with the false ceiling
leading to an increment of its temperature. The mixture of this hot air and the cooled air
from the pads is evident from the second baffle causing that the dry-bulb temperature of
the air on the main air stream increase progressively (Figure 11a).

At compost level, the dry-bulb temperature of the air is uniform along the first half of
the barn and then progressively increases. A layer of high relative humidity is presented in
the first half of the barn at compost level, becoming more evident below the cooling pads
(Figure 11a). In this area, a low airflow velocity zone is created, making the dry process
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of the compost-bedded pack difficult. As can be seen in Figure 11c, this zone extends for
almost 3 m in front of the cooling pads.

(a)

(b)

(c)

(d)
Figure 11. Distribution of air thermal variables analysed along the centre of the tunnel-ventilated
compost-packed bedded dairy barn. (a)— Dry-bulb temperature (◦C). (b)—Relative humidity (%).
(c)—Equivalent Temperature Index for dairy Cattle (ETIC, ◦C). (d)—Air velocity (m s−1). The airflow
direction is from left to right.

Two environmental conditions (30 ◦C—55% and 24 ◦C—75%) were simulated using
airflow velocities of 1.5, 3 and 5 m s−1, to determine the influence of this variable over the
analysed variables. Figure 12 shows the profile of the variables along the centre of the barn
for each condition simulated at 0.2 and 1 m above the compost bedded. As air velocity
increases, the dry bulb temperature rises and the relative humidity decreases at the pad
outlet due to the drop of pad cooling efficiency at higher air velocities. In the first 20 m
of the barn, the dry-bulb temperature has no significant changes in comparison with the
relative humidity at both levels. The behaviour of the dry-bulb temperature and relative
humidity for an air velocity of 1 m s−1 is different than for higher air velocities, mainly
due to the increase in the contact time of the air with the surroundings that increase the
heat transfer rate. At 0.2 m above the compost bed and close to the pads is evident that
the airflow has low velocity and reach the free flow velocity approximately 5 m ahead. In
addition, this level present the higher ETIC values for all the airflow velocities simulated.
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Figure 12. Profile of variation of the dry-bulb temperature (Tdb), relative humidity (φ), Equivalent
Temperature Index for dairy Cattle (ETIC) and air velocity (u) along the centre of the tunnel-ventilated
compost-packed bedded dairy barn. At 0.2 m (a–d) and 1 m (e–h) above the compost bedded, for
two environmental conditions for dry-bulb temperature-relative humidity of 24 ◦C—75% (solid line)
and 30 ◦C—55% (dashed line), and three airflow velocities across the exhaust fans: 1.5 m s−1 (black
line), 3 m s−1 (blue line) and 5 m s−1 (red line).

4. Discussion

A CFD model of a tunnel-ventilated compost-bedded pack barn that integrate an
evaporative pad cooling system model was presented. This is an innovative methodology
that allows to simulate the barn using the known external environmental conditions instead
of the thermal conditions of the pad outlet, which depends of multiple variables as pad
thickness, manufacturer, air velocity, water temperature and input dry-bulb temperature
and relative humidity.

The CFD model of the cooling pad proposed, presented good agreement with the
experimental as was established for the RMSE values computed. High relative differences in
the dry-bulb temperature and relative humidity predictions were obtained in the validation
process of the CFD model of the barn, which similar ones were reported by Yao et al. [42].
These differences could be attributed to several factors. First, the CFD model of the pad
considered that the entire pad is wetted and adequately airflow across of it. However, in
practice, it is possible to have zones of the pad clogged or dry, generating that streams of
hot or partially cooled air enter the facility [43]. As the sensors are located close to the pad,
narrow streams of air are difficult to detected with one sensor. Second, the accuracy of the
sensors employed for measure the relative humidity (±5%) gives a wide margin of uncertainly.
Third, variation in the solar radiation along the day was not considering in the model. This
changes the walls temperature, as was shown in Figure 9, affecting the temperature inside
the barn. Despite of that, the CFD model of the pad is considered that gives an appropriate
description of the behaviour of the variables analysed, showing no significant difference
between the experimental measurements and predictions, which is in concordance with the
experimental results from [16] that report average micro-environmental conditions inside the
barn of 28 ◦C and 84%. Other experimental research studies reported high levels of relative
humidity in tunnel-ventilated barn with evaporative pad cooling system [13,17,18,21]. A
similar distribution of temperature and the Equivalent Temperature Index for diary Cattle
were obtained by [8] who evaluated the baffle positions inside a tunnel-ventilated barn. The
average dry bulb temperature difference between external and internal conditions were 2.1 to
5.8 ◦C, analogue results were obtained experimentally by Smith et al. [18] with 3.1 to 5.2 ◦C.
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The wake distribution of dry-bulb temperature after the source points of heat used
to simulate the cows are in agreement with the work of [44] who found an increase in the
dry-bulb temperature up to 3 ◦C after the cows.

As in the CBP systems the cows are widely spaced, it was not considered to represent
the zone of animals as a porous medium [11,44] because it would affect the air distribution
dramatically. Instead of that, it is recommended to include the cows in the simulated CFD
model to obtain a more accurate model in future works.

The CFD model proposed here serves as a tool to improve the design of tunnel-
ventilated CBP barns. As was presented, the height at which the cooling pads are installed
could affect the compost dry process because of the presence of low airflow velocity zones
in front of the pads. Additionally, cows may congregate around this region during heat
stress conditions, due to its low levels of ETIC, increasing the manure and urine content
of the pack [3]. Thus, to improve the drying of the compost-bedded and its stability, it is
recommended to decrease the distance between the floor and the pads during the design of
the barn or install baffles at the outlet of the pad that redirect some of the airflow to the
compost immediately after the pads in already built installations.

Given the importance of the airflow velocity in this facilities, the inclusion of this
variable in a comfort index for dairy cows has contributed to establish satisfactorily the
thermal stress levels in ventilated barns. The impact of the dry-bulb temperature, relative
humidity and airflow velocity over the thermal comfort of the cows could be analysed in
terms of the ETIC index. In this research study, this allows to stablish that the cows in the
barn analysed present a moderate level of thermal stress during the day. From the CFD
model predictions, it was found that the stress level could be lowered to mild if the airflow
velocity increasing above 3 m s−1 when the external dry-bulb temperature and relative
humidity exceeds 30 ◦C and 55%, respectively.

Special attention should be paid to the zones of low airflow velocity that are in contact
with the facility walls, as the service alley, because the airflow is susceptible to increase
its dry-bulb temperature by the prolonged contact with the walls and increase the inside
temperature when it is mixed with the cooled air, increasing the level of thermal stress.

5. Conclusions

A novel approach to model a tunnel-ventilated compost-bedded pack barn with
evaporative pad cooling systems was presented in this research. This model integrates the
behaviour of the fluid-thermal dynamics of the pad cooling with the computational model
of the barn, allowing to simulate the facilities using the external environmental conditions
instead of suppositions regarding the output conditions of the cooling pads.

The compost-bedded pack barn provides a comfortable and cool place for the cows
to lay, but it is require that the air thermal conditions remains below the stress levels to
increase the welfare. The CFD model proposed, allowed us to identify a mild stress level in
the compost bed area and the influence of the compost-bedded pack over the air conditions
of the barn. Additionally, the effectiveness of the baffles and separation curtain used inside
the facility was verified and areas of poor ventilation were identified.

Changes required to the airflow at the pad outlet were recognised from the results.
Due to the location (high) of the pads, a low ventilation zone was identified in front of
them, this area could lead to a high moisture content in the compost and a deactivation of
the composting process. Thus, air baffles at low level of the pad outlet are recommended to
redirect the airflow to the floor to improve the drying process of the compost bed.

The influence of variations of the airflow velocity through the exhaust fans were
studied. Low airflow velocities were associated with increasing the dry-bulb temperature
inside the facility. Airflow velocities over 3 m s−1 did not show a significant improvement
in the internal thermal condition, however, due to an increase in the heat and mass transfer
between the animals and the air, reduce the level of heat stress.
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Appendix A. Equations Used in the CFD Models

Due that the ANSYS CFX software solves the transport equations of the water vapour
and the dry air in terms of the mass fraction of each one, the relative humidity (φ) of
the inlet air has to be converted to water vapour mass fraction m fw . For this, the molar
fraction of the water vapour (M fw ) and the dry air (M fa = 1−M fw ) are computed using
the Equation (A1) and replaced in the Equation (A2), where Mww = 18.01528 g mol−1 and
Mwa = 28.966 g mol−1 are the molar weights of the water and dry air, respectively.

M fw =
φ

100
Pvsat

PT
(A1)

m fw = M fw

Mww

M fw Mww + M fa Mwa

(A2)

where PT is the atmospheric pressure in kPa and Pvsat is the saturation vapour pressure
compute using the Arden Buck Equation (A3).

Pvsat = 0.61121e

(
18.678−

Tdb
234.5

)( Tdb
257.14 + Tdb

)
[kPa] (A3)

where Tdb is the dry-bulb temperature in degree Celsius.
Inversely, the Equation (A4) is used to convert the mass fraction of water vapour to

relative humidity.

φ =
100

1 +
m fa

m fw

Mww

Mwa

[%] (A4)

The wet-bulb temperature (Twb) is compute using the Equation (A5) proposed by [45].

Twb =Tdb tan−1
(

0.151977(φ + 8.313659)0.5
)
+ tan−1(Tdb + φ)−

tan−1(φ− 1.676331) + 0.00391838φ1.5 tan−1(0.023101φ)− 4.686035 [◦C]
(A5)

The Reynolds (Re), Prandtl (Pr) and Schmidt (Sc) dimensionless numbers used to com-
pute the heat and mass transfer coefficients are computed using the Equations (A6)–(A8).

Re =
ule
ν

(A6)
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Pr =
µCp

k
(A7)

Sc =
ν

DAB
(A8)

where u is the air velocity [m s−1], le is the characteristic length [m−1] of the cooling pad
equal to reciprocal of the specific surface area, ν is the kinematic viscosity [m2 s−1], µ is
the dynamic viscosity [kg m−1 s−1], Cp is the specific heats of air [J kg−1 K−1], k is the
thermal conductivity of air [W m−1 k−1] and DAB is the water vapour-air mass diffusivity
coefficient [m2 s−1].

A third order polynomial were fitted (Equations (A9) to (A11), r2 = 1) to the data
presented in the Table A-9 of [46] to compute ν, µ and k as function of the air temperature
(T in degree Celsius).

ν(T) = −3.574× 10−13T3 + 1.284× 10−11T2 + 8.664× 10−8T + 1.338× 10−5 (A9)

µ(T) = 3.263× 10−13T3 − 6.690× 10−11T2 + 4.933× 10−8T + 1.729× 10−5 (A10)

k(T) = −4.196× 10−10T3 + 8.159× 10−9T2 + 7.489× 10−5T + 2.364× 10−2 (A11)

The coefficients presented in the Table A-2 of [47] were used to form a third order
polynomial to compute Cp as function of the temperature (Equation (A12)).

Cp(T) =
−1.0966× 10−9(T + 273.15)3 + 0.4802× 10−5(T + 273.15)2 + 0.1967× 10−2(T + 273.15) + 28.11

2.8964× 10−2 (A12)

DAB was computed using the Equation (A13) presented in [48]

DAB(T) =
92.6× 10−7

PT

(T − 273.15)2.5

(T − 28.15)
(A13)

A third order polynomial were fitted (Equation (A14), R2 = 1) to the data presented in
the Table A-4 of [47], to compute the water vapour density (ρv[kg m−1]) as function of the
air temperature.

ρv(T) = 4.585× 10−7T3 − 1.360× 10−6T2 + 4.991× 10−4T + 4.196× 10−3 (A14)

Appendix B. CFD Pad Model Results

(a) (b) (c)
Figure A1. (a) Dry-bulb temperature [◦C] , (b) relative humidity [%] and (c) pressure drop ([Pa])
across the cellulose pad, predicted with the CFD model. For 30.9 ◦C, 54.5% and 1.2 m s−1 of dry-bulb
temperature, relative humidity and velocity of the air at pad inlet, respectively.
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Appendix C. Spatial Distribution of Simulated Cows as Point Heat Sources

The spheres that represent the source points of convective heat loss from the cows,
without mass and without presenting any resistance in the air flow was spatially random
distributed according to the Cartesian coordinates given in the Table A1. The x-coordinate
is measure from the drive-through feed alley to the service alley, and the y-coordinate is
measure from the pad coolings to the fans negatively.

Table A1. Cartesian coordinates of the spatially random distributed spheres that represents the source
points of convective heat loss from the cows, without mass and without presenting any resistance in
the air flow.

Point x y Point x y Point x y Point x y

1 11.3 −18.5 21 12.7 −12.5 41 15.1 −34.3 61 15.8 −51.8

2 14.6 −22.2 22 14.4 −2.1 42 5.5 −41.1 62 10.3 −49.2

3 16.3 −7.7 23 12.7 −2.6 43 12.4 −32.8 63 14.9 −54.0

4 9.6 −15.7 24 15.5 −3.2 44 12.5 −31.9 64 15.3 −49.2

5 14.6 −10.3 25 12.4 −15.9 45 17.8 −37.7 65 11.1 −41.5

6 10.7 −19.5 26 19.9 −11.6 46 11.8 −27.4 66 4.3 −42.9

7 17.5 −18.0 27 7.5 −4.4 47 10.3 −32.3 67 9.3 −53.1

8 17.3 −3.9 28 5.7 −11.6 48 14.7 −39.5 68 10.8 −47.9

9 8.1 −20.1 29 5.8 −3.5 49 15.9 −33.6 69 8.3 −52.9

10 13.8 −23.1 30 5.0 −1.3 50 12.3 −38.5 70 7.2 −44.1

11 13.3 −12.0 31 10.5 −19.9 51 9.6 −36.6 71 17.1 −48.8

12 12.7 −20.7 32 11.2 −13.1 52 6.4 −33.9 72 10.9 −49.9

13 17.9 −13.7 33 9.9 −21.7 53 13.4 −27.8 73 18.2 −41.7

14 8.2 −3.6 34 16.2 −16.3 54 8.2 −35.3 74 10.3 −49.7

15 9.1 −4.7 35 14.0 −33.8 55 4.7 −24.9 75 18.3 −46.2

16 5.9 −9.5 36 16.4 −38.0 56 16.1 −34.6 76 10.3 −41.9

17 19.0 −17.5 37 18.9 −39.1 57 7.9 −35.2 77 16.9 −48.0

18 14.3 −19.3 38 19.6 −41.1 58 11.1 −36.4 78 16.1 −43.9

19 11.7 −18.5 39 7.1 −23.4 59 15.0 −39.3 79 10.0 −42.9

20 14.2 −7.4 40 6.2 −38.8 60 9.7 −40.9 80 7.5 −44.1
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Appendix D. Thermal Images

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A2. Examples of thermal images of the tunnel-ventilated compost-bedded pack barn analyzed.
(a)—Compost-bedded pack. (b)—Drive-through feed alley. (c)—Feed alley. (d,e)—Exterior. (f)—False
ceiling. (g)— Lateral curtain. (h)—Exhaust fans wall. (i)—Cooling pads.
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