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Abstract

Background: The population attributable fraction (PAF) is the fraction of disease cases in a sample that can be
attributed to an exposure. Estimating the PAF often involves the estimation of the probability of having the disease
given the exposure while adjusting for confounders. In many settings, the exposure can interact with confounders.
Additionally, the exposure may have a monotone effect on the probability of having the disease, and this effect is not
necessarily linear.

Methods: We develop a semiparametric approach for estimating the probability of having the disease and,
consequently, for estimating the PAF, controlling for the interaction between the exposure and a confounder. We use
a tensor product of univariate B-splines to model the interaction under the monotonicity constraint. The model fitting
procedure is formulated as a quadratic programming problem, and, thus, can be easily solved using standard
optimization packages. We conduct simulations to compare the performance of the developed approach with the
conventional B-splines approach without the monotonicity constraint, and with the logistic regression approach. To
illustrate our method, we estimate the PAF of hopelessness and depression for suicidal ideation among elderly
depressed patients.

Results: The proposed estimator exhibited better performance than the other two approaches in the simulation
settings we tried. The estimated PAF attributable to hopelessness is 67.99% with 95% confidence interval: 42.10% to
97.42%, and is 22.36% with 95% confidence interval: 12.77% to 56.49% due to depression.

Conclusions: The developed approach is easy to implement and supports flexible modeling of possible non-linear
relationships between a disease and an exposure of interest.
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Background
The population attributable fraction (PAF) is the fraction
of disease cases in a sample that can be attributed to the
exposure. The PAF is an important measure of the pub-
lic health impact of an exposure on disease burden, and
thus it is useful to prioritize public health interventions
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[1, 2]. The maximum likelihood method is commonly
used to estimate the PAF. However, this approach to esti-
mation requires a correct model for the probability of
disease given the exposure and other covariates subject to
the ignorable treatment assignment assumption [3] (to be
reviewed in the next section). Logistic regression is typ-
ically used to model the probability of disease given the
exposure and the other covariates [1, 4, 5].
The PAF of an exposure must fall between 0 and 1 by

definition. A zero PAF indicates that the disease risk is
irrelevant of the exposure levels. In contrast, a higher PAF
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value indicates a stronger association between disease risk
and the exposure level. In the extreme, a PAF equal to 1
implies no disease risk when there is no exposure. If the
disease risk is higher in the absence of the exposure than in
the presence of the exposure, the PAF then has no proper
meaning. Thus, the definition of the PAF itself also sug-
gests a monotone relationship between the disease risk
and the exposure level (a justification is presented at the
end of the next section). Incorporating the monotonic-
ity assumption into the estimation of the PAF provides
performance gains when there are no other covariates [6].
In many research fields, the exposure is thought to have

a monotone effect on the probability of having the dis-
ease, i.e., the probability is a monotone function of the
exposure. For instance, a dose-response curve is often
thought to be non-decreasing [7, 8]. One such example is
the probability of suicidal ideation, which is thought to be
an increasing function of both hopelessness and depres-
sion [9–12]. Hence, it is desirable to model the probability
of suicidal ideation under the monotonicity constraint of
both hopelessness and depression.
This situation also presents an analytic challenge. When

there are other covariates, they can interact with the expo-
sure, for instance, the interaction of two drugs [13]. In our
example, hopelessness is a system of negative expectations
concerning one’s future life and can cause depression. On
the other hand, current depression can influence one’s
hopelessness towards the future [14, 15]. Thus, an interac-
tion between hopelessness and depression can present to
have a joint effect on suicidal ideation.
These examples highlight, how in many studies, the

effect of the exposure can be complicated and is not neces-
sarily linear, including the common analysis of drug inter-
actions [16]. We bring together several past innovations
to propose a novel analytic solution. [17] study the PAF
when there are joint effects or interactions. [18] develop
an approach of estimating logistic regression models with
interactions and monotonicity constraints. The authors
[18] apply the approach to estimating the PAF and achieve
substantially more accurate estimates in some settings
than the usual approach which uses logistic regression
without monotonicity constraints.
Semiparametric approaches have been applied to esti-

mate relative risk functions [19], to calculate odds ratios
[20], and to estimate effect measures in the presence of
interactions [21]. Herein, we use B-splines [22] (see also
[23, 24] and references therein), to develop a semipara-
metric approach to estimate the PAF in the presence of
interactions with confounding. The model fitting proce-
dure is formulated as a well studied quadratic program-
ming problem, and, thus, can be easily solved using stan-
dard optimization packages. We implement the approach
using the R function solve.QP in the package quadprog
[25, 26]. After a simulation study, we illustrate our new

method by examining hopelessness and depression for
suicidal ideation among elderly depressed patients from
the PROSPECT (Prevention of Suicide in Primary Care
Elderly: Collaborative Trial) study [27]. Specifically, we
model the interaction between hopelessness and depres-
sion under the monotonicity constraint.

Methods
We develop the semiparametric approach to estimate
PAF accounting for interactions under the monotonic-
ity constraint using B-splines in the last two subsec-
tions. We compare the performance of the following three
approaches: the approach we developed (monB), the con-
ventional B-splines (conB) approach without the mono-
tonicity constraint but with the same knots, and the logis-
tic regression approach (logit). Comparisons are made
through simulation studies and a case study of estimating
the PAF for suicidal ideation attributable to hopelessness
or depression. To save computation time, we use a small
number of basis functions, quadratic B-splines with knots
placed at quantiles of the distribution of unique predictor
values [28, P. 24]. We use quartiles {0, 1/4, 1/2, 3/4 and 1}
as the knot locations.

Simulations
Let Y denote presence (1) or absence (0) of the outcome, Z
the exposure, X a confounder, and V an additional covari-
ate. The two interacting covariates Z and X are simulated
independently from the Uniform [ 0, 1] distribution where
a 0 value is always part of the simulated z. The additional
covariateV is simulated from a Bernoulli distributionwith
p = 1/2. The outcome is simulated from a Bernoulli dis-
tribution with the following probability functions, A: 0.1+
0.4z+0.3x−0.2xz+0.2v; B: 2(0.1+2 log(z/2+1))x/3+0.3v;
and C: 0.8

√
z + 0.1x2 + 0.1v. Shapes of the models at a

fixed v are provided in Figure S1 of the supplementary
material.
We examined 1000 simulations for each sample size

100 and 200. We compared the absolute value of the
bias, the variance, and the mean squared error (MSE) of
estimating the PAF attributable to the exposure Z. The
true PAF values from these models are respectively 0.3,
0.4404, and 0.4616. They are calculated from (4) where
the integrals are computed using R functions integral and
integral2 [29].

Illustrative case study
In the PROSPECT study, we focus on suicidal ideation
four months after the beginning of the study. We con-
sider the 592 patients in the study with no missing data.
An event was observed if the score for suicidal ideation
is greater than zero [27]. Following [30], we use the
Beck Hopelessness Scale [31, BHS] to measure hopeless,
and the Beck Depression Inventory score [12, BDI] to
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measure depression. The BHS and the BDI range from 0
to 19 and from 0 to 17, respectively, where a higher value
means more hopelessness or depression.
Figure 1 shows the sample average of suicidal ideation

by BDI and BHS scores, while Fig. 2 shows the corre-
sponding patient frequency. Many patients with low BDI
and BHS scores experienced no suicidal ideation. Over-
all, the risk of suicidal ideation increases with BDI and
BHS scores, though the patient frequency decreases. The
figures also show that high BHS scores are associated with
high BDI scores. The PAF for hopelessness is the pro-
portion of suicide ideation that would be prevented if all
patients’ hopelessness was reduced to 0 on the BHS scale,
while keeping BDI fixed. Similarly, the PAF for depression
is the proportion of suicide ideation that would be pre-
vented if all patients’ depression was reduced to 0 on the
BDI scale, while BHS fixed.

Semiparametric estimation of the probability
Suppose Y is distributed in the exponential family with
mean μ [32]. The logit link function connects μ with the
exposure and the confounder through a smooth function f

as log [μ/(1 − μ)] = f (z, x). [18] models f (z, x) paramet-
rically assuming linearity as f (z, x) = β0+β1z+β2x+β3x z
and estimates the coefficients under the constraint that
β1z+β3x z ≤ β1z∗+β3x z∗ when z ≤ z∗ at every x. We use
a flexible semiparametric approach to model a possible
non-linear f (z, x) by linear combinations of B-splines basis
functions [22] under the constraint f (z, x) ≤ f (z∗, x) when
z ≤ z∗ at every x. Let ψ(z) = (ψ1(z), . . . ,ψP(z))′ be a set
of B-spline basis functions. Let φ(x) = (

φ1(x), . . . ,φQ(x)
)′

be another set of B-spline basis functions. We model
f (z, x) as

f (z, x) =
P∑

p=1

Q∑

q=1
ψp(z)bp,qφq(x) ≡ ψ(z)′Bφ(x), B[ p, q]= bp,q,

(1)

where B is the unknown coefficient matrix. Using Kro-
necker product ⊗ and the vectorization operator vec
described in Section S1 of the supplementary material, we
further obtain

f (z, x) = (
φ(x)′ ⊗ ψ(z)′

)
vecB ≡ ϕ(z, x)′β ,

Fig. 1 Sample average of suicidal ideation by BDI and BHS scores
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Fig. 2 Patient frequency by BDI and BHS scores

whereϕ(z, x)′ = φ(x)′ ⊗ ψ(z)′ and β = vecB. (2)

Themaximum likelihood estimate of β without the con-
straint can be viewed as a modified iteratively weighted
least squares problem [33, 34]. Derivation in Section S2
of the supplementary material shows that the constraint
f (z, x) ≤ f (z∗, x) when z ≤ z∗ at every x can be expressed
as Aβ ≥ 0, where the matrix A has a special pattern.
The derivation in Section S3 of the supplementary mate-
rial shows that the estimation procedure can be expressed
as a quadratic programming problem. The approach is
also capable of finding the estimate under the additional
constraint that f (z, x) is monotone in x.

Estimation of the PAF
To be general, letX be a vector of measured covariates. Let
Y0 denote what the presence or absence would be if the
exposure were to be eliminated. Let P be the probability
measure. In particular, let P(Y0 = 1) be the “hypothetical
probability of disease in the same population but with all
exposure eliminated” [35, 36]. The PAF for the exposure

Z is the proportion of disease that would be eliminated if
Z = 0,

PAF = 1 − P(Y0 = 1)
P(Y = 1)

= 1 −
∫
P(Y0 = 1|X = x)dP

P(Y = 1)
.

(3)

To identify the PAF based on observed data, we make
the assumption that all confounders of the disease-
exposure relationship are measured and contained in X.
We assume consequently that the ignorable treatment
assignment [3] holds: P(Y0 = 1|X = x) = P(Y0 = 1|X =
x,Z = 0) = P(Y = 1|X = x,Z = 0). Under this
assumption, the PAF can be written as

PAF = 1 −
∫
P(Y = 1|Z = 0,X = x)dP

P(Y = 1)
, (4)

which is equal to the expression (2.2) for the PAF in [36].
The PAF is also written as
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PAF =
∫ [

1 − P (Y = 1|Z = 0,X = x)
P (Y = 1|Z = z,X = x)

]
dP(·|Y = 1),

(5)

where P(·|Y = 1) is the conditional probability given Y =
1 in the subpopulation of people with the disease [1, 5, 37].
We provide a proof of the equivalence between (4) and (5)
in Section S4 of the supplementary material.
From a random sample of the population of size n, i =

1, . . . , n, an estimate of the PAF then follows as

ˆPAF = 1
∑n

i=1 I{Yi=1}

∑

{i:Yi=1,1≤i≤n}

[

1 − P̂ (Yi = 1|Zi = 0,Xi = xi)
P̂ (Yi = 1|Zi = zi,Xi = xi)

]

,

(6)

where I{Yi=1} is an indicator function [18]. Justification of
the convergence of the estimate (6) to the PAF in (5) is pro-
vided by [6] in the scenario of no other covariates. A simi-
lar proof adjusting for the X can also be derived. Thus, an
accurate estimate of the probability of the disease would
provide a reasonable estimate of the PAF. The defined
PAF in (3) as a proportion has no practical meaning if
P(Y0 = 1) > P(Y = 1). Similarly in (6), occurrences of
P̂ (Yi = 1|Zi = 0,Xi = xi) > P̂ (Yi = 1|Zi = zi,Xi = xi)
can result in an estimated PAF out of the [ 0, 1] range.
Hence, an estimate of the probability with the mono-
tonicity constraint ensures a reasonable estimate of the
PAF.

Results
Simulation
Table 1 summarizes the proportion of the times that the
estimated PAF was within the [ 0, 1] range for the three
approaches. As discussed, the monotonicity constraint
ensures the estimated PAF is within [ 0, 1]. The lack of
a constraint results in PAF estimates that are sometimes
out of the range using the logistic regression and the
conventional B-splines approaches.
Table 2 shows the performance of the three approaches

of estimating the PAF. In the comparison, results from
the conventional B-splines approach are not shown due

Table 1 Proportion of the times out of the 1000 simulations that
the estimated PAF is between 0 and 1

Model

Sample size Approach A B C

n=100

logit 0.867 0.521 0.402

conB 0.326 0.221 0.250

monB 1 1 1

n=200

logit 0.939 0.540 0.390

conB 0.778 0.697 0.306

monB 1 1 1

to its large scale. Instead, we show the results from this
approach by censoring the original estimate at 0 if it
is negative, or at 1 if it is bigger than 1. Similarly, we
obtain the censored estimate from the logistic regression
approach. In general, the censored estimate improves the
original estimate. Overall, the developed approach out-
performed the other approaches in the settings that we
examined.

Case study
The estimated probability of suicidal ideation is shown in
Fig. 3 separately by the three approaches. Both the logis-
tic regression and the developed approach demonstrate
a monotone relationship. Fitted probabilities numeri-
cally 0 or 1 occurred using the conventional B-splines
approach. Table 3 summarizes the estimated PAF by the
three approaches. The logistic regression produces lower
PAF attributable to BHS and higher PAF attributable to
BDI. Due to the numerical instability, the conventional
B-splines estimated PAF is out of the [ 0, 1] range. We
examine the numerical instability in the “Discussion”
section.
We use the bootstrap method to obtain the 95% confi-

dence intervals of the estimates. The lower bound is the
2.5% quantile of the 1000 bootstrap estimates and the
upper bound is the 97.5% quantile. The lower bound of
the logistic regression estimated PAF attributable to BDI
is negative. In fact, 28 of the estimated PAF’s are negative
with the minimum being −32.45%. Among the 1000 esti-
mates, two of the estimated PAF attributable to BHS are
negative with the minimum being −4.27%.

Discussion
We used B-splines to develop a semiparametric estimate
of the probability of an event under the monotonicity
constraint and accounting for interactions. The approach
is solved as a quadratic programming problem and can
be easily implemented using the statistical software R.
Using a boosting technique [38, 39] implement a sim-
ilar approach to estimate β under the same constraint
Aβ ≥ 0 to solve the problem defined in equation (3)
of the supplementary material. In the settings that have
been tried, a comparison of fitting a univariate generalized
linear model under the monotonicity constraint showed
that the boosting algorithm is computationally intensive
[23]. A summary of other approaches in the literature for
estimation when there are monotonicity constraints and
interactions is provided in Section S8 of the supplemen-
tary material.
Throughout our study, we placed the knots at the

quartiles of the distribution of the unique predictors.
We observed similar performance of the conventional B-
splines approach and the developed approach when the
knots are placed at the tertiles {0, 1/3, 2/3, 1}. In the
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Table 2 Comparison of the absolute value of the bias (|Bias|), the variance and the MSE of estimating the PAF among the logistic
regression approach (logit), the conventional B-splines approach (conB), and the developed approach (monB)

|Bias| (×10−1) Variance
(×10−2) MSE

(×10−2)

Sample size Approach A B C A B C A B C

n=100

logit 1.63 3.62 8.75 10.80 37.19 94.47 13.45 50.24 170.94

logit∗ 1.86 1.28 2.40 7.98 12.54 9.53 11.44 14.17 15.29

conB∗ 1.74 2.84 2.64 5.18 10.09 12.86 8.20 18.17 19.80

monB 1.48 1.53 1.65 3.69 4.94 5.25 5.88 7.28 7.96

n=200

logit 2.07 3.67 8.53 6.27 26.80 68.97 10.53 40.25 141.63

logit∗ 2.14 1.74 2.85 5.35 9.79 6.96 9.93 12.81 15.09

conB∗ 0.33 1.43 2.78 5.43 7.95 11.02 5.54 9.99 18.74

monB 1.16 1.00 1.17 2.75 3.20 3.88 4.08 4.20 5.26

The logit∗ and conB∗ estimates are obtained by censoring the original estimates at 0 or at 1

Fig. 3 Estimated probability of suicidal ideation by the logistic
regression approach (top), the conventional B-splines approach
(middle), and the developed approach (bottom)

simulation study, Tables S1 and S2 of the supplemen-
tary material show that overall the developed approach
has better performance. In the case study, using the
developed approach, the estimated PAF attributable to
BHS was 67.66% (43.41%, 95.13%), and the estimated PAF
attributable to BDI was 23.51% (10.92%, 55.62%) (Table
S3). Similar numerical instability was observed using the
conventional B-splines approach (Figure S2 and Table
S3). The estimated PAF is also out of the defined range
between 0 and 1 using the conventional approach when
knots are placed at the quantiles {0, 1/2, 1} (Table S3). Per-
formance of the developed approach is robust to the knots
placement.

Conclusions
We developed a semiparametric estimate of the prob-
ability of an event using B-splines. Our approach can
model a monotone relationship between the response and
covariates, and can account for interactions. We applied
the approach to estimate the PAF, and compared the
performance of the estimator with the logistic regres-
sion approach and the conventional approach without
the monotonicity constraint. Simulation studies showed
that the developed estimator outperforms the other two
approaches.

Table 3 Estimated PAF attributable to BHS and to BDI by the
logistic regression approach (logit), the conventional B-splines
approach (conB), and the developed approach (monB). The 95%
confidence intervals are obtained from 2.5% and 97.5% quantiles
of 1000 bootstrap estimates

Estimated PAF

Estimator Attributable to BHS (%) Attributable to BDI (%)

logit 63.57 (27.35, 82.20) 32.50 (-2.56, 58.13)

conB < -100 (<-100, 100) 100 (<-100, 100)

monB 67.99 (42.10, 97.42) 22.36 (12.77, 56.49)
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Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12874-020-01118-4.

Additional file: The supplementary material contains the following
sections: S1, a review of the Kronecker product and the vectorization
operator; S2 and S3, technical details of the developed approach; S4, proof
of the equivalence between Eqs. (4) and (5); S5, a figure of the models used
in the simulation studies; S6, additional simulation results where the knots
are placed at the tertiles; S7, additional data analysis results where the
knots are placed at the tertiles and at the quantiles {0, 1/2, 1}; S8 literature
review of relevant statistical methods; and S9, R code to implement the
developed approach.
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