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An improved daily standardized 
precipitation index dataset for 
mainland China from 1961 to 2018
Qianfeng Wang   1,3, Rongrong Zhang1, Junyu Qi4, Jingyu Zeng1,5, Jianjun Wu5, Wei Shui1, 
Xiaoping Wu1 & Jianwei Li1,2 ✉

The standardized precipitation index (SPI), one of the most commonly used drought indicators, is 
widely used in the research areas of drought analysis and drought prediction in different fields such 
as meteorology, agriculture, and hydrology. However, its main disadvantage is the relatively coarse 
time resolution of one month. To improve the time resolution of SPI to identify flash droughts, we 
have refined the traditional SPI calculation method and developed a new multi-scale daily SPI dataset 
based on data from 484 meteorological stations in mainland China from 1961 to 2018. SPI data from 
three different sites (located in Henan, Yunnan, and Fujian Provinces) at the three-month timescale 
were analyzed by comparing with historically recorded drought events. We found that the new multi-
scale daily SPI can effectively capture drought events in different periods and locations and identify the 
specific start and end times of drought events. In short, our SPI dataset appears reasonable and capable 
of facilitating drought research in different fields.

Background & Summary
Drought is the most frequent, complex, chronic, and severe natural disaster worldwide1–3. Drought areas 
caused by water deficits have significantly spread in the past several decades across China because of climate 
change4,5. Northwestern China suffers from severe water resource crises and drought risk6. Drought can lead 
to adverse effects on drinking water, water resource availability, agricultural production and yield, and eco-
logical environment and ecosystem stability7–9. Therefore, drought monitoring and evaluation have become 
hot topics of discussion, attracting the attention of hydrologists, ecologists, geographers, meteorologists, and 
non-scientists10,11. There is evidence that extreme climate events, including droughts, will be intensifying in this 
century in spatiotemporal terms under climate change12–16. However, assessments of the evolution and spatio-
temporal characteristics of drought resulting from water anomalies at the country scale are lacking1,2. It is thus 
imperative to evaluate, monitor, and assess drought characteristics using long time-series data at a large scale, 
which can play important roles in water resources management, responses to alleviating drought, and drought 
risk management.

The American Meteorological Society considers different drought definitions and divides droughts into four main catego-
ries, i.e., meteorological drought, agricultural (soil moisture) drought, hydrological drought, and socioeconomic drought17,18. 
Drought indices have been developed as effective tools to monitor and evaluate the spatiotemporal characteristics of different 
drought types1,19. The three most popular and representative drought indices are the standardized precipitation index (SPI)20, 
the Palmer drought-severity index21, and the standardized precipitation evapotranspiration index (SPEI)22. Other widely 
used indices include the surface water supply index23, the evaporative demand drought index24, and the vegetation condi-
tion index25, among others. SPI and SPEI have multi-time-scale characteristics for monitoring the different drought types22. 
However, the calculation of SPEI requires the reference evapotranspiration parameter of the research areas or stations1, leading 
to different SPEI results due to different calculation methods of reference evapotranspiration using the same input data22,26. 
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SPI has the advantage of a simple calculation procedure and the flexibility of different timescales20. It has been adopted by the 
World Meteorological Organization as a global tool to monitor drought characteristics20,27. SPI is thus an effective tool and 
index to monitor the different kinds of drought.

SPI standardizes the deviation from the mean of precipitation, allowing comparisons under dry (water defi-
cit) or wet (water surplus) conditions20. SPI can not only be calculated simply and has spatial comparability in 
humid and arid zones22,28, but it also can obtain and recur drought events detected by other indices29,30. SPI 
can detect meteorological drought, soil moisture conditions or agricultural drought, long-term hydrological 
drought, and socioeconomic drought for the short accumulation of the water balance on 1-month, 3-month, 
6-month, and 12-month and longer timescales, respectively20. Previous studies have reported the robustness 
and better performance of SPI compared to other drought indices28,31,32. Although SPI has been widely accepted 
and successfully used to monitor and evaluate the characteristics and risk management of the different drought 
types33–36, it is generally calculated or obtained using monthly precipitation amounts. The monthly SPI only can 
detect the month of onset and termination of drought26,27 and cannot identify the onset and termination days 
of drought events. It is imperative to develop SPI at a daily resolution for detailed monitoring and assessment of 
drought characteristics, especially flash drought.

Our primary aim is to produce and provide a daily drought index dataset with a long time series (1961–2018) 
at meteorological stations in mainland China so that different kinds of drought characteristics can be monitored 
and evaluated. The multi-time-scale SPI at three typical sites will then be used to verify the validity of the index 
and analyze the drought characteristics of the three-month-scale SPI in China. Our dataset is anticipated to 
monitor and assess the characteristics and impacts of drought to cope with climate change. It can also be used 
to evaluate the impact of drought on the ecosystem, crop growth, crop yield, vegetation phenology, and plant 
activity.

Data and Methods
Data sources.  We used daily precipitation data from 484 meteorological stations in mainland China from 
1961 to 2018 provided by the China Meteorological Data Sharing Service Platform to calculate the SPI dataset 
(http://data.cma.cn/). These data have undergone strict quality control on the platform and have been widely 
used in the calculation of various drought indices and drought assessments37. The platform provides free mete-
orological data from 839 meteorological stations in mainland China. To ensure the continuity and completeness 
of data records, we selected precipitation data from 484 stations for calculation and analysis. Figure 1 shows the 
distribution of these 484 stations. Three typical sites (i.e., station numbers 53898, 56856, and 58847, marked in 
red in Fig. 1) are located in Henan, Yunnan, and Fujian Provinces, respectively. Among them, the Henan and 
Yunnan sites have experienced frequent drought disasters since ancient times38,39. Previous studies have reported 
that although the precipitation in Fujian is relatively sufficient, the distribution of precipitation is uneven, and it is 
also prone to drought2,40–42. Therefore, we take these three typical sites as examples to investigate the precipitation 
profit and loss monitoring capabilities of the improved daily SPI.

Daily SPI calculation.  The daily SPI is obtained by fitting and normalizing precipitation data with different 
probability distribution functions. Many studies have explored the effects of different probability distribution 
functions on the SPI calculation43,44. Commonly used probability distribution functions are Gamma, Weibull, 
and Gumbel. Among them, the Gamma distribution is the best in calculating SPI because of its relatively flexible 
shape parameter45. Before calculating the probability distribution, the cumulative precipitation time series at 

Fig. 1  The distribution of meteorological stations across the mainland China, including three typical stations 
(station 53898 in the Henan, station 56856 in Yunnan, and station 58847 in Fujian).
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different timescales is needed. In this study, we used the following functions to construct the daily precipitation 
time series at different timescales (e.g., 30 days):
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We then introduced the gamma probability distribution function to calculate the probability distribution of 

the accumulated precipitation time series. The probability density function is
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where xi is the cumulative precipitation time series at a certain timescale, n refers to the number of precipitation 
time series samples, and x  refers to the average of the precipitation time series samples.

The probability that the random variable x is less than the precipitation x0 on a certain time scale is
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Since the domain of the gamma function does not include the case of x = 0 and the actual precipitation 
amount may be 0, the piecewise probability distribution is then
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where P0 refers to the historical ratio of periods with zero precipitation. F(x) is the probability distribution for 
samples with detectable accumulated precipitation. The parameters n and m represent the number of samples 
and the number of samples where total precipitation equals zero, respectively.

Next, the gamma probability distribution is normalized:
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where the constants are c0 = 2.515517, c1 =0.802853, c2 =0.010328, d1 = 1.432788, d2 =0.189269, and d3 = 
0.001308.

Based on the commonly used monthly SPI, we developed daily SPI at different timescales (i.e., 1-month, 
3-month, 6-month, 9-month, and 12-month timescales) using the method described above. Referring to the 
classification standard of meteorological drought in China, SPI is divided into nine categories, as shown in 
Table 1.

Theory of runs.  Based on SPI and run theory, drought characteristics were analyzed. A run in run theory is 
an unbroken sequence of similar events in a given ordered sequence of two or more types of symbols46. A drought 
event generally has four drought characteristics: duration, severity, intensity, and frequency47. The determination 
method of similar events is whether SPI is within the same specified threshold. Drought duration refers to the 
duration of a certain level of drought event from the beginning (tn) to the end (tp), i.e.,

t tDrought duration n p= − .

Drought severity refers to the sum of SPI during drought events:

∣ ∣Drought severity SPIt
t

p

n∑= .

Drought intensity is the average value of SPI at a certain level of the drought event:

= .Drought intensity
Drought severity
Drought duration

The number of drought events at a certain level within a certain period is defined as the drought frequency. 
Figure 2 shows the definition and relationship between drought events and their attribute characteristics.

We also used data from three typical stations as examples to analyze the characteristics of drought events 
in different regions. As Fig. 1 shows, the three typical regional sites chosen are located in Henan, Yunnan, and 
Fujian Provinces (site numbers 53898, 56856, and 58847, respectively). To better compare and analyze the char-
acteristics of drought events in China, we took the three-month scale as an example to calculate the annual total 
drought intensity (ATDS), annual total drought duration (ATDD), and annual total drought frequency (ATDF) 
at all sites48.

Categorization SPI values

Extremely Wet SPI ≥ 2

Severely Wet 1.5 ≤ SPI < 2

Moderately Wet 1 ≤ SPI < 1.5

Mildly Wet 0.5 < SPI < 1

Normal −0.5 ≤ SPI ≤ 0.5

Mild Drought −1 < SPI < −0.5

Moderate Drought −1.5 < SPI ≤ −1

Severe Drought −2 < SPI ≤ −1.5

Extreme Drought SPI ≤ −2

Table 1.  Drought classification of different grades based on SPI.

Fig. 2  Schematic diagram of drought levels. Different colors represent different levels of drought and wet 
events.
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Statistical methods.  We used the Theil-Sen (TS) method to estimate the long-term trends of the ATDS, 
ATDD, and ATDF at all stations. The TS estimator selects the median of the slopes of all straight lines for 
two-dimensional sample points to estimate the trend49,50. It has proven to be a robust method for monitoring 
trends in time series and not strongly affected by outliers51. The Mann-Kendall method was then used to test the  
significance of the long-term trends of the ATDS, ATDD, and ATDF at all stations. As a nonparametric test 
method, the Mann-Kendall approach does not require the data to follow a normal distribution52,53. The TS 
estimator and Mann-Kendall method have been widely used in many fields, for example, in studying the water 
environment, ecological remote sensing, and climate change54,55.

Data Records
The new daily SPI dataset developed here contains SPI values at five timescales (1-month, 3-month, 6-month, 
12-month, and 24-month) from 484 weather stations in mainland China, covering the period of 1961 to 2018. 
All daily SPI datasets can be freely accessed through the online open-access repository called figshare56, available 
at https://doi.org/10.6084/m9.figshare.14135144. In the future, we will continue to update the SPI dataset, add-
ing SPI data from the most recent years.

The SPI dataset contains two compressed files in the RAR format, representing two different storage 
methods. Either can be downloaded according to a researcher’s particular needs. The file “daily_SPI_data_
multi-scale_by_each_station.rar” is stored according to the site and includes a description document “readme.
txt”, a site information table “SPI_station_lookup_table.csv”, and a folder labeled “daily_SPI_data_multi-scale”. 
This folder includes another description document “readme.txt” and 484 XLXS files. Each XLSX file is named 
with a site number and contains five sheets representing the SPI values at five different event scales at the site 
(1-month, 3-month, 6-month, 12-month, and 24-month timescales). The file “SPI_station_lookup_table.csv” 

Fig. 3  Time series of SPI at different timescales for station 53898 (Henan) from 1962 to 2018. The red and blue 
portions of the curves show SPI values greater than and less than zero, respectively.
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contains detailed information about each site. Similarly, the file “daily_SPI_data_multi-scale_by_each_sta-
tion.rar” is stored according to different SPI timescales at the different sites. The five SPIs at different times-
cales are divided into five folders for storage purposes. Each folder contains 484 SPI site data files in the CSV 
format.

Technical Validation
Analysis of drought characteristics of typical stations.  Figures 3–5 show the time series of SPI at sta-
tions 53898 (Henan), 58847 (Fujian), and 56856 (Yunnan) from 1962 to 2018 at different time scales. In general, 
the shorter the time scale, the more sensitive the SPI is to short-term precipitation, and the greater the range of 
SPI values changes. Periodic changes in the SPI value are seen at shorter timescales. Peaks in the curves are mostly 
concentrated during the rainy season from April to September each year.

Figure 3 shows that station 53898 (Henan) experienced severe drought disasters in 1965, 1966, 1978, 1986, 
1992, and 1993, consistent with the drought disaster events recorded in The Henan Volume of the Chinese 
Meteorological Dictionary57. According to records, the drought disasters that occurred in Henan Province from 
1965 to 1966 were extremely serious, causing rivers and wells to dry up. Precipitation in the northern part of 
Henan, where station 53898 is located, was reduced by more than 60%, compared with the normal annual pre-
cipitation. Figure 3 shows that the SPI value at this station reached an abnormal value of −3 at points from 1965 
to 1966.

According to The Yunnan Volume of the Chinese Dictionary of Meteorological Disasters58, years of severe 
drought in Yunnan from 1949 to 2000 include 1963, 1987, 1988, 1992, and 1998. Figure 4 shows that unlike sta-
tion 53898, extreme drought events at station 56856 in Yunnan Province mostly occurred after 2000. According 

Fig. 4  Time series of SPI at different timescales for station 56856 (Yunnan) from 1962 to 2018. The red and blue 
portions of the curves show SPI values greater than and less than zero, respectively.
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to The China Meteorological Disaster Yearbook59 from 2004 to 2018, Yunnan Province experienced severe 
droughts from 2003 to 2004 and from 2009 to 2013, consistent with Fig. 4.

Compared with the stations in Yunnan and Henan, the station in Fujian Province had plenty of rainfall, but 
droughts still frequently occurred. Figure 5 shows that the SPI curve at the monthly scale was greatly affected 
by short-term precipitation, with no obvious drought phenomenon detected. However, the SPI curves of the 
3-month, 6-month, 9-month, and 12-month timescales all showed drought conditions of differing degrees in 
1963, 1977, 1971, 1970, 1980, 1983, 1986, 1991, 1995, 2003, and 2004. This is identical to the records of The 
China Meteorological Disaster Dictionary60 and The China Meteorological Disaster Yearbook59.

Spatial distributions of drought characteristics.  Figure 6 shows the spatial distributions of ATDS 
and its trends at 484 stations in mainland China. The lower the ATDS value, the stronger the drought sever-
ity accumulated over the years and the more severe the drought experienced at the station. ATDS values at 
most stations fell between −130 and −121. The Xinjiang region in northwestern China and the provinces of 
Hebei and Shanxi in the central part of China experienced more severe droughts, with ATDS values between 
−155 and −526. In general, the drought in northern China was more severe than in the south. However, com-
pared with other areas in northern China, the drought in Heilongjiang and Jilin in the northeast was rela-
tively mild (Fig. 6a). The multi-year trend in ATDS in the study area is not highly significant. The drought in 
Xinjiang, Qinghai, and other places in northwestern China showed some easement, with a trend greater than 
30 (P-value < 0.05; Fig. 6b).

The variable ATDD represents the duration of the annual average drought event at each station and has 
similar spatial distribution characteristics as ATDS. ATDD values at some stations in the Xinjiang region of 

Fig. 5  Time series of SPI at different timescales for station 58847 (Fujian) from 1962 to 2018. The red and blue 
portions of the curves show SPI values greater than and less than zero, respectively.
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northwestern China ranged from 196 to 279. Even in southern regions with abundant rainfall, ATDD values at 
most stations ranged from 103 to 112, indicating that most sites experienced drought (Fig. 7a). The multi-year 
trend of ATDD also shows that the drought duration at some stations in the southwest, southeast, and northeast 
regions of China had significantly reduced, while the drought duration at some stations in central and south-
western regions had increased significantly (Fig. 7b).

Figure 8 shows that the spatial distribution of ATDF is different from those of ATDS and ATDD. The fre-
quency of drought at some stations in the Xinjiang region of northwest China was not high (i.e., low ATDF 
values). Stations in the northeastern and southwestern regions had a higher frequency of drought events (i.e., 
higher ATDF values). Overall, drought events at some stations in the Xinjiang region of northwest China were 
highly severe and lasted for a long time but did not occur often. Drought events at some stations in the north-
eastern region were not as severe and did not last a long time. However, they occurred frequently (Fig. 8a). In 
general, the multi-year trend of ATDF was not significant (Fig. 8b).

Summary of the data validation.  SPI is the most commonly used indicator worldwide for detecting 
and characterizing droughts because its calculation requires fewer parameters. This index can also better reflect 
drought intensity and duration at different timescales61. SPI has been applied in many fields such as ecology, mete-
orology, agriculture, water conservancy, among others62,63. However, current formulations of SPI cannot monitor 
droughts below the one-month scale or accurately identify the exact time of drought events. Therefore, based on 
the commonly used monthly SPI45 and the daily SPEI algorithm described in our previous study48, we have devel-
oped a new daily SPI dataset. The selection of a parameter probability distribution is the key to calculating SPI 
because an appropriate parameter probability distribution can improve the accuracy of SPI monitoring drought 
events43. We used the gamma probability distribution validated using data from Europe and to be verified over a 
larger area in the future to calculate the SPI45.

Fig. 6  Distributions of (a) ATDS in the study area and (b) its trends at each station (“***” denotes 
P-value < 0.001, “**” denotes P-value < 0.01, and “*” denotes P-value < 0.05).
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To verify the validity of our daily SPI dataset, we selected three typical stations in different regions, i.e., 
stations 53898 (Henan), 58847 (Fujian), and 56856 (Yunnan), and analyzed the characteristics of drought events 
at different stations and different timescales. The SPI curve at a longer timescale captured longer-length drought 
events, mainly because the long-timescale SPI is not sensitive to short-term precipitation. Overall, drought 
events captured by the new SPI dataset were consistent with those recorded in The Chinese Disaster Dictionary 
and The Chinese Disaster Yearbook57–60.

SPI at different timescales is closely related to different types of drought (1-month timescale versus meteor-
ological drought, 3- to 6-month timescale versus agricultural drought, 12-month timescale versus hydrological 
drought, and 24-month timescale versus socioeconomic drought)22. We conducted an in-depth analysis of the 
3-month-scale SPI widely used in soil and agricultural drought studies. Results show that there are no obvious 
signs of aggravation of drought in mainland China. Some stations in the northwest, northeast, and southeast 
regions of China have even shown signs of drought reduction, also reported by others54,64. Although there was 
no obvious drought intensification or mitigation in Hebei, Shanxi, and other places in central China, drought 
events were nevertheless serious. Note that this region is the food production base of China, so more attention 
should be paid to drought disasters in this region to avoid serious impacts on agricultural production. According 
to our 3-month-scale SPI dataset, the characteristics of drought events in northwest Xinjiang were opposite to 
those in northeast China, also noted by others54,64. The causes of different drought events in different regions 
may be related to location, topography, climate, and other factors65. This warrants further analysis and discus-
sion with more data in the future.

In summary, drought has a profound impact on human beings, and modern societies are less inclined to 
accept the conventional risks of drought. It is thus necessary to make as accurate an assessment and monitoring 
of drought as possible. The estimation of drought will continue to occupy the attention of ecologists, meteorol-
ogists, and hydrologists, among others. The new daily SPI dataset developed and presented here can effectively 
identify multiple types of droughts and accurately capture the beginning and end of drought events. This dataset 

Fig. 7  Distributions of (a) ATDD in the study area and (b) its trends at each station (“***” denotes 
P-value < 0.001, “**” denotes P-value < 0.01, and “*” denotes P-value < 0.05).
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will likely be of interest to drought researchers in different fields as well as act as a useful reference for water 
resources management and drought risk management purposes.

Code availability
All calculations of daily SPI are based on the Python language and are available at GitHub: https://github.com/
wangqianfeng23/DailySPI. Any updates will also be published on GitHub.
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