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Deciphering the laws of social 
network‑transcendent COVID‑19 
misinformation dynamics 
and implications for combating 
misinformation phenomena
Mingxi Cheng, Chenzhong Yin, Shahin Nazarian & Paul Bogdan*

The global rise of COVID-19 health risk has triggered the related misinformation infodemic. 
We present the first analysis of COVID-19 misinformation networks and determine few of its 
implications. Firstly, we analyze the spread trends of COVID-19 misinformation and discover that 
the COVID-19 misinformation statistics are well fitted by a log-normal distribution. Secondly, we 
form misinformation networks by taking individual misinformation as a node and similarity between 
misinformation nodes as links, and we decipher the laws of COVID-19 misinformation network 
evolution: (1) We discover that misinformation evolves to optimize the network information transfer 
over time with the sacrifice of robustness. (2) We demonstrate the co-existence of fit get richer and 
rich get richer phenomena in misinformation networks. (3) We show that a misinformation network 
evolution with node deletion mechanism captures well the public attention shift on social media. 
Lastly, we present a network science inspired deep learning framework to accurately predict which 
Twitter posts are likely to become central nodes (i.e., high centrality) in a misinformation network 
from only one sentence without the need to know the whole network topology. With the network 
analysis and the central node prediction, we propose that if we correctly suppress certain central 
nodes in the misinformation network, the information transfer of network would be severely 
impacted.

With the SARS-CoV-2 pandemic outbreak, COVID-19 related rumors and misinformation infodemic has 
become a serious problem. The rapid spread of COVID-19 misinformation provokes the social panic, influences 
political battles1, and propagates some dangerous false/fake rumors, e.g., drinking bleach to cure coronavirus2, 
can cost lives. Academic researchers and government authorities are working intensively to fight COVID-19 
infodemic by monitoring, identifying, analyzing, and blocking misinformation3–6. Commercial giants such as 
Facebook7, Twitter8, Google9 are also trying to show their efforts in combating misinformation phenomena. 
Along these lines, a recent mathematical model  illustrates how governments and social media platforms’ efforts 
can dis-incentivize the spread of fake news by social media users10. Previous works11–13 analysing misinformation 
or fake news focusing on misinformation sentences themselves are mainly from natural language processing 
aspect, i.e., analyze sentiment, veracity, stance, etc. The social feature of misinformation such as how a piece of 
fake news spreads from one account/website to its vicinity has also been studied from complex network and 
statistics aspects14. Related machine learning problems such as fake news classification and social bot detection 
are also well-studied15. Understanding how (COVID-19) misinformation evolves and spreads by combining both 
natural language processing techniques and complex network analysis has not been well-studied.

Network science investigated extensively the mathematical characteristics of social (including collabora-
tion and coauthorship16), technological (computer, World Wide Web17), biological, semantic18 and financial 
networks19 and identified various connectivity mechanisms (e.g., linear and nonlinear preferential attachment20, 
node fitness models21, weighted multifractal measure models22,23). Various examples exist of complex network 
techniques applied to natural language processing tasks, and the ways of network construction are different in 
diverse applications. However, few of these are taking care of full sentences and to the best of our knowledge, 
we are among the first to analyze the time-varying networks. For example,  a document can be converted into a 
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complex network where words are represented as nodes and relationships between words, such as semantic24, 
syntactic25, and/or co-occurrence26 relationships, are represented as edges. Another branch of research consid-
ers chunks of document, i.e., sequence of words, as nodes and similarities between sequences as edges27. The 
exercise of complex network in combination with natural language processing is diverse and most of the time, 
the extracted complex network is time invariant. In contrast, here, we investigate the mathematical characteristics 
of time-varying COVID-19 related misinformation network representations (we analyze three such network 
constructions), where the nodes denote the misinformation sentences and the edges capture the sentence-to-
sentence similarity. This allows us to decipher the statistical laws that characterize the COVID-19 misinforma-
tion phenomenon.

Results
In this section, we present misinformation characterization, misinformation network evolution analysis, and 
misinformation central nodes prediction. We first provide an analysis of the COVID-19 misinformation in terms 
of popularity. We study the COVID-19 misinformation spread trends and discover that the misinformation 
mean popularity data are, as a group, indistinguishable from an independently and identically drawn sample 
from a log-normal distribution. We then present three ways of misinformation network construction and their 
corresponding analysis. We find that newly constructed misinformation graphs evolve and optimize the net-
work information transfer over time. Formulation of misinformation network with node deletion might better 
describe the rapidly changing reality of misinformation and reveals the need for new complex network models 
and tools. At last, we present a deep learning-based misinformation network measures predictor that can work 
in real time to predict network central nodes. With network centrality measures and our deep-learning predictor, 
we can identify central nodes in misinformation networks with speed and accuracy, therefore we could combat 
misinformation by removing those important nodes before they become vital.

Characterization.  Statistical laws characterizing COVID‑19 misinformation phenomenon.  Researchers 
have noticed for decades that many measured data retrieved from biological and social sciences can be described 
by log-normal distribution28,29 and power-law distribution30. In this work, we estimate the log-normal and pow-
er-law models for 5 types of COVID-19 misinformation31: unreliable, political, bias, conspiracy, and clickbait 
misinformation (Data was retrieved from https://​usc-​melady.​github.​io/​COVID-​19-​Tweet-​Analy​sis/​misin​fo.​
html. Detailed dataset information can be found in Methods section “COVID-19 Misinformation Data”). We 
use a hypothesis test32,33 to estimate model parameters and model plausibility ( pKS ). Estimation methodology 
can be found in Method section “Power-law and log-normal analysis”. The estimated log-normal model has 3 
parameters: xmin , which represents the smallest value above which the log-normal pattern holds, µ , which is 
the expected value, and σ , the standard deviation. Similarly, the estimated power-law model has 3 parameters: 
xmin , which represents the smallest value above which the power-law pattern holds, α , which indicates the scal-
ing parameter, and σ , the standard error of the fitted parameter α . The parameters of estimated log-normal and 
power-law models are included in Fig. 1. However, these distribution fitting estimates do not represent that 
the empirical data, i.e., mean popularity of misinformation in our case, are independent and identically drawn 
(iid) from the fitted models30. We need to evaluate the plausibility of the fitted models quantitatively. Following 
a standard assessment process, goodness-of-fit test33, we find that pKS of log-normal distribution for all 5 types 
of misinformation and the overall misinformation are much greater than 0.1. That is, log-normal distribution 
cannot be rejected as a data-generating process.

To further ensure that log-normal rather than power-law distribution is the plausible data generating process, 
we compare the log-normal distribution and power-law distribution using an appropriately defined likelihood 
ratio test32. The likelihood ratio test provides two values: R, the log-likelihood ratio between the two candidate 
distributions (log-normal and power-law in our case), and p, the significance value for the favored direction. If 
the empirical data is more likely to obey the first distribution, then R is positive; otherwise, R is negative. The 
favored distribution is a strong fit if p > 0.0532. As we reported in Fig. 1, log-normal is the favored distribution 
since the R values are all positive and p in all likelihood ratio tests are much greater than 0.05. These findings 
could suggest that the popularity of COVID-19 misinformation could obey a multiplicative process and resembles  
the generalized Lotka-Volterra (GLV) system34. GLV systems are often used to model direct competition and 
trophic relationships between an arbitrary number of species, e.g., a predator–prey relationship35. In this potential 
misinformation GLV, all kinds of misinformation and individual misinformation generators, e.g., social bots, 
may be constantly created (and distinguished), and compete with other members in the system for attention.

Misinformation networks optimize the network information transfer overtime.  To characterize misinformation 
on the semantic level, we construct misinformation networks where nodes and corresponding edges represent 
the sentences and their sentence similarity, respectively (see Methods section “Misinformation network for-
mulation I” for network formulation details). The new misinformation captured in a day form a distinct mis-
information network. In order to investigate the network information transfer characteristics associated with 
the dynamics of misinformation networks, we quantify their degree-, closeness- and second order-centrality 
metrics36,37. Due to the complex networks’ highly heterogeneous structure, some nodes can be recognized as 
more significant than others, and centrality measures how important a node is. For instance, in a social net-
work, influencers, recognized as influential nodes with higher centrality, have a lot of followers and can easily 
propagate specific messages to other nodes. Therefore, calculating the centrality about networks sheds light on 
information transfer analysis in complex networks38.

There are various centrality measures in complex network literature. Degree centrality measures the number 
of links connected upon a target node and can be utilized to determine the throughput capacity or network 
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localized transmission. The higher the degree centrality is, the higher the chance to receive the information 
transmitted over a network. Closeness centrality of a node quantifies the average length of the shortest path 
between the node and all other nodes in a graph and reflects the information transmission latency across a 
complex network. Thus, the higher the closeness centrality of a node is, the closer it is to other nodes. Second 
order centrality is a random walk-based betweenness centrality which measures the average time for revisiting 
a node if following a random walk on a complex network. The standard process of random walk is defined by 
Newman39 where a single node has a probability to direct to a neighbor node (the probability is picked uniformly 
at random). The higher the second order centrality of a node is, the more information paths pass through it and 
the less robust the network is to targeted attacks on this node (for details on the degree-, closeness-, and second 
order-centrality, see Methods section “Networks centrality measures”).

Figure 2a illustrates the mean degree centrality estimated from 60 misinformation networks. Over the first 
10 days, the degree centrality of the misinformation networks exhibits an increase tendency towards higher 
values. It is known that a node achieves an increase in degree centrality by establishing new connections to 
its neighboring nodes. The high degree centrality of a node means that this node can propagate the received 
information in an efficient way. Thus, the increasing phenomenon in the first 10 days demonstrates that the 
misinformation networks tend to optimize their network topology to support higher information flow across 
the network over time. In addition, when it comes to the last 50 days, the degree centrality enters a relatively 
stable state which means that after increasing the degree centrality, misinformation networks try to maintain 
the high speed spread property.

Along the same lines, Fig. 2b shows that the mean of the closeness centrality among 60 misinformation net-
works across 5 different misinformation categories. In the first 10 days, the mean value of the closeness centrality 
for misinformation networks is increasing. Higher closeness centrality means that the target node is closer to 
other nodes and the information sent by the target node can reach other nodes faster. Consequently, this result 
shows that the misinformation network tends to optimize their network topology to minimize the information 
transmission latency. In the last 50 days, the mean of the closeness centrality tends to stay stable, which indicates 
that misinformation networks try to maintain superior transmission latency to keep the network in a high-speed 
transport state. It is worth noting that the degree- and closeness-centrality are two dual approaches for quantify-
ing information transmission across a network and show a similar network performance optimization behavior 
in the period of our observation.

Figure 2c shows the second order centrality mean value curves for the 5 misinformation categories in 60 days. 
On social media, some people periodically delete some old posts. If a post that removed from the network has 
high second order centrality, the misinformation network has a higher chance to be disconnected. In the first 10 

Figure 1.   The fitted power-law model (red dash line) and log-normal model (green dash line) of the COVID-19 
misinformation mean popularity. (a–e) Models fitted for different types of misinformation. (f) Models fitted for 
all COVID-19 misinformation. Log-normal is a plausible data-generating process of the misinformation mean 
popularity since the plausibility values pKS are greater than 0.1. Both goodness-of-fit test and likelihood ratio test 
indicate that compared to power-law, log-normal is more plausible. (Detailed hypothesis test procedure is stated 
in Methods section, “Power-law and log-normal analysis”.) The log-likelihood ratios (R’s) and significance values 
(p’s) between the two candidate distributions, log-normal and power-law, are (0.422, 0.429), (0.911, 0.289), 
(1.832, 0.245), (1.335, 0.352), (1.066, 0.369), (0.565, 0.203), for unreliable, political, bias, conspiracy, clickbait, 
and all types of misinformation, respectively.
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days in Fig. 2c, we observe that the second order centrality exhibits an irregular fluctuation behavior. When it 
comes to the last 50 days, the second order centrality shows a saturation (slowing in increasing rate) trend, which 
means that misinformation networks become less-robust/unhealthy over time (a graph is robust/healthy if it is 
robust to multiple targeted/random attacks40). In addition, empirically, a robust graph has most of its elements 
lying close to each other, and linked by many paths. We conclude that since misinformation networks tend to 
increase the second order centrality after the early irregular fluctuation, the topology of the misinformation net-
works becomes more vulnerable to targeted/random attacks over time. In conclusion, the study of the degree-, 
closeness- and second order-centrality shows that the COVID-19 misinformation networks tend to optimize the 
information transmission and the topology of the networks becomes more fragile over time.

Co‑existence of fit get richer and rich get richer phenomena in misinformation network.  Various mechanisms 
have been studied to explain the complex network evolution, such as preferential attachment (PA), node fitness 
theory, node birth/death process. The mapping of network growth onto a Bose-Einstein condensation phe-
nomenon elucidated three phases in the network evolution41: a scale-free phase, where all nodes in a network 
have the same fitness; a fit get richer phase, where nodes with high fitness/quality are more likely to draw new 
connections; and a Bose-Einstein condensate phase, where the node with largest fitness becomes a clear winner 
and takes all the new links. In contrast to fit get richer effect, PA is a rich get richer mechanism where nodes 
with more connections are likely to win more new connections in link competition42. The General Temporal 
model43 unifies both PA and node fitness by defining the probability of a node with degree k getting new links as 
P ∝ Ak × η , where Ak is the PA function and η is node fitness (both Ak and η are time-invariant).

To show the first evidence of how misinformation network evolves under the assumption of co-existence of 
PA and node fitness mechanism, we construct the misinformation network by taking the first day’s sentences and 
construct a base network where nodes are sentences and links represent the sentence similarity. We then grow 
the network by adding nodes and links as a function of time (days). New misinformation sentences appearing in 
the next day connect to nodes in the base network if the sentence similarity is over 80% . We analyze the PA func-
tion Ak and node fitness η with PAFit43 and the results are shown in Fig. 3 (detailed network growth and analysis 
methods are described in Methods section “Misinformation network formulation II”). The estimated node 
fitnesses in day 10, 20 and 30 are all centered around 1, while there exists some nodes with slightly higher node 
fitness. The heavy-tailed distributions serve as a clear sign of fit get richer effect. From Fig. 3a–c, the maximum 
node fitness increases, which suggests that fit get richer effect becomes stronger, while the overall effect remains 
low (the maximum value remains in a medium fitness range [1, 2]). By inspecting the estimated PA function in 
the in-plots shown in Fig. 3, we make the following two observations: (1) the estimated PA functions Ak ’s in day 
10, 20 and 30 are all increasing with respect to degree k, which suggests the existence of a rich get richer effect; 
and (2) the estimated PA functions are exhibiting a log-linear trend, which matches the widely used log-linear 
assumption of PA function Ak = kα as in extended BA model44.

In misinformation network with node deletion mechanism, node fitness is time‑varying and probability of attach‑
ment is linear to node degree.  While the complex network evolution is heavily studied in the literature, the 

Figure 2.   Misinformation network centrality measures. The mean value curves of the degree centrality (a), 
closeness centrality (b) and second order centrality (c) for misinformation networks of 60 days across five 
different misinformation categories: unreliable, clickbait, political, bias and conspiracy.
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popular models are mostly based on assumptions that PA function and node fitness are time-invariant, and the 
fundamental network evolution does not consider node deletion mechanism or includes random node deletion 
mechanism45. However, these assumptions are not fully applicable to rapidly changing misinformation networks 
where people switch attention from one hot topic to another quickly. Under this consideration, we form our 
misinformation network with a realistic node deletion mechanism, i.e., when a node’s degree is not changing for 
three days, we delete the node (and its attaching links) from the network with the assumption that this sentence/
topic is no longer active or popular at the time. (Detailed network formulation and analysis methods are 
described in Methods section “Misinformation network formulation III”.) Based on this network formulation 
method, we estimate the probability of attachment of nodes, node fitness, and network centrality measures and 
the results are demonstrated in Fig. 4. Firstly, we estimate the probability of attachment of node j as ki∑

j kj
 as in 

the BA model46, where k represents the degree of a node. We find that different from other real-world networks, 
such as WWW, citation networks, the attachment probability in misinformation networks is linear with respect 
to node’s degree as shown in Fig. 4a instead of log-linear. This implies that the misinformation network evolution 
with the consideration of node deletion has weak rich get richer phenomenon. In addition, we observe that the 
misinformation network evolution experiences expansion-shrink cycles. The slope of the probability of attach-
ment first decreases from day 0 to day 50, then increases to the similar values as in day 0 on day 55. This sudden 
change between days 50 and 55 shows that the network experiences a destruction and reconstruction phase. We 
verify this observation by inspecting the network size as shown in Fig. 4b, where the light purple bars represent 
the cumulative sum of newly emerged misinformation on Twitter (i.e., the afore-mentioned misinformation 
network constructed in Methods section “Misinformation network formulation I”), and the dark purple bars are 
the node numbers in the misinformation network constructed with node deletion mechanism. The light purple 
bars equivalently demonstrate how the misinformation network expands under classical network formulation, 
which cannot reflect the rapidly changing nature of misinformation network. On the other hand, the dark purple 
bars demonstrate the network evolution under our realistic misinformation network construction method. It is 
verified by the dark purple bars that the network does experience a shrink-expand phase between day 50 and 55. 
In addition, the fluctuations in node centrality measures in Fig. 4f also provide verification. Furthermore, we 
hypothesize that topic/attention shifting on social media causes this destruction and reconstruction, and we 
provide evidence in the following discussion and in Fig. 5.

Next, we investigate the node fitness and observe that on day 51, all sentences from day 0 (used for base net-
work) were deleted except one. It is worth noting that we construct our network based on sentence similarity, if 
some nodes (sentences) in the network do no relate to the newly emerged misinformation, then these nodes are 
removed from the network. Equivalently speaking, topics or misinformation that are not gaining attention do not 
fit anymore and will be removed from the misinformation network. If a large-scale node deletion appeared, the 
misinformation network may experience a destruction phase as we observed previously. Node fitness measures 
the node quality and reflects the node competitiveness41, therefore, we inspect all sentences that survived by day 
50 (denoted as S[0,50] ) and disappear on day 51, and estimate their fitness by tracking the node’s accumulated 
degree over time k(t). The slope of k(t) in a log-log scale, i.e., growth exponent, is therefore equivalent to node 
fitness45 (detailed estimation strategy of node fitness is given in Methods section “Misinformation network 
formulation III”). Figure 4c–e present the estimated node fitness values and distributions of S[0,50] . We find that 
before a node deletion,  its fitness is increasing until two days before deletion. This observation is distinct from 
the fit get richer phenomenon usually assumed in traditional complex networks without node deletions. When 
rich get richer and fit get richer are both in play, nodes with high fitness have a higher probability to attract 
new links and become rich nodes; then, rich nodes reinforce the effect. However, in our network, the rich get 
richer effect becomes weaker in a cycle, while fitness grows higher. Then, suddenly the nodes with high fitness 

Figure 3.   Node fitness and PA function (shown as in-plot) co-estimation for nodes in the misinformation 
networks on days 10 (a), 20 (b) and 30 (c). The heavy tails of fitness distributions show the existence of the fit get 
richer phenomenon. The estimated PA functions imply that the higher the node degree, the more competitive 
the node is in terms of link competition; it also shows a rich get richer phenomenon.
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Figure 4.   Probability of attachment (a), network evolution (b), node fitness estimations (c-e), and network 
centrality measures (f-h) of misinformation networks with deletion mechanism. (a) The probability of 
attachment is linearly correlated with the node degree. From day 0 to day 50, the probability of attachment for 
nodes with same degrees is decreasing. This observation shows that the rich get richer effect becomes weaker. 
Then the probability of attachment from day 55 appears to be similar as in day 0 to 10. (b) Misinformation 
network size (node) evolution comparison. Different from classical network expansion method (as shown in 
light purple bars), our realistic network construction method with node deletion mechanism appears to be 
sensitive to public attention/topic shifting. (c) The evolution of 158 surviving nodes S[0,50] ’s accumulated degrees, 
k(t) over time. Node fitness is approximated as the slope and it increases from day 0 until day 49 as shown in 
in-plot. This finding is distinct from the frequently used time-invariant fitness assumption in complex network 
evolution models. Hence, we further inspect the fitness (growth exponent) distribution of S[0,50] as shown in 
(d). These distributions do not have heavy tail property, which indicates that there is no clear sign of fit get 
richer phenomenon. Moreover, to compare with fitness distribution we observed in Fig. 3 more clearly, in (e), 
we inspect the fitness distributions of S[0,10] , S[0,20] , and S[0,30] , which correspond to the misinformation network 
(with node deletion) on day 10, 20, and 30. We find that these non-heavy tail distributions again indicate that 
there is no clear sign of fit get richer effect. (f–h) Network centrality measures. Degree centrality first increases 
then becomes stable until day 50. This confirms that the rich get richer effect is weak. The closeness is slightly 
increasing with regard to time and indicates that the newly added nodes lower the average of the shortest path . 
Nodes with low fitness are deleted in the process, and nodes that survived must maintain high fitness to be close 
to new nodes. This matches the observations in (b–c).
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are deleted at the end of one network evolution cycle. This distinct misinformation network behavior cannot 
be explained by conventional network models, and may be caused by the rapid attention shift characteristic of 
social media as we discussed.

We further investigate several hot topics in order to validate the above-mentioned hypothesis on misinfor-
mation network evolution. We manually inspect the sentences that survived in the network from day 0 to day 
50, noted as S[0,50] . Since S[0,50] are all deleted from the network on day 51, and considering our misinformation 
network construction method, there will be no new links attached to S[0,50] . We also study sentences collected 
on day 49 that managed to survive to day 55, denoted by S[49,55] . We compare the top words, i.e., the words with 
highest TF-IDF (term frequency-inverse document frequency47) scores, in S[0,50] and S[49,55] as shown in Fig. 5. 
We find that political words appear the most in the top 30 words of S[0,50] (e.g., “Trump”, “president”, “white 
house”-related phrases appear about 9 times). In comparison, no political words exist in S[49,55] ’s top 30 words. 
This evidence shows that public attention shifts from political-related content to non-political in the time period 
we investigated. Furthermore, we find that “New York”-related phrases along with medical words such as “deaths”, 
“killed”, “patients”, “cases” represent the majority of the top 30 words of S[49,55] . Which matches the COVID-19 
break out in New York from April 18th to 24th . These examples confirm that our network construction method 
with node deletion mechanism can capture the actual misinformation network evolution. In addition, our net-
work formulation is more sensitive to rapid network changes, e.g., the public attention shift, than classical PA 
or fitness-based network models.
Prediction.  Deep learning methods accurately predict in real time, which Twitter posts are the central nodes in 
the misinformation network.  Complex network measures such as centrality are calculated based on network 
topology, i.e., adjacency matrix. However, these metrics are highly computationally expensive and require the 
adjacency matrix information. In this work, we construct misinformation networks where nodes are sentences, 
hence, we hypothesize that network measures can be predicted by deep learning and natural language process-
ing (NLP) methods by considering as inputs only the sentences (without adjacency matrix). We verify that 
complex network metrics of misinformation networks can be easily predicted with high accuracy using deep 
neural networks (DNNs). In our centrality prediction, to predict day(s) t’s central nodes, we take daily mis-
information networks from day t=0 up to day t-1 as training data, and the trained DNN outputs predictions 
for day(s) t. Specifically, we perform 1-day, 5-day, and 10-day prediction, meaning that for example, in 5-day 
prediction, if we predict central nodes from day 20 to day 25, we take daily misinformation networks from day 
0 to day 19 as training data. In addition, instead of feeding DNN with adjacency matrix, we utilize techniques 
from natural language processing and feed the DNN with sentence embeddings, specifically, BERT embeddings 
(training setup can be found in Methods section “Deep learning-based misinformation network measures pre-
diction”). Throughout this process, there is no need to run time-consuming network analysis algorithms, and 
DNNs predict network measures with high accuracy in real time. Specifically, in 1-day prediction, our DNN 
predicts degree centrality, closeness centrality, and betweenness centrality, with 94.19± 0.03% , 94.25± 0.04% , 
83.25± 0.22% accuracies, and 98.54± 0.01% , 98.47± 0.01% , 90.44± 0.21% AURoCs, respectively, as shown in 
Fig. 6. The key contributor to this outstanding result is the extracted natural language features in rumors. We 
believe that the trained neural network learns the syntactic and semantic patterns of influential tweets. This find-
ing enables  real time misinformation combat by online identification of fast-spreading and influential misinfor-

Figure 5.   Top words in S[0,50] (a) and S[49,55] (b). Top words are the words with the highest TF-IDF scores 
and represent the most influential and important words/topics in sentences. We take n = 1 and 2 for n-grams, 
therefore, in the results there exist unigrams and bigrams. We find that sentences that survived from day 0 to 
50 mainly discussed political-related topics, and sentences that survived from day 49 to 55 are more discussing 
non-political- or medical-related topics. Specifically, 75.31% in S[0,50] , and 41.50% in S[49,55] are discussing 
political-related topics, respectively. This shift of topic may in fact is the reason for cyclical behavior of 
probability of attachment we discovered in Fig. 4a.
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mation. With an online misinformation detection mechanism, we can utilize the proposed deep learning-based 
network measure predictor to quickly identify, filter, and delete significant sentences before they actually become 
the central nodes. Therefore, break the misinformation network before it forms.

Discussion
Researchers have noticed for a very long time that many measured data retrieved from biological and social 
systems can be described by log-normal distribution28,29, e.g., survival time after cancer diagnosis48, number of 
words per sentence for writers49, and size of holes in cocoa cake29. During the last decade, power-law distributions 
are often observed as well, e.g., size of wars30. In this work, we analyze the trends of COVID-19 misinformation 
spread and discover that the log-normal distribution cannot be rejected as a plausible model for misinformation 
mean popularity data. With COVID-19 credible and unreliable information pushed to smart devices in real time 
across the globe, the true/false information constantly competes for finite collective attention in this COVID-
19 infodemic. The log-normal distribution may suggest that the popularity of COVID-19 misinformation can 
obey a multiplicative process and resembles to the GLV, where individual misinformation and generators born 
and die, and compete for attention. These inspirations could contribute to the future analysis of misinformation 
collective attention and GLV related modeling and control.

To further decipher the laws behind COVID-19 misinformation network evolution, we construct misinforma-
tion networks through three different strategies and analyze these networks from information flow and network 
evolution aspects. We first construct misinformation networks where nodes are misinformation sentences col-
lected within one day, and links represent their sentence similarity. Each network represents the misinforma-
tion that appeared on Twitter within one day and the inspection of these networks shows how the COVID-19 
misinformation evolves. Analysis of the network centrality measures, i.e., degree centrality, closeness centrality, 
and second-order centrality, shows that misinformation first learns to optimize information transfer to be more 
efficient and then maintains the fast-spreading property. Compared to true information, researchers found that 
misinformation/fake news spreads differently even in early stages50. In addition, false news is discovered to be 
more novel and spread faster than true news51. In our work, we showed from the information transfer aspect 

Figure 6.   Centrality predictions of daily misinformation networks. To predict day(s) t’s central nodes with 
respect to degree, closeness, or betweenness centrality, daily misinformation networks prior to day(s) t are used 
as training data. Instead of network topology, e.g., adjacency matrix, we take the natural language embedding of 
each misinformation as the input to the DNN. The DNN then predicts which nodes are going to be the top 100 
central nodes in day(s) t. E.g., in 1-day prediction, we predict day 10’s top nodes based on day 0–9’s information; 
and in 5-day prediction, we predict days 5–10’s top nodes based on day 0–5’s information.
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that misinformation does evolve to be fast-spreading. However, the optimization of information transfer comes 
with a price, sacrificing the network robustness. In addition, centrality measures reveal the important nodes/
influential misinformation in the network, which lay down the foundation of misinformation control. Currently, 
the estimation of centrality measures is not only time-consuming, but also requires complete information about 
the topology (e.g., adjacency matrix) of the misinformation networks. Therefore, with sentences as nodes and 
sentence similarity as links, we propose a deep learning method to predict the centrality measures with the input 
of sentence only. Utilizing this method, we can predict the next hot topics or central nodes without the need of 
knowing the whole network topology52, which allows us to filter the potential influential misinformation before 
it actually becomes a center of attention. Researchers have expressed the concern about blocking information on 
COVID-19 that blocking can in turn fuel the spread of misinformation53. This can be true from the perspective of 
network information flow revealed in this work. If wrong nodes, e.g., certain nodes with low centrality measures, 
are deleted from the network, the information transfer of the whole network might be enhanced. In contrast, if 
we correctly remove certain central nodes, then the information transfer of network would be severely impacted.

After inspecting the misinformation evolution in terms of information transfer, we construct the second series 
of misinformation networks, where we grow the network from a base network. We first form the base network 
with day 0’s misinformation. Then we add day 1’s misinformation to the base network; and we grow the network 
with regard to time (days). With the well-established network science methods, PA and node fitness theory, we 
find the co-existence of fit get richer and rich get richer phenomena. However, this way of network construction 
may not capture the true nature of the fast-changing feature of misinformation network due to  lack of node 
deletion mechanism. Without node deletion, the time measure is ignored and a hot topic will remain popular 
regardless of time, and this is in contradiction with the fact that public attention may shift.

To reveal the true nature of the rapidly evolving misinformation network, we propose a third way of mis-
information network construction which grows the topology from the base network, while including the node 
deletion mechanism to reflect that public may forget things. The determination of the node fitness and probability 
of attachment show distinct evolution behavior that is not fully explainable by fit get richer and rich get richer 
effects, i.e., some nodes with high fitness do not attract new connections and are deleted from the network. This 
distinct behavior may be caused by the public attention shift from one hot topic to another. We also find that 
different from the time-invariant assumptions in node fitness and PA theories, our misinformation network 
changes rapidly as well as the node fitness and the probability of attachment. These observations reveal the need 
for new theoretical network models that can characterize and explain the real world fast-evolving networks such 
as misinformation networks; and also link the collective attention with network science.

Furthermore, rumors are likely to have fluctuations over time54. With the node deletion mechanism, we 
observe evolution cycles of the misinformation network. The size of the misinformation expands and shrinks 
cyclically. We also find that the misinformation topics that survived in the network are mostly politically moti-
vated. Our study provides a comprehensive data-driven and data science validation and invalidation of the 
hypotheses enunciated in55. Determining in advance potential targets for fake news is an important aspect of 
misinformation control56. We hope by identifying long-lasting, influential, fast-spreading misinformation in the 
network, we can help fight the COVID-19 and future infodemics by breaking the network before the increasingly 
popular nodes become influential; and control the misinformation by inserting combating information into 
the network. Lastly, through three different network formulations, we find limitations of current widely-used 
network models and researchers should study alternative novel strategies to properly construct networks from 
observations.

We believe the findings and analysis of this work contribute new knoledge to the current state-of-the-art fake 
news/rumor/misinformation research and inter-discipline studies of natural language processing and complex 
networks. In the future, we foresee that our findings and models can also contribute to fruitful technologies that 
help combat misinformation, identify fake news in early stages, forecast how popular fake news evolves, spreads, 
and shifts the public opinion during important events. For instance, as we have exemplified with our deep learn-
ing framework, these results can be exploited for developing a technology for detecting and forecasting popular 
opinions that are likely to become dominant or influential in a fast-evolving heterogeneous network. With our 
network analysis, to make fake news network to destroy itself, we can insert real news in the network at the lowest 
price and remove significantly influential false news nodes from the network with the highest reward. However, 
aside from the positives, more problems need solutions, and more questions require answers. In reality, given 
that we can only partially observe the misinformation or information network, how can we design accurate and 
efficient algorithms to reconstruct the whole network from partial, scarce, uncertain, and noisy observations? 
With strategies to monitor accounts and information flow, how to control the network to make users aware of 
something? How can we control multiple interacting opinion dynamics that are evolving rapidly? In our future 
work, we will make an effort to tackle these issues, and in particular, misinformation combating problem, study 
the interaction between true and false information.

Methods
COVID‑19 misinformation dataset.  We analyzed a COVID-19 misinformation dataset containing mis-
information collected from Twitter from March 1st to May 3rd31. The data was retrieved with Twitter API service 
(https://​devel​oper.​twitt​er.​com/​en/​docs/​tweets/​filter-​realt​ime/​guides/​basic-​stream-​param​eters) using keywords 
related to COVID-19: ‘Covid19’, ‘coronavirus’, ‘corona virus’, ‘2019nCoV’, ‘CoronavirusOutbreak’, ‘coronapoca-
lypse’, from the platform in real time. We used in total 60798 pieces of misinformation identified to build our 
misinformation networks. There are 6 categories in the retrieved dataset: unreliable, clickbait, satire, bias, politi-
cal, and conspiracy. More specifically, the unreliable category is defined to include false, questionable, rumorous 
and unreliable news. Conspiracy category includes conspiracy theories and scientifically dubious news. Clickbait 

https://developer.twitter.com/en/docs/tweets/filter-realtime/guides/basic-stream-parameters
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news is misleading, distorted or exaggerated to attract attention. Political and biased news are in support of a 
particular point of view or political orientation. In addition, satire is based on the consideration that satire has 
the potential to perpetuate misinformation57,58. However, due to the fact that satire category is extremely small 
(only 29 tweets are labeled as satire), our analysis only focuses on the other five types. We note that in Fig. 1, the 
last category “misinformation” contains all the misinformation categories including satire.

Power‑law and log‑normal analysis.  In this section, we describe the methodology of power-law and 
log-normal fitting of misinformation mean popularity data. The popularity of a misinformation sentence (tweet) 
is the number of times it appears on Twitter in the time span of dataset, March 1st to May 3rd. The mean popu-
larity is taken across all misinformation records. There are 5 major types of COVID-19 misinformation in the 
dataset: unreliable, political, bias, conspiracy, and clickbait. We analyze the power-law and log-normal fits with 
regard to all 5 types individually and as a whole. By using the powerlaw Python package33, we perform a statisti-
cal hypothesis test analysis as follows: (i) we estimate the parameters, e.g., xmin , α , of the power-law model and 
the log-normal model via powerlaw. (ii) We calculate the goodness-of-fit between mean popularity data and 
the power-law (and log-normal). Specifically, we inspect a plausibility value pKS in goodness-of-fit test. If pKS is 
greater than 0.1, the power-law (or log-normal) is a plausible hypothesis for the data. (We will describe how to 
calculate pKS in detail later.) (iii) We compare hypotheses, power-law and log-normal, via a likelihood ratio test 
provided in powerlaw, e.g., R, p = distribution_compare(′lognormal′,′ powerlaw′) , where R is the log-likelihood 
ratio between the two candidate distributions. If R > 0 , then the data are more likely to follow the first distribu-
tion, otherwise the data are more likely to obey the second distribution. p is the significance value for that direc-
tion. The favored distribution is a strong fit if p > 0.05.

Now we describe the procedure of goodness-of-fit test and the calculation strategy of pKS32. Given a dataset 
and the hypothesized distribution, e.g., power-law, from which the data are drawn, we calculate pKS based on 
measurement of the “distance” between the distribution of the empirical data and the hypothesized model. This 
distance D is given by powerlaw when we fit the data, which is the “Kolmogorov-Smirnov (KS)” statistic. Next, 
we generate a large number of power-law synthetic data with the estimated parameters and we fit the synthetic 
data using powerlaw. After fitting the synthetic data, we get the distance of synthetic data and the hypothesized 
power-law model (fitted by the synthetic data), noted as Dsyn . Then we repeat this procedure by generating 50 
sets of synthetic data with 50 Dsyn’s. Finally we calculate pKS as the percentage of D < Dsyn.

Misinformation network formulation I.  We form networks of new misinformation with respect to time 
(days). We construct 60 COVID-19 misinformation networks based on misinformation identified on Twitter 
from March 1st to May 3rd31 (days with missing data are discarded). Nodes in a network are sentences, i.e., 
COVID-19 misinformation, appearing within one day on Twitter. Nodes are connected if two sentences have 
similarities more than 70% . We provide a sample network in Fig. 7, along with original sentences of the top 10 
most connected nodes in Table 1. To calculate sentence similarity, we first encode sentences by sentence Trans-
former model59 into vectors with length 786. Then, we measure sentence similarity based on cosine distance. 
Each misinformation network contains new misinformation that appeared on Twitter per day, and we analyze 

Figure 7.   An example misinformation network with 50 nodes (misinformation sentences).



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:10424  | https://doi.org/10.1038/s41598-021-89202-7

www.nature.com/scientificreports/

network features of these networks to characterize how misinformation evolves over time. This distinct choice of 
network construction comes from the fact that we would like to see how the public opinion and misinformation 
trends are shifted or evolved from a natural language processing point of view while assuming the emergence 
of new collective intelligence phenomena. This way of network construction helps us to predict next popular 
misinformation phenomenon on the social media and helps to combat them.

Misinformation network formulation II (without node deletion) with PA and node fitness anal‑
ysis.  We construct a misinformation network to capture the evolution of misinformation appeared on Twit-
ter in March 2020. Firstly, we form a base network containing misinformation extracted on March 1st, with 
the nodes representing misinformation sentences and links indicating the text similarity between two misin-
formation. We then add nodes and links to the base network based on misinformation extracted from Twitter 
on the daily basis. Note that we connect the nodes when the text similarity is more than 80% to constrain the 
network size within a reasonable scale for later analysis. Having the misinformation network, we report the first 
evidence of co-existence of rich get richer and fit get richer effect in COVID-19 misinformation networks by 
using PAFit43, a general temporal model. To co-analyze both PA and node fitness of a complex network (with the 
assumption that both fit get richer and rich get richer exist), the probability of a node attracting a new connec-
tion is P ∝ Ak × η , where Ak is the PA function and η is node fitness (both are time-invariant). The estimation 
tasks of Ak and η are performed by the R package PAFit.

Misinformation network formulation III (with node deletion) with the probability of attach‑
ment and node fitness analysis.  Similarly to the network growth procedure without a node deletion 
mechanism, we have a base network containing misinformation collected on March 1st . Then differently than the 
afore-mentioned monotonic growing process, we include a node deletion mechanism as follows: if a node (sen-
tence) does not attract new connections in δ consecutive days, we remove this node from the network along with 
its all edges. The statistics comparison between networks extracted using formulation I-III are shown in Fig. 8. 
We take δ = 3 in this work and links exist only when the text similarity of two nodes is over 80% to keep the 
reasonable size of the misinformation network. We keep track of this misinformation network from March 1st 
to May 3rd and estimate the probability of attachment and node fitness. The general temporal model, PAFit, used 
to measure the misinformation network without node deletion assume the co-existence of fit get richer and fit 
get richer based on time-invariant PA function and node fitness. However, it may not be applicable to the misin-
formation network with node deletion. Therefore, we estimate the probability of attachment of each node every-
day as ki∑

j kj
 using Barabasi-Albert model, where i is the target node and j represents all other nodes in the net-

work. Node fitness represents how attractive a node is in the network, and it can be estimated as the growth 
exponent β45. Following Kong et al’s work45, assume the cumulative degree of a node i at time t is k(i, t), and its 
logarithm reads: logk(i, t) = (

ηi
A − c

1−c )logt + B = βi logt + B , where A and c are constants, B is some time-
invariant offset. From this equation, node fitness and the growth exponent are related by a linear transformation, 
hence the slope of k(i, t) gives an estimation of node fitness value.

Deep learning‑based misinformation network measures prediction.  We utilize both deep learn-
ing and natural language processing techniques to enable fast network measures prediction. Our DNN takes 
daily misinformation networks from day 0 to day t − 1 as training data and predicts which misinformation in 
day(s) t will end up as central node. The input to our DNN is misinformation sentence embeddings, i.e., BERT 
embeddings with length 786. The output of our DNN is binary where 0 and 1 indicate a tweet (i.e., a node in a 
misinformation network) is with low centrality or high centrality, respectively. Our training data is obtained as 
follows. With 60 misinformation networks, we calculate the centralities via traditional complex network analysis 
mechanism and take nodes with top 100 centrality measures and label them as 1, otherwise label them as 0. 
Hence, the training data are misinformation sentences with binary labels. With this way of labeling, the train-
ing data end up with imbalanced classes, therefore, we up-sample the minor class to balance the data prior to 
training. After data balancing, we train a DNN with 3 hidden layers to do binary classification, i.e., to classify if a 

Table 1.   Top 10 most connected nodes (and their corresponding tweets) in the example network shown in 
Fig. 7.

Node Corresponding Misinformation

146 “MOORE, as usual, IS LYING!!Michael Moore: Trump Is Making Coronavirus ‘Partisan’ While Sick People Can’t Get a Test.”

272 “Top Science journal fires off an unusual barrage against Trump for his ‘dangerous’ distortion of coronavirus facts.”

79 “Patton Oswalt Jokes About Trump Supporters Dying of Coronavirus - Big League Politics.”’

53 “Conservative angrily pins blame on ‘Captain Chaos’ Trump for making coronavirus fallout worse than it should be.”

25 “Schumer on Coronavirus: ‘We Are Very Worried About the President’s Incompetence’ This guy is an idiot!”

244 “Congressman erupts on Trump’s health officials for not correcting his ‘bizarre’ lies about coronavirus - Raw Story.”

194 “Congressman erupts on Trump’s health officials for not correcting his ‘bizarre’ lies about coronavirus.”

133 “Donald Trump Jr accuses Hunter Biden of dodging child support as Biden blames coronavirus for skipping court.”

315 “Trying to Cover His Tracks? Trump Reportedly Ordered Coronavirus Talks Classified Common Dreams News.”

157 “‘Stealth attack on Social Security’: Trump condemned for exploiting coronavirus crisis to push tax cut – Raw Story.”
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misinformation sentence is “important” or not. The architecture of our DNN is IN(786)-FC(32)-Dropout(0.5)-
FC(32)-Dropout(0.5)-FC(32)-Dropout(0.5)-OUT(2), where IN, FC, Dropout, OUT represent input layer, fully-
connected layer, dropout layer, and output layer, respectively, and the number in parenthesis indicates the num-
ber of neurons or dropout rate. Fully-connected layers all use ReLU as activation function and output layer uses 
softmax as activation function. We utilize early stopping training technique to prevent overfitting.

Network centrality  measures.  The network centrality measures the importance of a node across a 
complex network. In this study, the network centralities are calculated by the NetworkX package in the Python 
library60. The degree-, closeness-, and second order-centrality are introduced as follows:

Degree centrality61 is of node n is defined as:

where deg(n) is the number of edges connected with the node n.
Closeness centrality62 of a node measures its average inverse distance to all other nodes and is a way of detect-

ing nodes that can transport information across the network efficiently. The closeness centrality of a node n can 
be defined as follows:

where d(u, n) is the distance between node u and node n. Of note, u  = v.
Second order centrality37 is a kind of random walk based centrality which measures the robustness of the 

networks. The centrality of a given node n is the expectation of the standard deviation of the return times to the 
node n of a perpetual random walk on graph G, where the lower that deviation, the more central the node n is.
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