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Abstract

The function of a T cell depends on its subtype and activation state. Here, we show that the 

imaging of autofluorescence-lifetime signals from quiescent and activated T cells can be used to 
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classify the cells. T cells isolated from human peripheral blood and activated in culture via a 

tetrameric antibody against the surface ligands CD2, CD3 and CD28 showed specific activation-

state-dependent patterns of autofluorescence lifetime. Logistic-regression models and random-

forest models classified T cells according to activation state with 97–99% accuracy, and according 

to activation state (quiescent or activated) and subtype (CD3+ CD8+ or CD3+ CD4+) with 97% 

accuracy. Autofluorescence-lifetime imaging could be used to non-destructively determine T-cell 

function.

T cells are an important component of the adaptive immune response and have diverse 

cytotoxic and immune-modulating, or “helper” activities, upon activation. The two main T 

cell subtypes are CD3+CD8+ T cells that engage in cell-mediated cytotoxicity and release 

toxic cytokines and CD3+CD4+ T cells that can be further divided into additional subtypes 

with differing pro- and anti- inflammatory functions due to chemokine and cytokine 

production[1, 2]. T cells are a promising target for immunotherapies because of these diverse 

functions. Immunotherapies that directly increase T cell cytotoxic activity, such as immune 

checkpoint blockade therapies and adoptive cell transfer therapies, are currently used 

clinically for cancer treatment and are in development for additional diseases including 

human immunodeficiency virus (HIV)[3, 4]. Immunotherapies that enhance regulatory T 

cell (TREG) behaviours are in development to treat transplant rejection and autoimmune 

diseases, including diabetes and Crohn’s disease [5, 6].

New tools that are non-destructive and label-free are needed to fully characterize T cells for 

assessment of immunotherapies. Currently, T cell subtype and function is determined from 

expression of surface proteins (e.g. CD3, CD4, CD8, CD45RA, etc.) and cytokine 

production (e.g. interferon-gamma (IFN-γ), transforming growth factor beta (TGF-β), 

interleukin (IL)-2, IL-4, IL-17, etc.) by antibody-based methods such as flow cytometry, 

immunohistochemistry, or immunofluorescence, or by transgenic fluorophore expression. 

However, these methods require exogenous contrast agents, and flow cytometry and 

immunohistochemistry require tissue dissociation and fixation, respectively. 

Autofluorescence imaging is an attractive method to probe immune cell behaviours because 

it is non-destructive, relies on endogenous contrast, and provides high spatial and temporal 

resolution. Therefore, autofluorescence imaging overcomes the single-use limitation of 

label-based methods, is not influenced by confounding label-related factors such as 

concentration and label-dependent alterations of the sample, and allows kinetic 

measurements on living T cells. Autofluorescence imaging can also provide functional 

information on limited blood volumes (e.g. neonates) that are inadequate for conventional 

assessments and assist with quality control on the same cells injected into patients for 

cellular immunotherapies.

Fluorescence imaging of the endogenous metabolic co-enzymes reduced nicotinamide 

adenine dinucleotide (NAD(P)H) and flavin adenine dinucleotide (FAD) provides 

quantitative endpoints of cellular metabolism [7–9]. (NADH and NADPH florescence are 

indistinguishable; therefore, NAD(P)H is used to represent the combined fluorescence signal 

[10].) The optical redox ratio is the relative fluorescence intensities of NAD(P)H and FAD 

and provides an optical measurement of the redox state of the cell [7, 11, 12]. Although 
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there are multiple definitions of the optical redox ratio with either NAD(P)H or FAD in the 

numerator used in the literature, NAD(P)H/(NAD(P)H+FAD) is used here because this 

metric is standardized between 0 and 1 and an increase corresponds to T cell activation.

The fluorescence lifetime, the time the fluorophore is in the excited state before returning to 

ground state, provides information on the protein binding of NAD(P)H and FAD [8, 13]. 

NAD(P)H and FAD can both exist in two conformations: a quenched and unquenched form, 

with a short and long lifetime, respectively. NAD(P)H has a short lifetime in the free state 

and a long lifetime in its protein-bound state [8]. Conversely, FAD has a short lifetime when 

bound to an enzyme and a long lifetime when free [13]. Fluorescence lifetime imaging 

(FLIM) allows quantification of the short (τ1) and long (τ2) lifetime values, the fraction of 

free and protein-bound co-enzyme (α1 and α2, respectively, for NAD(P)H, and α2 and α1, 

respectively, for FAD), and the mean lifetime (the weighted average of the short and long 

lifetimes, τm = α1*τ1+ α2*τ2). The fluorescence intensity and lifetime of NAD(P)H and 

FAD are sensitive to metabolic differences between neoplasias and malignant tissues, anti-

cancer drug effects in cancer cells, and differentiating stem cells [14–19]. Autofluorescence 

imaging has been used previously to identify macrophages in vivo and detect metabolic 

changes due to macrophage polarization [20–22]. Altogether, fluorescence lifetime imaging 

of NAD(P)H and FAD provide quantitative and functional endpoints of cellular metabolism.

Upon activation, T cells have increased metabolic demands to support cell growth, 

proliferation, and differentiation [23]. This metabolic state of increased aerobic glycolysis is 

required for T cells to maintain effector function [23–25]. Therefore, this study tests the 

hypothesis that fluorescence lifetime imaging of NAD(P)H and FAD provides quantitative 

endpoints to identify activated T cells. To test this hypothesis, we isolated T cells from the 

blood of healthy donors, activated the cells in an antigen-independent manner with a 

tetrameric antibody (anti-CD2/CD3/CD28) and imaged the NAD(P)H and FAD fluorescence 

intensity and lifetime of quiescent and activated T cells. This study demonstrates 

autofluorescence lifetime differences between quiescent and activated T cells and accurate 

classification of T cell activation state by machine learning models using quantitative 

endpoints from autofluorescence lifetime images.

Results

Autofluorescence imaging reveals differences with activation in T cells

Blood isolations for CD3+ (pan-T cell marker) and CD3+CD8+ cells were used to study all T 

cells, as might be utilized in adoptive cell transfer therapies, and the cytotoxic CD3+CD8+ 

sub-population, respectively. NAD(P)H and FAD autofluorescence imaging reveals 

metabolic differences in quiescent and activated T cells (Fig. 1, S1). In the autofluorescence 

images, the nucleus remains dark as NAD(P)H is primarily located in the cytosol and 

mitochondria, and FAD is primarily in the mitochondria. Immunofluorescence labelling of 

CD4, CD8, or CD69 surface proteins verified cell type and activation (Fig. S2). There were 

significant differences in cell size, optical redox ratio, NAD(P)H τm, NAD(P)H α1, and FAD 

α1 between quiescent and activated T cells of 6 donors (p<0.001, Fig. 1B–F). Significant 

changes (p<0.001) in FAD τm between quiescent and activated T cells were found only for T 

cells within the bulk CD3+ T cell population (Fig. 1E). The differences in autofluorescence 
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endpoints were consistent across the 6 donors (Fig. 1, S1), at 24 and 48 hr of exposure to the 

activating antibodies (Fig. S3), and between experiments from two different blood draws 

(183 days apart) from the same donor (Fig. S4). A slight increase in FAD τ1 was found in 

both quiescent and activated CD3+ T cells, suggesting a slight change in the 

microenvironment of bound FAD between CD3+ T cells of the same donor from two blood 

draws; however, no other autofluorescence endpoints were significantly different between 

the two blood draws.

Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) measurements 

confirm increased metabolic rates of the activated T cells from 1 donor (p<0.001, Fig. 1H–

J), in accordance with previously published studies of activated T cells [24, 26–28]. In a 

metabolic inhibitor experiment of T cells from 1 donor (Fig. S5), the redox ratio of activated 

T cells decreased (p<0.001) with a glycolysis inhibitor (2-deoxy-d-glucose), and the redox 

ratio of quiescent T cells increased (p<0.001) with oxidative phosphorylation inhibitors 

(antimycin A and rotenone). Additionally, the glutaminolysis inhibitor BPTES (Bis-2-(5-

phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide) significantly decreased (p<0.001) the 

optical redox ratio, NAD(P)H τm, and FAD τm of both quiescent and activated T cells, 

suggesting a significant contribution of glutaminolysis to the metabolism of quiescent and 

activated T cells (Fig. S5).

Autofluorescence imaging endpoints allow classification of quiescent and activated T cells 
with high accuracy

Uniform Manifold Approximate and Projection (UMAP) [29], a dimension reduction 

technique similar to t-distributed Stochastic Neighbor Embedding (t-SNE), was used to 

visualize how cells cluster from autofluorescence measurements. Neighbours were defined 

through a cosine distance function computed across the autofluorescence endpoints (optical 

redox ratio, NAD(P)H τm, NAD(P)H τ1, NAD(P)H τ2, NAD(P)H α1, FAD τm, FAD τ1, 

FAD τ2, and FAD α1) and cell size for each cell. UMAP was chosen over other techniques, 

notably principle component analysis (PCA) or t-SNE, for its speed, ability to include non-

metric distance functions, and performance on preserving the global structure of the data. 

UMAP representations of the autofluorescence imaging data of the T cells from 6 donors 

reveals separation of quiescent and activated T cells (Fig. 2A–B). The gain ratio of 

autofluorescence endpoints indicates that NAD(P)H α1, cell size, and optical redox ratio are 

the most important features for classification of activation state of CD3+ T cells (Fig. 2C), 

and NAD(P)H α1, optical redox ratio, and NAD(P)H τm are the most important features for 

classification of activation state of CD3+CD8+ T cells (Fig. 2C). The order of feature 

importance was consistent across multiple feature selection methods including information 

gain, χ2, and random forest (Fig. S6). Correlation analysis revealed that NAD(P)H α1, cell 

size, and the optical redox ratio are not significantly correlated (Fig. S7), suggesting these 

features provide complementary information for classification. NAD(P)H α1 and τm are 

significantly correlated (Fig. S7), as expected, given that τm is computed from α1. Similar 

feature weight and order of importance were observed from analysis without NAD(P)H τm 

and FAD τm (Fig. S8), indicating that the multivariate models were not significantly affected 

by the correlations between the mean lifetimes and the lifetime components.
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Classification models were developed to predict T cell activation state from NAD(P)H and 

FAD autofluorescence imaging endpoints (Fig. 2D–F). To protect against over-fitting, 

logistic regression models were trained on data from 4 donors with activation state assigned 

from culture conditions and tested on data with same-cell CD69 expression 

immunofluorescence validation from 3 donors (completely independent and non-

overlapping observations). Receiver operator characteristic (ROC) curves of the test data 

reveal high classification accuracy for predicting activation in bulk CD3+ (AUC = 0.975) and 

isolated CD3+CD8+ (area under the curve (AUC) = 0.996) T cells, when the models use all 

autofluorescence endpoints (optical redox ratio, cell size, NAD(P)H τm, NAD(P)H τ1, 

NAD(P)H τ2, NAD(P)H α1, FAD τm, FAD τ1, FAD τ2, and FAD α1). When the NAD(P)H 

and FAD autofluorescence imaging endpoints of the T cells are normalized within a donor to 

the mean value of the quiescent CD3+ population, the ROC AUC decreases to 0.857 for 

CD3+ T cells (Fig. 2D) and increases slightly to 0.998 for isolated CD3+CD8+ T cells. 

While all 10 NAD(P)H and FAD autofluorescence features achieved the highest 

classification accuracy (AUC = 0.975) for activation of CD3+ T cells, a logistic regression 

model using only NAD(P)H α1 achieved a slightly lower accuracy of 0.965 (Fig. 2E). 

Logistic regression models that include cell size or cell size and the optical redox ratio, 

endpoints that can be obtained from fluorescence intensity images, were less effective at 

accurately predicting activation of bulk CD3+ T cells with ROC AUCs of 0.708 and 0.901, 

respectively (Fig. 2E). Similar results were obtained for the isolated CD3+CD8+ T cells, 

with the highest ROC AUC values achieved for logistic regression classification models 

using all 10 autofluorescence imaging endpoints and NAD(P)H α1 alone, AUC = 0.996 and 

0.994, respectively (Fig. 2F). Similar classification accuracy was achieved with random 

forest and support vector machine models using all 10 autofluorescence imaging endpoints 

(Fig. S9).

Autofluorescence imaging reveals T cell heterogeneity within and across donors

T cell heterogeneity was assessed within and across the 6 donors (Fig. 3). Heatmap 

representation (Fig. 3A) of the z-score of autofluorescence imaging endpoint values at the 

donor level (each row is the mean data of a single donor, cell type, and activation) reveals 

that the T cells cluster by activation state (i.e. quiescent and activated cluster separately) and 

isolation (bulk CD3+ or isolated CD3+CD8+). Corresponding coefficient of variation 

heatmaps highlight the high intra-donor variability of the size of activated T cells and low 

intra-donor heterogeneity of the autofluorescence endpoints (Fig. S10).

A representative z score heatmap where each row is a single cell from one donor reveals 

distinct clusters of T cells by autofluorescence imaging endpoints within the quiescent and 

activated CD3+CD8+ T cell populations (Fig. 3B). Multiple quiescent and activated T cell 

populations were observed across all six donors and arise from varied distributions of 

autofluorescence imaging endpoints within the T cell populations (Fig. 3C, S11–14). For 

example, histograms of the NAD(P)H τm values of quiescent and activated CD3+CD8+ T 

cells reveals a bimodal population within the quiescent CD3+CD8+ T cells, with one peak of 

the quiescent cells consistent with the peak of the activated cells (Fig. 3C).
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We hypothesized that memory and naïve T cells within the quiescent population contributed 

to the observed heterogeneity within the quiescent CD3+CD8+ T cell population (Fig. 3B–C, 

S11–14) (i.e. the multiple clusters of quiescent CD3+CD8+ cells within the heatmaps and 

bimodal distribution of the NAD(P)H τm of quiescent CD3+CD8+ T cells). To test this, we 

co-stained quiescent CD3+CD8+ T cells with antibodies against CD45RA, a marker of naïve 

T cells, and CD45RO, a marker of memory T cells. NAD(P)H τm was significantly 

decreased in CD45RO+ cells as compared with NAD(P)H τm of CD45RA+ cells (Fig. 3D; 3 

donors). Additionally, the optical redox ratio (p=0.007) and NAD(P)H α1 (p=0.0009) were 

increased in CD45RO+ CD3+CD8+ T cells as compared to CD45RA+ cells (Fig. S15).

Culture with CD3+CD4+ T cells affects the autofluorescence of CD3+CD8+ T cells

NAD(P)H and FAD autofluorescence imaging endpoints reveal metabolic differences 

between CD3+CD8+ T cells cultured as an isolated population and CD3+CD8+ T cells 

cultured with CD3+CD4+ T cells (bulk CD3+ isolation). A UMAP (data dimension 

reduction) representation of NAD(P)H and FAD autofluorescence imaging endpoints reveals 

that CD3+CD8+ T cells cultured from the CD3+CD8+ specific T cell isolations cluster 

separately from CD3+CD8+ T cells within bulk CD3+ T cell populations (Fig. 4A; 3 

donors). The optical redox ratio and NAD(P)H α1 are decreased in both quiescent and 

activated CD3+CD8+ T cells of the isolated CD3+CD8+ population as compared to the 

corresponding values of quiescent and activated CD3+CD8+ T cells, respectively, within the 

bulk CD3+ population (Fig. 4B–C). Additional differences in NAD(P)H and FAD 

autofluorescence lifetime endpoints were observed between CD3+CD8+ T cells within the 

bulk CD3+ population and the isolated CD3+CD8+ population (Fig. S16).

Despite these differences between CD3+CD8+ T cells of CD3+CD8+ specific isolations and 

bulk CD3+ isolations, significant changes in NAD(P)H and FAD autofluorescence endpoints 

due to activation are maintained, and classification models predict activation status of 

CD3+CD8+ cells with high accuracy regardless of isolation (Fig. 4D). Random forest feature 

selection revealed that NAD(P)H α1 is the most important feature for classification of 

quiescent from activated CD3+ or CD3+CD8+ T cells (Fig. S17A).

Autofluorescence endpoints classify CD3+CD4+ from CD3+CD8+ T cells within bulk CD3+ 

populations

Heterogeneity in NAD(P)H and FAD autofluorescence endpoints between CD3+CD4+ and 

CD3+CD8+ T cells is observed within the bulk CD3+ isolation. CD4+ or CD8+ expression 

was verified in parallel T cell populations of 3 donors by immunofluorescence labelling with 

anti-CD4-peridinin-chlorophyll-protein complex (PerCP) or anti-CD8-PerCP (Fig. S2). A 

UMAP representation of the autofluorescence data allows visualization of quiescent and 

activated CD3+CD4+ and CD3+CD8+ T cells within the bulk CD3+ isolation (Fig. 4E). 

Significant differences in NAD(P)H and FAD endpoints, including NAD(P)H τ2 and 

NAD(P)H α1, are observed between CD3+CD4+ and CD3+CD8+ T cells (p<0.001, Fig. 4F–

G, S18). Random forest models to classify T cell subtype (CD3+CD4+ or CD3+CD8+) 

within the bulk CD3+ T cell isolation have average test data predictions of 97.5% and 99.7% 

for separate predictions on subsets of quiescent or activated T cells, respectively, and 99.4% 

for all four groups, when trained on 75% of the T cell data set and tested on the remaining 
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25% (Fig. 4H). Classification accuracy scales with number of cells in the train versus test 

groups (Fig. 4H). Random forest feature analysis revealed that NAD(P)H τ2 is the highest 

weighted feature for the classification of activated CD3+CD4+ T cells from activated 

CD3+CD8+ T cells, and FAD τ1 is the highest weighted feature for classification of 

quiescent CD3+CD4+ T cells from quiescent CD3+CD8+ T cells (Fig. S17B).

Autofluorescence imaging allows classification of activated T cells in cultures of combined 
quiescent and activated T cells

NAD(P)H and FAD autofluorescence imaging allows label-free imaging and classification 

of T cell activation in T cell cultures with combined quiescent and activated cells. A 

representative NAD(P)H α1 image with CD69 immunofluorescence overlaid in pink, 

demonstrates the difference in NAD(P)H α1 between quiescent (CD69−) and activated 

(CD69+) T cells (Fig. 5A). UMAP visualization of the autofluorescence imaging data 

reveals separation of quiescent and activated CD3+ T cells within this population of 

combined quiescent and activated cells (Fig. 5B). When cultured in isolated populations, 

quiescent and activated T cells have significantly different NAD(P)H and FAD imaging 

endpoints, including the optical redox ratio and NAD(P)H α1, then their respective 

counterpart from a combined (quiescent with activated T cells) population (Fig. 5C–D, Fig. 

S19). Random forest feature selection for classification of activation status of T cells within 

a combined, quiescent and activated, T cell population reveals that NAD(P)H α1 is the most 

important feature for classification, followed by NAD(P)H τm (Fig. S20). Logistic 

regression models to predict activation status of T cells in a combined, quiescent and 

activated, CD3+ T cell culture achieves test data ROC AUCs of 0.95 when all 10 NAD(P)H 

and FAD imaging endpoints are included, 0.95 and 0.68 when only predicting from 

NAD(P)H α1 or cell size, respectively, and 0.67 for redox ratio and cell size (Fig. 5E).

Autofluorescence imaging resolves temporal changes in T cells with activation

Metabolic changes occur rapidly within T cells upon activation [26]; therefore, we 

hypothesized that time-course imaging of T cells would resolve changes in T cell 

autofluorescence. NAD(P)H fluorescence lifetime images were acquired from CD3+ 

quiescent T cells immediately after exposure to the activating tetrameric antibody (anti-

CD2/CD3/CD28). The NAD(P)H intensity of the nucleus increased by 10% relative to the 

pre-activator values, within a few minutes of addition of the activator, and remained 

consistently higher than the average pre-activation NAD(P)H intensity throughout the 10 

minute time-course (Fig. 5F). NAD(P)H intensity within the nucleus may indicate increased 

transcription [30]. The NAD(P)H intensity in the cytoplasm initially increased (t<1 m) and 

then decreased, relative to the pre-activation NAD(P)H intensity of the cytoplasm. NAD(P)H 

α1 increased significantly in the cytoplasm by 2% at t=6 minutes post addition of the 

activator and remained significantly increased until t=8.75 m. These autofluorescence 

changes observed early, within minutes of activation, indicate that autofluorescence lifetime 

imaging is sensitive to robust transcription and metabolic changes that occur with activation 

in T cells [26]. A 24 h time course of the optical redox ratio revealed an initial decrease in 

the optical redox ratio of activated versus control T cells at 0.5 and 1 h and then an increased 

optical redox ratio at 2+ h (Fig. S21). This finding is consistent with a previous study [26] 

that found an increase in OCR (oxygen consumption suggests increased FAD production and 
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a reduced redox ratio [31]) within 10 minutes of stimulation of T cells by anti-CD3/CD28 

beads and an increase in ECAR (consistent with an increase in redox ratio) at 20–40 minutes 

post-stimulation.

Discussion

T cells are an important component of the adaptive immune response with direct cytotoxic 

and immune-modulating behaviours. Immunotherapies that directly modify T cell behaviour 

show promise for treating a variety of conditions including cancer and autoimmune disease. 

In this study, we develop autofluorescence lifetime imaging-based methods for 

determination of T cell activation at the single cell level. Autofluorescence lifetime imaging 

is non-destructive, label-free, and has high spatial and temporal resolution that is amenable 

with live cell assessment, longitudinal studies, and in vivo imaging. However, 

autofluorescence imaging is limited by light penetration depth and thus in vivo applications 

are limited to surface tissues and preclinical window chamber models.

Although several endogenous molecules are autofluorescent, including NAD(P)H, FAD and 

other flavins, tryptophan, retinol, haemoglobin, melanin, collagen, elastin, and lipofuscin, 

not all of these molecules are present in T cells. In this study, NAD(P)H and FAD 

fluorescence are isolated by using a purified sample of T cells (which lack high 

concentrations of intracellular collagen, retinol, melanin, elastin, and lipofuscin) and by 

using specific excitation and emission wavelengths. Analysis of the lifetime data confirms 

isolation of NAD(P)H and FAD signals, since endogenous fluorophores have distinctive 

lifetimes and contributions from additional fluorophores are not observed. Additionally, the 

metabolic inhibitor experiment (Fig. S5) confirms isolation of NAD(P)H and FAD 

fluorescence as the correct trends in optical redox ratio values are observed for specific 

metabolic pathway inhibition: an increase in the optical redox ratio of quiescent cells with 

rotenone+antimycin A treatment, and the opposite effect, a reduced optical redox ratio, with 

2-deoxy-d-gluocse (2DG) treatment of activated T cells.

Different redox ratio definitions with either NAD(P)H or FAD in the numerator can be found 

in the literature [7, 11, 12]. Here, we are using NAD(P)H/(NAD(P)H+FAD) to improve the 

intuitive interpretation of the results, where an increase corresponds to T cell activation. 

Additional commentary on the redox ratio definition is included with the supplementary 

materials.

Upon activation, T cell metabolism switches from tricarboxylic acid oxidation of glucose 

and β-oxidation of fatty acids to glycolysis and glutaminolysis [23–25, 32, 33]. T cells with 

high glycolytic activity in vitro show poor persistence, low recall responses and low 

proliferation rates that lead to poor effector activity in vivo, whereas T cells with high fatty 

acid oxidation show increased persistence, recall responses and proliferation leading to 

better effector activity within the tumour [34]. Changes in NAD(P)H and FAD 

autofluorescence imaging endpoints, including the increased optical redox ratio and 

increased free NAD(P)H (α1) observed in activated T cells relative to the corresponding 

endpoints of quiescent T cells, reflect a shift towards glycolysis in activated T cells (Fig. 1, 

S1, S18–19)[35]. An increase in glycolysis of activated T cells was verified by the Seahorse 
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assay and metabolic inhibitor experiment (Fig. 1H–J, S5). Significant changes in the 

lifetimes of NAD(P)H and FAD (Fig. S1) indicate differences in the protein binding partners 

and microenvironment of NAD(P)H and FAD [36].

Contributions from multiple metabolic pathways can alter the optical endpoints and make 

interpretation of the results challenging. To aid in data interpretation, the metabolic inhibitor 

experiment (Fig. S5) demonstrates the effects of glycolysis, oxidative phosphorylation, fatty 

acid synthesis, and glutaminolysis inhibition on the optical endpoints of quiescent and 

activated T cells. BPTES reduced the redox ratio of both quiescent and activated T cells 

relative to control quiescent or activated T cells, respectively. This suggests that both 

quiescent and activated T cells utilize glutaminolysis. Rotenone and antimycin A selectively 

enhanced the optical redox ratio of quiescent cells, while 2-de-oxy-D-glucose selectively 

reduced the optical redox ratio of activated T cells, indicating that the optical redox ratio 

alterations due to activation in T cells are primarily due to alterations in glycolysis and 

oxidative phosphorylation.

T cells are known to be highly heterogeneous, with phenotypic heterogeneity of surface 

proteins and effector function observed for CD3+CD4+ and CD3+CD8+ T cells [37]. This 

heterogeneity can arise from the strength of the activating event, the microenvironment of 

the T cell, and differences in gene regulation at the time of activation [38–40]. Heterogeneity 

analysis, by heatmaps and histograms, revealed heterogeneous clustering of T cells within 

the autofluorescence imaging dataset. A difference in the mean NAD(P)H lifetime was 

found to be due to naïve (CD45RO+) and memory (CD45RA+) CD3+CD8+ T cells (Fig. 

3C–D), which are known to have differing metabolic states: memory T cells have increased 

glycolytic capacity and mitochondrial mass as compared with naïve T cells [26]. An 

additional subpopulation was identified within the activated T cell subset and characterized 

by larger than average cells (Fig. 3B, S6–7). These large cells may be actively dividing cells, 

a condition which is also accompanied by metabolic and autofluorescence differences [41, 

42].

Machine learning approaches have been used on extracted morphological features of phase-

contrast images to identify cancer cells from immune cells, on brightfield images to assess 

cell cycle, and on phase contrast and autofluorescence images to classify macrophage 

exposure to lipopolysaccharide (LPS) [22, 43, 44]. Here, high ROC AUCs (0.95+) were 

achieved for test data sets using machine learning techniques to classify T cells as activated 

or quiescent using the autofluorescence imaging endpoints (optical redox ratio, cell size, 

NAD(P)H τm, NAD(P)H τ1, NAD(P)H τ2, NAD(P)H α1, FAD τm, FAD τ1, FAD τ2, and 

FAD α1) quantified for each cell. Classification of activation of T cells from CD3+CD8+ 

specific isolations was slightly higher than that of T cells from bulk CD3+ isolations as 

might be expected for a homogeneous population (CD3+CD8+) rather than a heterogeneous 

population (bulk CD3+ populations contain CD4+ and CD8+ subsets). Although multiple 

classification models were found to have similar performance, logistic regression was the 

best fitting model, suggesting that the predicted probability of activation is a linear 

combination of all 10 of the autofluorescence imaging endpoints. Interestingly, donor 

normalization (Fig. 2D) of the autofluorescence imaging endpoints did not improve 

classification accuracy, suggesting that the autofluorescence endpoints reflect changes in T 
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cells with activation that are consistent across donors so generalized models can be used for 

unspecified donors or patients, which is beneficial for robust implementation of 

autofluorescence imaging as a universal tool to evaluate T cell activation.

The models for classification of activation in T cells reported here have higher ROC AUC 

values than the previously reported accuracy of 84–87% found for binary logistic regression 

classification of morphological and Raman spectra features of control and LPS-exposed 

murine RAW264 macrophages [22]. Murine macrophage activation by LPS inhibits 

inducible nitric oxide synthase (iNOS), stimulates the mammalian target of rapamycin 

(mTOR), increases expression of ubiquitous 6-phosphofructo-2-kinase (u-PFK2), and 

inhibits adenosine monophosphate-activated protein kinase (AMPK) leading to increased 

glycolysis and decreased oxidative phosphorylation [45]. Macrophages also display a 

spectrum of phenotypes upon activation [45] and therefore, the activated macrophage 

phenotype may be more heterogeneous than the antigen-independent activation of T cells by 

CD2/CD3/CD28. These differences in molecular changes upon activation may explain the 

observed differences in label-free classification accuracy between T cells and macrophages. 

Although high classification accuracy was achieved with the machine learning approaches, 

deep learning methods such as neural networks may achieve improvements in classification 

accuracy, as has been demonstrated for the classification of cancer cells from immune cells 

in phase-contrast images [43].

NAD(P)H α1 was consistently identified as the most important feature for differentiation of 

quiescent and activated T cells across different feature selection methods (including gain 

ratio, information gain, χ2, and random forest), and different subsets of CD3+, CD3+CD8+, 

and CD69+/CD69− T cells (Fig. 2C, S6, S19). Although the redox ratio and cell size also 

significantly increased with activation and were highly weighted features, NAD(P)H α1 has 

a lower variance within and across donors. Higher variability in intensity measurements may 

be due to the confounding factors of intensity levels (throughput due to laser power, detector 

gain, inner filter effects, etc.) that are not factors in the self-referenced (i.e., independent of 

absolute photon counts) fluorescence lifetime measurements. The feature weights observed 

here are specific for NAD(P)H and FAD autofluorescence endpoints and may change if 

excitation or emission wavelengths are altered to include additional or different 

fluorophores. The classification analysis also revealed that while models trained on all 10 

autofluorescence imaging endpoints yielded the highest accuracy for classification of 

activation state of T cells, logistic regression using only NAD(P)H α1 yielded comparably 

high ROC AUCs. NAD(P)H α1 was also more accurate for predicting T cell activation than 

cell size alone (Fig. 2E), or fluorescence intensity measurements (cell size + redox ratio), 

which can be obtained by wide-field or confocal fluorescence microscopy. Slight differences 

(0.2–1%) in classification accuracy can result in many (104-106) cells misclassified if 107 

cells need to be evaluated, as would be the case for a therapeutic dose of chimeric antigen 

receptor (CAR) T cells. Additional label-free methods, including third harmonic generation 

imaging and Raman spectroscopy of quiescent and activated splenic-derived murine T cells 

have revealed a significant increase in cell size and lipid content in activated T cells [46]. 

However, we observed a high variance in cell size within and across patients, which makes it 

a less important predictor than NAD(P)H lifetime values that change with activation and 

have lower variance (Fig. S10).

Walsh et al. Page 10

Nat Biomed Eng. Author manuscript; available in PMC 2021 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CD3+CD4+ T cells have a variety of immune-modulating behaviours. While not necessary 

for activation of CD3+CD8+ T cells, the presence of CD3+CD4+ T cells during activation is 

required for the development of memory CD3+CD8+ T cells [47]. Additionally, TREGS 

(CD3+CD4+FoxP3+ T cells, 5–10% of peripheral CD3+CD4+ population) suppress the 

activation and proliferation of other T cells [48, 49]. Differences in the NAD(P)H and FAD 

autofluorescence imaging endpoints (Fig. 4, S16) between CD3+CD8+ T cells cultured with 

and without CD3+CD4+ T cells were observed, suggesting autofluorescence imaging is 

sensitive to CD3+CD4+ induced changes in CD3+CD8+ T cells (Fig. 4). However, despite 

these differences, NAD(P)H α1 remains the highest weighted feature for classification of 

activation state (Fig. S17), and activation state of CD3+CD8+ T cells can be classified from 

autofluorescence imaging endpoints with high accuracy, regardless of T cell population (Fig. 

4D).

Due to the differing physiological functions of CD3+CD4+ and CD3+CD8+ T cells [1, 50], 

we explored whether machine learning methods could use autofluorescence imaging data to 

distinguish between CD3+CD8+ and CD3+CD4+ T cells within bulk CD3+ populations. 

Significant differences in NAD(P)H fluorescence lifetime values between CD3+CD4+ and 

CD3+CD8+ T cells suggests variations in metabolic activity upon activation of CD3+CD4+ 

and CD3+CD8+ T cells, which is consistent with previously observed differences in T cell 

activation of these subtypes. Activation of CD3+CD4+ T cells occurs through Myc, estrogen-

related receptor alpha (ERRα), and mTOR, while CD3+CD8+ T cells activate through Akt 

and mTOR [51]. High classification accuracy was achieved through random forest 

classification of T cell autofluorescence endpoints for all four groups: activated CD3+CD4+ 

T cells, quiescent CD3+CD4+ T cells, activated CD3+CD8+ T cells, and quiescent 

CD3+CD8+ T cells (Fig. 4H). Additionally, the differences in the metabolic pathways used 

by activated CD3+CD4+ and CD3+CD8+ T cells may contribute to the different 

autofluorescence feature weights observed for CD3+ and CD3+CD8+ T cells (Fig. 2C). 

Memory T cells and TREGS, populations likely within the CD3+ isolation, use more 

oxidative metabolism and less glycolytic metabolism as compared with activated 

CD3+CD8+ T cells [51]. This heterogeneity in metabolic pathway utilization by cells within 

the CD3+ population may contribute to the differences in optical endpoints observed 

between the CD3+ and CD3+CD8+ populations, increased intra-donor variability in CD3+ 

populations, and reduced differences in optical endpoints between quiescent and activated 

cells in the CD3+ isolation, as compared to CD3+CD8+ isolation.

Autofluorescence lifetime imaging has spatial and temporal resolution advantages over 

traditional assays to survey T cell activation and function. Autofluorescence imaging can be 

high resolution to allow measurements at the single cell level, allowing insights into 

metabolic heterogeneity within T cell populations. Additionally, the high spatial resolution 

and non-destructive nature of autofluorescence imaging maintains the spatial integrity of 

immune cells, allowing high fidelity measurements on neighbouring cells as demonstrated in 

the combined population of quiescent and activated T cells (Fig. 5A). Finally, 

autofluorescence imaging also has high temporal resolution (Fig. 5F) allowing time-course 

study of T cell activation.
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Altogether, autofluorescence lifetime imaging of NAD(P)H and FAD of T cells, combined 

with machine learning for classification, is an accurate tool for non-destructive, label-free 

assessment of activation status of T cells. NAD(P)H and FAD autofluorescence lifetime 

imaging is provides high spatial, temporal, and functional information of cell metabolism, 

which makes it an attractive tool to evaluate T cells. Autofluorescence lifetime imaging can 

be used to characterize T cells in vivo in preclinical models, in clinical applications 

including small blood samples (e.g., paediatric samples) where antibody labelling is limited, 

or in cultured T cells such as those used in biomanufactured T cell therapies.

Methods

T cell isolation and culture

This study was approved by the Institutional Review Board of the University of Wisconsin-

Madison (#2018–0103), and informed consent was obtained from all donors. Peripheral 

blood was drawn from 6 healthy donors into sterile syringes containing heparin. Two blood 

draws, 183 days apart, were performed on one donor to evaluate the consistency of the 

experimental protocol and imaging endpoints. The data from the second blood draw is only 

included in the figure that directly compares the results from the two blood draws, Fig. S4. 

Bulk CD3+ T cells or an isolated CD3+CD8+ T cell subset were extracted from whole blood 

using negative selection methods (RosetteSep, StemCell Technologies). Blood was 

transferred from the blood draw syringe to a 50 ml centrifuge tube. Following the 

RosetteSep Protocol, the CD3+ or CD8+ RosetteSep Cocktail (StemCell Technologies) was 

added to the blood (50 μl per ml of blood), mixed, and incubated at room temperature for 10 

minutes. The sample volume was doubled with phosphate buffered saline (PBS) + 2% foetal 

bovine serum (FBS). SepMate tubes (StemCell Technologies) were prepared with a 3.5 ml 

bottom layer of a density gradient medium (Lymphoprep, StemCell Technologies) and a top 

layer of diluted blood, according to the RosetteSep instructions. The tubes were centrifuged 

at 1200 g for 10 minutes, brake on. The enriched cell layer within the supernatant was 

poured into a new 50 ml centrifuge tube, and washed with PBS+ 2% FBS with 300 g, 10 

minute centrifugation, 2 times. Enriched cells were cultured in ImmunoCult-XF T cell 

Expansion Medium (StemCell Technologies). Approximately 24 hours post-isolation, the T 

cells were divided into two groups, a “quiescent” population that was grown in medium 

without activating antibodies, and an “activated” population that was cultured in medium 

supplemented with 25 μl/ml tetrameric antibody against CD2/CD3/CD28 (StemCell 

Technologies). Quiescent and activated T cell populations were cultured separately for 48 

hours at 37°C, 5% CO2, and 99% humidity before imaging and subsequent experiments, 

unless otherwise noted. Prior to imaging, T cells were plated at approximately 200,000 

cells/200 μl media on 35 mm poly-d-lysine coated glass bottom dishes (MatTek). To ensure 

that autofluorescence imaging and the classification models extend for mixed populations of 

quiescent and activated T cells, a subset of quiescent and activated T cells from 1 donor 

(48hr of culture with activating antibody) were combined and plated together in a dish 1 

hour before imaging.
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Autofluorescence imaging of NAD(P)H and FAD

Fluorescence images were acquired using an Ultima (Bruker Fluorescence Microscopy) two-

photon microscope coupled to an inverted microscope body (TiE, Nikon) with an Insight DS

+ (Spectra Physics) as the excitation source. A 100X objective (Nikon Plan Apo Lambda, 

numerical aperture (NA) 1.45), lending an approximate field of view of 110 μm, was used in 

all experiments with the laser tuned to 750 nm for NAD(P)H two-photon excitation and 890 

nm for FAD two-photon excitation. NAD(P)H and FAD images were acquired sequentially 

through 440/80 nm and 550/100 nm bandpass filters (Chroma), respectively, by Gallium 

arsenide phosphide (GaAsP) photomultiplier tubes (PMTs; H7422, Hamamatsu). The laser 

power at the sample was 3.0–3.2 mW for NAD(P)H and 4.1–4.3 mW for FAD. Lifetime 

imaging was performed within Prairie View (Bruker Fluorescence Microscopy) using time-

correlated single photon counting electronics (SPC-150, Becker & Hickl, Berlin, Germany). 

Fluorescence lifetime decays with 256 time bins were acquired across 256×256 pixel images 

with a pixel dwell time of 4.6 μs and an integration time of 60 s. Photon count rates were ˜1–

5×105 and monitored during image acquisition to ensure that no photobleaching occurred. 

The short lifetime of red blood cell fluorescence at 890 nm was used as the instrument 

response function and had a full width at half maximum of 240 ps. A YG fluorescent bead 

(τ = 2.13 +/− 0.03 ns, n=6) was imaged daily as a fluorescence lifetime standard [14, 18, 

52]. Four to six images per group were acquired.

Antibody validation

Antibodies against CD4 (clone OKT4, PerCP-conjugated, Biolegend Item #317431, Lot 

B198303), CD8 (clone SK1, PerCP-conjugated, Biolegend Item #344707, Lot B204988), 

CD69 (clone FN50, PerCP-conjugated, Biolegend Item #310927, Lot B180058), CD45RA 

(clone HI100, Alexa 647-conjugated, Biolegend Item #304153, Lot B220325), and CD45RO 

(clone UCHL1, PerCP-conjugated, Biolegend Item #304251, Lot B219295) were used for 

validation of cell type and activation. CD4, CD8, and CD69 antibody labelling was 

performed on T cells for 3 donors (B, E, and F) in parallel imaging dishes, each with a 

different immunofluorescence antibody. CD45RA and CD45RO antibody labelling was 

performed on populations of quiescent CD3+CD8+ T cells for 3 donors. Cells (30,000–

200,000 per condition) were stained with 5 μl antibody/106 cells in 50 μl of ImmunoCult-XF 

T cell Expansion Medium for 30 minutes in the dark at room temperature. Cells were 

washed with ImmunoCult 1–2 times, resuspended in 50–200 μl of media, and added to the 

centre of a 35 mm poly-d-lysine coated glass bottom dish (MatTek). Cells were kept in a 

37°C, 5% CO2, humidified environment until imaging. All cells were imaged within 3 hours 

of staining. NAD(P)H and FAD fluorescence lifetime images were acquired as described. To 

identify PerCP positive cells, an additional fluorescence intensity image was acquired with 

the laser was tuned to 1040 nm and a 690/45 nm bandpass filter before the PMT. For 

evaluation of Alexa647 fluorescence, the laser was tuned to 1300 nm for excitation, and a 

690/45 nm bandpass filter was used to filter emitted light.

Data analysis

Fluorescence lifetime decays were analysed to extract fluorescence lifetime components 

(SPCImage, Becker & Hickl). A bin of 9 surrounding pixels (3×3) was used to increase the 
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fluorescence counts in each decay. A threshold was used to exclude pixels with low 

fluorescence signal (i.e. background). Fluorescence lifetime decays were deconvolved from 

the instrument response function and fit to a 2 component exponential decay model, 

I t = α1e−t/τ1 + α2e−t/τ2 + C, where I(t) is the fluorescence intensity as a function of time, t, 

after the laser pulse, α1 and α2 are the fractional contributions of the short and long lifetime 

components, respectively (i.e., α1 + α2 = 1), τ1 and τ2 are the short and long lifetime 

components, respectively, and C accounts for background light. Both NAD(P)H and FAD 

can exist in quenched (short lifetime) and unquenched (long lifetime) configurations [8, 13]; 

therefore, the fluorescence decays of NAD(P)H and FAD are fit to two components.

Images were analysed at the single cell level to evaluate cellular heterogeneity [53]. 

NAD(P)H intensity images were segmented into cytoplasm and nucleus using edge detect 

and thresholding methods in CellProfiler using a customized image processing routine [54]. 

The CellProfiler routine applied the following steps to segment the images: first, the 

unprocessed NAD(P)H intensity images were rescaled between 0 and 1 by dividing the 

image by the value of the brightest pixel within the image. Next, a Sobel edge detect 

computation was applied across the image. The resulting image was thresholded to remove 

areas of high edge-values (i.e. cell cytoplasms), and inverted to create a mask. This mask 

was multiplied by the rescaled NAD(P)H intensity image leaving background and nuclear 

(low intensity) pixels. Primary objects (nuclei) were identified from this image using 

CellProfiler’s default object identification and a manually set threshold (0.04) to remove the 

non-cellular background. Secondary objects (cells) were then identified by outward 

propagation of the primary objects. Cytoplasm masks were determined by subtracting the 

nucleus mask from the cell mask.

Images of the optical redox ratio (fluorescence intensity of NAD(P)H divided by the 

summed intensity of NAD(P)H and FAD) and mean fluorescence lifetimes (τm =α1τ1 + 

α2τ2) of NAD(P)H and FAD were computed (MATLAB). NAD(P)H and FAD 

autofluorescence imaging endpoints, including the optical redox ratio, NAD(P)H τm, 

NAD(P)H τ1, NAD(P)H τ2, NAD(P)H α1, FAD τm, FAD τ1, FAD τ2, and FAD α1 were 

averaged across all pixels within a cell cytoplasm for each segmented cell, thus the 

fluorescence endpoints are independent of cell size. Unless otherwise stated, presented 

results are for endpoints averaged across all cytoplasm pixels for each cell. Cell size in μm2 

was also computed from the segmented images using the number of pixels within the two-

dimensional image of the cell * 0.167 μm2 (which is the pixel dimension).

Statistics

Statistical analysis and data representation were performed in R. For each donor, one dish of 

cells was prepared for each experimental condition. Four to six fields of view separated by at 

least 250 μm were acquired from each dish. Each field of view contained 25–400 cells with a 

mean of 143 cells. Each cell was considered an independent sample because the perturbation 

(“activation”) occurred at the cellular level. For statistical comparisons at the cellular level, a 

generalized linear, logistic regression model was used to evaluate significant differences of 

autofluorescence imaging endpoints between quiescent and activated T cells, CD45RA+ and 

CD45RO+ cells (Fig. 3), and CD3+CD4+ and CD3+CD8+ T cells. A donor interaction term 
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was included in the model to account for donor; the general equation used was Outcome˜ 

Imaging Variable*Donor. P values were computed for two-tailed tests, and an alpha 

significance level of 0.05 was used to indicate significance. Cellular data was also 

aggregated to the donor level, and a two-tailed, simple paired t-test was performed to assess 

donor-level significance (α = 0.05) for all comparisons with three or more donors. Presented 

boxplots are constructed from the median (central line) and first and third quartiles (lower 

and upper hinges, respectively). The whiskers extend to the farthest data points that are no 

further than 1.5* the interquartile range. Dots represent data points beyond 1.5* the 

interquartile range from the hinge.

Classification

Uniform Manifold Approximate and Projection (UMAP), a dimension reduction technique 

[29], and z-score heatmaps were used to visualize clustering within autofluorescence 

imaging data sets (Python and R, respectively). Machine learning classification models and 

training/testing data sets are summarized in Table S1. Random forest, logistic regression, 

and support vector machine classification methods were trained to classify activated and 

quiescent T cells within either the bulk CD3+ FLIM data or the isolated CD3+CD8+ FLIM 

data (R). For both data sets, gain ratio, χ2, and random forest feature selection methods were 

employed to evaluate the contribution of the NAD(P)H and FAD autofluorescence endpoints 

to the accuracy of classification of quiescent versus activated T cells. These models were 

trained on data from donors A, B, C, and D because these cells lacked immunofluorescence 

CD69 validation but were known to be quiescent or activated by culture conditions (n = 

4131 CD3+ cells, n=2655 CD3+CD8+ cells). Models were tested on data from T cells from 

donors B, E, and F with CD69 immunofluorescence validation of activation state (n = 696 

CD3+ cells, n=595 CD3+CD8+ cells) and the presented ROC curves reflect this test data. 

Random forest models were developed to classify CD3+CD4+ from CD3+CD8+ T cells, and 

cells were randomly assigned to train and test data sets for a range of train/test proportions 

from 12.5% to 87.5%. Each model was replicated 50 times with new train and test data 

generated before each iteration. Logistic regression models were also estimated for the 

classification of T cell activation from imaging endpoints of combined quiescent and 

activated CD3+ T cells (both conditions together within the images). Observations were 

randomly divided into training and testing data sets (90%/10%, respectively), and presented 

ROC curves are the average of 1000 iterations of randomly data randomly selected to 

training and test sets. All ROC curves displayed were constructed from the test data sets 

using the model generated from the training data sets.

Seahorse assay

Quiescent and activated T cells were plated at 5×106 cells/ml on a Seahorse 96-well plate in 

unbuffered RPMI medium without serum. Oxygen consumption rate (OCR) and 

extracellular acidification rate (ECAR) measurements were obtained every 6.5 minutes for 5 

cycles. A generalized linear model was used to determine statistical significance (α = 0.05) 

within OCR and ECAR measurements between control and activated T cells.
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Metabolic inhibitors

Quiescent and activated (48 hr) CD3+ T cells were plated on poly-d-lysine coated 35 mm 

glass bottom dishes at a concentration of 200,000 cells/200 μl ImmunoCult T cell Expansion 

Medium as previously described (T cell Isolation and Culture). The metabolic inhibitors 

antimycin A (1 μM), rotenone (1 μM), 2-deoxy-d-glucose (2DG, 50 mM), Bis-2-(5-

phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES, 20 μM), and 5-

(Tetradecyloxy)-2-furoic acid (TOFA, 50 μg/ml) were added singly, except for antimycin A 

and rotenone which were added together, to the dishes prior to imaging. Cells were 

incubated with antimycin A and rotenone for ten minutes, 2DG for ten minutes, BPTES for 

1 hour, and TOFA for 1 hour. Fluorescence lifetime images of NAD(P)H and FAD were 

acquired for 6 random fields of view as described above. A generalized linear model was 

used to determine autofluorescence imaging endpoints with statistical significance (α = 

0.05) between control and inhibitor-exposed cells.

10-minute activation time course

Quiescent CD3+ T cells were isolated and plated for imaging as previously described. 

NAD(P)H lifetime images were acquired as described but with an image size of 128×128 

pixels and an integration time of 15s. Images were acquired sequentially for 2 minutes (8 

frames), then 5 μl PBS was added to the cells as a mock treatment, and NAD(P)H 

fluorescence lifetime images were acquired for 10 minutes (40 frames). Subsequently, 5 μl 

of activating tetrameric antibody (anti-CD2/CD3/CD28) was added and NAD(P)H 

fluorescence lifetime images were acquired for 10 minutes (40 frames). NAD(P)H FLIM 

images were analysed in SPCImage as described. Individual cells and cell compartments 

(nucleus, cytoplasm) were manually segmented (author I.J.), and the autofluorescence 

imaging endpoints were averaged across all pixels within the segmented region (ImageJ). 

This procedure was repeated for 3 dishes of T cells from 3 different donors for a total of 30–

34 analysed cells per donor.

24-hour activation time course

Quiescent CD3+ T cells were isolated from a healthy donor and plated for imaging as 

previously described with 200,000 cells/200 μl ImmunoCult T cell Expansion Medium on 

glass bottom petri dishes. NAD(P)H and FAD lifetime images were acquired as described 

with an image size of 256×256 pixels and an integration time of 60 s. Four to five images 

were acquired from both control (5 μl PBS added to the 200 μl of cells) and activated (5 μl 

anti-CD2/CD3/CD28 antibody added to the 200 μl of cells) dishes of T cells at 0.5, 1, 2, 3, 

6, 12, and 24 h post-antibody exposure. Optical redox ratio images were computed as 

described. Cell cytoplasms were segmented as described. The optical redox ratio of the cells 

in the activated condition was computed as normalized to the mean redox ratio of the cells in 

the parallel control dish within each time point. This procedure was repeated for T cells 

from 3 different donors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. NAD(P)H and FAD autofluorescence imaging reveals metabolic differences between 
quiescent and activated T cells.
(a) Representative optical redox ratio, NAD(P)H τm, and FAD τm images (4 images selected 

out of 202 images acquired from 6 different donors with similar results) of quiescent 

(columns 1, 3) and activated (columns 2, 4) CD3+ (rows 1–3) and CD3+CD8+ (row 4–6) T 

cells from two different donors. Scale bar is 20 μm. Cell size (b), optical redox ratio (c), 

NAD(P)H τm (d), FAD τm (e), NAD(P)H α1 (f), and FAD α1 (g) of quiescent and activated 

CD3+ and CD3+CD8+ T cells. Black circles represent mean of all data (6 donors), triangles 

(donors A [dark red], B [medium red], and F [light red]) represent data from female donors, 

squares (donors C [dark blue], D [medium blue], and E [light blue]) represent data from 

male donors. Each colour shade represents data from an individual donor. Data are mean +/− 

99% CI. Horizontal lines indicate statistical comparisons, Stars (*** p<0.001) indicate 

statistical comparisons at the cellular level (n=4,877 biologically independent CD3+ T cells 

from 6 donors and n=3,478 biologically independent CD3+CD8+ T cells from 6 donors) 

from a two-sided logistic regression, generalized linear model using an α significance level 

of 0.05. Carets (B: ˆˆ p=0.001, ˆ=0.016; C: ˆ p=0.011, ˆˆ p=0.002; D: ˆ p=0.015, ˆˆ p=0.002; 

E: ˆ p=0.022; F: ˆˆ p=0.008, ˆˆˆ p<0.001; G: ˆˆ p=0.002, ˆ p=0.021) indicate significance at 

the donor level, n=6 biologically independent donors. Aggregated cellular data was 

compared using a double-sided paired t-test. (h-j) Cellular respiration increases in activated 

T cells. The oxygen consumption rate (OCR; panel H) and extracellular acidification rate 

(ECAR, panel I) are increased in activated bulk CD3+ and isolated CD3+CD8+ T cells. The 

ratio of OCR to ECAR (J) is significantly decreased in activated bulk CD3+ and isolated 
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CD3+CD8+ T cells as compared with that of quiescent T cells. *** p<1*10−5, horizontal 

lines indicate statistical comparisons, double-sided, Student’s t-test, n=6 wells/group 

CD3+CD8+ isolation, n=12 wells/group CD3+ isolation (1 donor). Mean +/− 95% CI. Error 

bars smaller than the symbol for the mean are not shown.
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Fig 2 |. Autofluorescence imaging endpoints allow classification of quiescent and activated T 
cells.
(A-B) UMAP data reduction technique allows visual representation of the separation 

between quiescent (“Q”) and activated (“Act”) bulk CD3+ (A) and isolated CD3+CD8+ (B) 

T cells. Each colour corresponds to a different donor, greys correspond to quiescent cells and 

green or purple to activated CD3+ or CD3+CD8+ T cells, respectively. Data are from 6 

donors. Each dot represents a single cell, n=4,877 CD3+ T cells and n=3,478 CD3+CD8+ T 

cells. (C) Feature weights for classification of quiescent versus activated T cells by the gain 

ratio method. Analysis was performed at the cellular level with data from 6 donors. (D) ROC 

curves of the test data for logistic regression models for classification of activation state 

within bulk CD3+ T cells, bulk CD3+ T cells normalized within each donor (CD3+ Norm), 

isolated CD3+CD8+ T cells, and isolated CD3+CD8+ T cells normalized within each donor 

(CD3+CD8+ Norm). (E-F) ROC curves of the test data for logistic regression classification 

models computed using different features for the classification of (E) quiescent or activated 

bulk CD3+ or (F) isolated CD3+CD8+ T cells. Models for subfigures D-F were trained on 

cells that lacked same cell validation data from donors A, B, C, and D but were known to be 

quiescent or activated by culture conditions (n = 4,131 biologically independent CD3+ cells, 

n=2,655 biological independent CD3+CD8+ cells), and cells from donors B, E, and F with 

CD69 validation of activation state were used to test the models (n = 696 biologically 

independent CD3+ cells, n=595 biologically independent CD3+CD8+ cells). Redox Ratio = 

NAD(P)H/(NAD(P)H+FAD).
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Fig 3 |. Autofluorescence imaging reveals inter- and intra-donor T cell heterogeneity.
(A) Heatmap of z-scores of NAD(P)H and FAD autofluorescence imaging endpoints where 

each row is the mean data aggregating all cells from a single donor, subtype (CD3+ or 

CD3+CD8+), and activation, n=6 biologically independent donors. Data clusters by 

activation state and isolation (bulk CD3+ or isolated CD3+CD8+). (B) Heatmap of z-scores 

of NAD(P)H and FAD autofluorescence imaging endpoints of CD3+CD8+ T cells from a 

single donor, each row is a single cell (n=635 cells). Distinct clusters are identified within 

the quiescent and activated CD3+CD8+ T cells. (C) Histogram analysis of NAD(P)H τm 

reveals two populations in quiescent CD3+CD8+ T cells across all 6 donors (n=2126 

quiescent cells, 1352 activated cells, - Act = quiescent cells, + Act = cells exposed to anti-

CD3/CD2/CD28 for 48hr). (D) NAD(P)H τm is decreased in CD45RO+ CD3+CD8+ T cells 

compared to NAD(P)H τm of CD45RA+ CD3+CD8+ T cells (CD45RA+ n=265 cells, 

CD45RO+ n=33 cells from 3 donors, *** p=0.00058, two-sided logistic regression, 

generalized linear model. p>0.05 for data aggregated to the donor level, two-sided paired t-

test.) Mean +/− 95% confidence interval. Redox Ratio = NAD(P)H/(NAD(P)H+FAD).
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Fig 4 |. T cell population composition affects T cell autofluorescence.
(A) UMAP of NAD(P)H and FAD autofluorescence endpoints of quiescent and activated 

(“Act”) CD3+CD8+ T cells identified within bulk CD3+ and specific CD3+CD8+ isolations, 

n=477 biologically independent cells from 3 donors. (B) Optical redox ratio and (C) 

NAD(P)H α1 of CD3+CD8+ T cells cultured as an isolated population (CD3+CD8+ specific 

isolation, n=39 quiescent cells, n=174 activated cells, from 3 donors) and with CD3+CD4+ T 

cells (bulk CD3+ isolation, n=83 quiescent cells, n=170 activated cells, from 3 donors). 

Mean +/− 95% confidence interval. Horizontal lines indicate statistical comparisons, ** 

p=0.002, *** p<0.001 for cell level comparisons using a two sided logistic regression, linear 

generalized model. Donor level p-values provided in Supplementary Tables 2–4. (D) 

Accuracy of random forest classification of quiescent versus activated CD3+CD8+ T cells 

from CD3+CD8+ specific isolation (n=213 cells, 3 donors) and bulk CD3+ isolation (n=253 

cells, 3 donors). Mean +/− 95% confidence interval for 50 iterations. (E) UMAP of 

NAD(P)H and FAD autofluorescence imaging endpoints of quiescent and activated 

CD3+CD4+ and CD3+CD8+ cells identified within bulk CD3+ populations, n=583 

biologically independent cells from 3 donors. (F) NAD(P)H τ2 of quiescent CD3+CD4+ and 

CD3+CD8+ cells (bulk CD3+ isolation, n=66 quiescent CD3+CD4+ T cells, n=83 quiescent 

CD3+CD8+ T cells from 3 donors, * p=0.04, two-sided logistic regression, generalized 

linear model; p>0.05 for two sided paired t-test at the donor level, mean +/− 95% confidence 

interval). (G) NAD(P)H α1 of activated CD3+CD4+ and CD3+CD8+ cells (bulk CD3+ 

isolation, n=264 activated CD3+CD4+ T cells, n=170 activated CD3+CD8+ T cells from 3 

donors, *** p=0.0004, two-sided logistic regression, generalized linear model; p>0.05 for 

two sided paired t-test at the donor level, mean +/− 95% confidence interval. (H) Accuracy 

of random forest classification of CD3+CD4+ and CD3+CD8+ T cells from quiescent (2 

group classification, “CD3+ Q”), activated (2 group classification, “CD3+ Act”), or both 

quiescent and activated T cells (4 group classification, “CD3+ All”) within bulk CD3+ 

isolations, total observations include 66 quiescent CD3+CD4+ T cells, 83 quiescent 

CD3+CD8+ T cells, 264 activated CD3+CD4+ T cells, and 170 activated CD3+CD8+ T cells 

from 3 donors. Mean +/− 95% confidence interval for 50 iterations.
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Fig 5 |. Autofluorescence imaging allows classification of quiescent and activated T cells within 
combined quiescent and activated T cell populations.
(A) Representative NAD(P)H α1 image of 4 images acquired with similar results of 

combined quiescent (CD69−) and activated (CD69+) T cells with CD69 

immunofluorescence overlaid in pink. Scale bar is 30 μm. CD69 image is shifted to account 

for cell movement between frames. (B) UMAP representation of NAD(P)H and FAD 

imaging endpoints of CD69− and CD69+ CD3+ T cells from a combined population of 

quiescent and activated T cells, n=265 biologically independent cells from 1 donor. (C) 

Optical redox ratio and (D) NAD(P)H α1 of isolated (“Iso.”) and combined quiescent 

(CD69−) and activated (CD69+) CD3+ T cells. Mean +/− 95% confidence interval. 

Horizontal lines indicate statistical comparisons, *** p<1*10−9 for cell level analysis using a 

two sided logistic regression, generalized linear model, n=733 biologically independent 

cells, single donor. (E) ROC curves of logistic regression classification of quiescent and 

activated CD3+ T cells from a combined population of CD69− and CD69+ T cells from a 
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single donor, n=250 biologically independent cells. (F) Percent difference of NAD(P)H α1 

and fluorescence intensity in CD3+ T cell nuclei and cytoplasms over time. Anti-CD2/CD3/

CD28 added at t=0 m. Mean +/− SE of n=94 biologically independent cells from 3 different 

donors.
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