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A B S T R A C T   

Autoimmune diseases (AIDs) generally manifest as chronic immune disorders characterized by significant het-
erogeneity and complex symptoms. The discordant incidence of AIDs between monozygotic twins guided people 
to attach importance to environmental factors. Epigenetics is one of the major ways to be influenced, some of 
them can even occur years before clinical diagnosis. With the advent of high-throughput omics times, the 
mysterious veil of epigenetic modification in AIDs has been gradually unraveled, and some progress has been 
made in utilizing it as indicators of diagnosis and disease activity. For example, the hypomethylated IFI44L 
promoter in diagnosing systematic lupus erythematosus (SLE). More recently, newly identified noncoding RNAs 
(ncRNAs), including long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), are also believed to be 
involved in the etiology of AIDs while the initial factor behind those epigenetic alterations can be diverse from 
metabolism to microbiota. Update and comprehensive insights into epigenetics in AIDs can help us understand 
the pathogenesis and further orchestrate it to benefit patients in the future. Therefore, we reviewed the latest 
epigenetic findings in SLE, rheumatoid arthritis (RA), Type 1 diabetes (T1D), systemic sclerosis (SSc) primarily 
from cellular levels.   

1. Introduction 

Epigenetics is considered a reversible and inheritable modification in 
gene expression while not affecting DNA sequence. Aberrant epigenetics 
is essential in the onset of autoimmune disease (AIDs). Among them, 
positive regulators of gene expression are DNA demethylation and his-
tone acetylation, whereas DNA hypermethylation, microRNAs (miR-
NAs) usually suppress gene expression. The versatile roles of histone 
methylation are decided by its location as well as the level of methyl-
ation. For instance, histone H3 lysine 4 tri-methylation (H3K4me3) ac-
tivates gene transcription, whereas H3K9me3, H3K27me3, H3K29me3 
suppress gene transcription. Moreover, ncRNAs such as miRNAs, 
lncRNAs, and circRNAs function by either interacting between them-
selves [1] or binding to proteins (Fig. 1). Almost all the autoimmune 

susceptible genes, such as transcription factors, inflammatory cytokines, 
can be modified by epigenetics and account for the pathogenesis of AIDs. 
Accordingly, we focused on recent epigenetic findings in SLE, RA, and 
T1D, hoping to bring inspiration in novel diagnostic and therapeutic 
approaches. 

2. Systematic lupus erythematosus 

SLE features overproduction of autoantibodies and complements 
following multiple tissue damage, primarily attributed to dysregulated B 
and T-cell differentiation and loss of tolerance. 
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2.1. Emerging areas of epigenetics 

To date, an increasing number of studies put an emphasis on lncRNAs 
and circRNAs in novel biomarkers for tissue damage in the diagnosis and 
prognosis of SLE. Latest studies have found that the increased expression 
of lncRNA ENST00000604411.1 and ENST00000501122.2 in 
monocyte-derived dendritic cells (moDCs) positively correlate to SLE-
DAI score [2], circRNAs such as hsa_circ_0082688 and hsa_circ_0008675 
in peripheral blood [3], circHLA-C in kidney tissues for lupus nephritis 
(LN) [4]. Mechanically, cell apoptosis seems to be a primary pathway. 
The A > G variation at rs13259960 in the enhancer of SLE-associated 
RNA (SLEAR) decreases its expression in SLE peripheral blood mono-
nuclear cells (PBMCs), resulting in apoptosis of Jurkat cells in vitro as 
SLEAR activate antiapoptotic genes such as BCL2 and XIAP [5]. Higher 
expression of lincRNA-p21 in LN patients and mice was found to upre-
gulate pro-apoptotic PUMA/BAX expression [6]. 

For circRNAs, the current understanding mainly focuses on the role 
of competitive endogenous RNAs (ceRNAs) to miRNAs [1]. Lower ex-
pressions of Hsa_circ_0045272 [7], circIBTK [8], hsa_circ_0012919 [9] 
were found in SLE patients. Hsa_circ_0045272 could be hsa-miR-6127 
sponge to downregulate apoptosis and IL-2 [7], circIBTK could be 
miR-29 b sponge to affect DNA demethylation as well as AKT pathway 
[8], while hsa_circ_0012919 [9] could be miR-125a sponge to increase 
the expression of inflammatory cytokines, RANTES. Interestingly, the 
new role of circRNAs in the onset of SLE was reported recently. 
DsRNA-activated protein kinase (PKR) is a nucleic acid receptor with 
direct antiviral activity. The activation of PKR could contribute to the 
augmented type I IFN pathway. Liu et al. illustrated circRNAs to form 
16–26 bp imperfect RNA duplexes and bind to PKR preferentially to 
inhibit its dsRNA-mediated activation. The decreasing numbers of global 
circRNAs and increased PKR phosphorylation were observed in SLE 
PBMCs [10]. 

Noteworthy, RNA modifications are crucial for the lifecycle of both 
mRNAs and noncoding RNAs. m6A, a modification with the N6 position 
of adenosine methylated, is the commonest mRNA modification of 

eukaryotes. In addition, RNA modification also includes N1-methyl-
adenosine (m1A), N5-methylcytosine (m5C), pseudouridine (Ψ), etc. 
[11] RNA demethylase of m6A, ALKBH5, was found to associate with 
anti-dsDNA, antinucleosome in peripheral blood of SLE patients, 
providing evidence that RNA modification participates in the patho-
genesis of SLE [12]. Moreover, Guo et al. [13] suggested that hyper-
methylated m5C genes relate to the inflammatory signaling while 
hypomethylated m5C genes were involved in mRNA metabolism, 
eukaryotic translation elongation and termination in SLE CD4+ T cells. 

2.2. Epigenetics and immune cells 

In a cohort that recruited discordant SLE monozygotic and dizygotic 
twins, B cells possessed the predominance of hypermethylation in gene 
promoters compared to other cell types [14]. The pre-antibody secreting 
cell termed CD27–CD11c+T-BET+CXCR5– B cell, which expanded in SLE 
and could be augmented by upregulated Toll-like receptor 7 (TLR7) and 
IL-21 stimulation [15], was shown to have increased chromatin acces-
sibility in critical B-cell transcription factors AP-1, EGR and T-BET [16]. 
Of note, TLR7 also proved to regulate B-cell proliferation by increasing 
miR-15 b target CyclinD3 [17]. As for miRNAs in B cells, the phos-
phoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway is the pri-
marily affected signal in plasma cell differentiation and spontaneous 
germinal center (GC) formation in SLE. Accordingly, phosphatase and 
tensin homolog deleted on chromosome 10 (PTEN), a negative regulator 
of PI3K, suppressed by miR-7, miR-21, miR-22 [18], and miR-148a [19], 
play a vital role in the tolerance loss of B-cell. Besides, the activated AKT 
pathway downregulates miR-1246 to increase another critical B-cell 
transcription factor, EBF1 [20]. As one promoter could be targeted by 
multiple miRNAs and vice versa, miR-148a also suppresses the expres-
sion of the autoimmune suppressor GADD45A and the pro-apoptotic 
protein BIM [19]. Therefore, modulation on PI3K/AKT pathway and 
related miRNAs might reduce SLE autoantibodies. In addition, our 
previous study indicated that miR-152–3p is deleterious in SLE B cells as 
it upregulates B-cell activating factor (BAFF) expression [21]. Moreover, 

Fig. 1. The mechanism of epigenetic modification in autoimmune diseases. (A) DNMT and TET regulate gene transcription by mediating the hypermethylation and 
hypomethylation of cytosine in DNA. (B) H3K27 methylation promoted by EZH2 condenses chromatin, thereby inhibiting transcription. HAT and HDAC mediate 
histone acetylation to change the spatial structure of histones and thus regulate transcription. (C) miRNA and RISC form a complex to suppress mRNA transcription 
by binding mRNA 3′UTR. CircRNA acts as a miRNA sponge to influence mRNA transcription together with miRNAs. LncRNA may participate in modification by 
working as miRNA sponges, affecting the stability and transcription of mRNA, regulating the function of proteins, and directly regulating the transcription of DNA. 
(D) METTL3, FTO, ALKBH5 and other enzymes participate in the regulation of N6 position of adenosine methylation, regulating the function of RNA. 
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elevated miR-155 [22,23] and miR-326 [24] were also found to be 
related to the autoactivate B cells. 

In terms of T cells, the epigenetic alteration in SLE patients led to the 
balance breaking of T-cell differentiation and function. The upregulation 
of helper T 17(Th17)/regulatory T (Treg) ratio as well as T follicular 
helper (Tfh) cells have been well defined in various studies. Tfh cells 
produce IL-21 and IL-10 to facilitate memory B cells and plasma cells 
differentiation, while B cell lymphoma 6 (BCL6) is the key transcription 
factor for Tfh cells. Our previous study demonstrated that E4 promoter- 
binding protein 4 (E4BP4) suppresses Bcl6 expression by recruiting the 
histone deacetylase (HDAC)1 and histone methyltransferase, enhancer 
of zeste homolog 2 (EZH2), while E4BP4 phosphorylation site mutants 
were found in SLE patients [25]. Besides, the DNA methylation and 
H3K27me3 levels of BCL6 promoter also can be controlled by 
ubiquitin-like with PHD and RING finger domains 1 (UHRF1), which 
decreased in SLE Tfh cells [26]. Noticeably, interference on BCL6 in-
creases overactive T-cell-related miR-142–3p/5p by inhibiting EZH2 
and HDAC5 recruitment, thereby downregulating other Tfh-cell key 
regulators CD40L, ICOS, and IL-21 [27]. Another important transcrip-
tion factor, STAT3, is important for Th17, Tfh cells, and B cells differ-
entiation while detrimental for Treg cells, as it can be activated 
downstream to IL-6, IL-10, and IL-21 [28–31]. Our studies demonstrated 
that the IL-6/STAT3 axis could enhance Th17 cells differentiation by 
increasing histone H3 acetylation (H3Ac) and decreasing DNA methyl-
ation as well as H3K9me3 of IL-17 A by reducing regulatory factor X 
(RFX1) [29]. The histone modification of IL-17 A and IL-17 F in CD4+ T 
cells also could be induced by TLR2 [32]. Moreover, STAT3 facilitates 
IL-10 expression by recruiting histone acetyltransferase (HAT) p300 to 
the IL-10 promoter and intronic enhancer [30]. MiR-125a was proved to 
decrease in SLE patients [33]. It can serve as a STAT3 inhibitor to sta-
bilize Tregs while decreasing Tfh and Th17 number and function in the 
presence of IL-6. Consequently, MRL/lpr mice injected MiR-125a-loaded 
polymeric nanoparticles show an alleviation of lupus-like symptoms 
[28]. MiRNAs such as miR-7 [34], miR-410 [35], miR-155 [31], let-7f 
[36] also can influence STAT3 expression through direct or indirect 
actions that lead to SLE development. Other miRNAs such as miR-30e-5p 
[37], miR-101–3p [38], miR-200a-3p [39] in SLE patients also involved 
in the mess-up of Th17 and Treg cell differentiation. 

In addition to cell differentiation, epigenetics also impairs immune 
cell function, including abnormal histone modification and DNA 
methylation on SLE susceptible genes [40] such as, CD11a, CD40L, 
CD70, perforin, etc. Since T cell adhesion, migration, and extravasation 
can also be mediated by EZH2, blockade of EZH2 might have therapeutic 
prospects for SLE patients [41]. 

2.3. Epigenetics and type I IFN pathway 

Dysregulated Type I IFN pathway results in susceptibility to virus 
infection, cancer, and immunologic disorders. Type I IFN including IFN 
α/β, which were produced mainly by innate immune cells as long as 
their pattern-recognition receptors (PRRs) recognized different stimuli 
damage-associated molecular patterns (DAMPs) [42]. Increased IFN and 
IFN induced gene signature in the PBMCs and sera of patients correlated 
with SLEDAI and SLE patients of Asian and Hispanic ethnicity [42–44]. 
In terms of SLE, overproduction of apoptotic cells, endogenous 
self-nucleic acids, nucleic acid antibodies and immune complexes (ICs) 
could be deleterious stimuli sensed by sentinel receptors like TLR7, 
TLR9, retinoic acid-inducible gene I (RIG-I) and cyclic GMP-AMP syn-
thase (cGAS) [42]. Valentina et al. [45] reported that IFN induction 
motif (IIM) containing microRNA miR574, let-7b, and miR21 in exo-
somes of SLE patient’s plasma could be a novel self-ligand of TLR7 for 
plasmacytoid DCs (pDCs) activation. The signaling cascade of IFN 
downstream janus kinase/signal transducers and activators of tran-
scription (JAK/STAT) pathway finally led to the upregulation of a series 
of interferon stimulated genes (ISGs) like ISG15, MX dynamin-like 
GTPase 1 (MX1), IFN induced protein 44-like (IFI44L) and polymerase 

family member 9 (PARP9), etc. Our previous studies found that the 
methylation level of two CG pairs within IFI44L promoter was signifi-
cantly decreased in SLE patients compared with healthy controls using 
Infinium Human Methylation 450 BeadChip arrays [46]. Next, we 
further established a simple and high-efficient method based on 
high-resolution melting-quantitative polymerase chain reaction 
(HRM-qPCR) to semi-quantitative analyze the methylation of IFI44L 
promoter for the diagnosis of SLE with relative high sensitivity and 
specificity [47]. IFI44L can be used not only to distinguish SLE from 
infectious diseases, inflammatory diseases, virus-associated cancers, but 
also to distinguish SLE from cutaneous lupus erythematosus such as 
discoid lupus erythematosus [48]. 

Abnormal expression of miR-146a was also found in SLE patients. 
Interestingly, it seems that miR-146a and type I IFN influence each 
other. On one hand, type I IFN reduces DICER1, an enzyme critical for 
miRNA maturation, to reduce miR-146a expression by upregulating 
MCPIP-1 [49]. On the other hand, increasing miR-146a expression by 
CRISPR activation of its functional enhancer, rs2431697 region, in the 
PBMCs from patients with SLE lower the level of ISGs such as IFI27, 
IFIT3, OAS1, and LY6E [50]. 

More recently, some lncRNAs have been shown to accelerate SLE 
symptoms through the IFN pathway. For example, the possible mecha-
nism behind reduced LncRNA MALAT1 in PBMCs of SLE patients is that 
MALAT1 inhibited IFN key downstream factor IRF3 [51], while lncRNA 
NEAT1 in granulocyte (G)- myeloid-derived suppressor cells (MDSCs) 
from MRL/lpr mice could stimulate type I IFN signaling in B cells 
through BAFF secretion [52]. Positive regulators of this pathway also 
include LncRNA RP11-2B6.2 and linc00513 [53,54]. 

3. Rheumatoid arthritis 

RA is a classic chromic autoimmune disease featured by damage of 
synovial membrane and degeneration of cartilage [55]. Numerous 
studies have suggested that epigenetics has good potential in diag-
nosing, treating, and prognosis on RA [56–58]. 

3.1. Emerging areas of epigenetics 

LncRNA H19 promotes polarization of M1 macrophage by increasing 
KDM6A expression to increase RA activity [59]. It upregulates tumor 
necrosis factor (TNF)-α expression to aggravate the inflammatory 
response by activating the TGF-β-activated kinase 1 (TAK1) pathway 
[60]. LncRNA NEAT1 in exosomes derived by PBMCs promotes the 
incidence of RA by regulating miR-23a expression [61]. Meanwhile, 
lncRNA MEG3, MALAT1, and NEAT1 in peripheral PBMCs can be uti-
lized to predict the clinical phenotype of RA [62]. However, some 
lncRNAs may relieve RA symptoms. For example, LncRNA GAS5 was 
downregulated in PBMC from RA, inhibiting IL-6 and IL-17 expression 
[63]. LncRNA 00197 regulated miR-150 to inactivate the TLR4/NF-κB 
pathway and reduce the activity of RA [64]. 

Studies also show circRNAs (0003353, 0005732, 0072428, 0091685, 
0001200, 0001566, 0003972, 0008360) in PBMCs from RA patients 
have significant differences in expression compared with HCs, and 
circRNA_0003353 was supposed to be related to inflammation of RA, 
having the potential to be a diagnostic or prognostic biomarker [65,66]. 
Overexpression of circRNA_09505 in macrophages can work as a sponge 
for miR-6089, participating in the pathogenesis of RA and inducing in-
flammatory factors including IL-6 as well as TNF-α [67]. 

Furthermore, the peripheral blood global m6A was upregulated in RA 
compared with healthy controls (HCs), accompanied by a low expres-
sion of FTO, which is crucial to m6A modification [68]. Besides, m6A 
RNA Methyltransferase, METTL3, was proved to be upregulated in RA, 
which is positively related to C-reactive protein and erythrocyte sedi-
mentation rate. METTL3 may relieve inflammation induced by lipo-
polysaccharide in macrophages through the NF-κB pathway [69]. All of 
this suggested that m6A related enzymes can be used as biomarkers for 
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diagnosing RA. 

3.2. Epigenetics and immune cells 

Immune cells, especially CD4+ T cells, are crucial to the onset of RA. 
High-throughput sequencing of RA and HC CD4+ T cells showed that 
differential methylated regions were mainly located in the T cell regu-
latory regions and regulated 548 differentially expressed genes [70]. 
Notably, the methylation level of CD4+T cells was significantly different 
between newly diagnosed active RA and alleviated RA after metho-
trexate treatment, further proving the role of methylation of CD4+T cells 
in the pathogenesis of RA [71]. The Th17/Treg ratio disruption directly 
led to the development of RA [72]. In a study of early active RA, 
abnormal methylation of crucial transcription factors of Treg and Th17 
was observed [73]. Not only T cells, but B cells also show global hypo-
methylation in early RA, accompanied by a low level of DNMT1, which 
can be reversed after methotrexate treatment [74]. Aberrant DNA 
methylation was summarized in Table 1. 

Abnormal histone acetylation and deacetylation were also crucial in 
the onset of RA [75]. In RA T cells, a low level of histone 

acetyltransferase Tip60, resulting in the insufficient acetylation of 
Foxp3, affect the function of Treg and break the balance of Th17/Treg 
[76]. Reduced EZH2 in CD4+ T cells can also lead to abnormal differ-
entiation of Treg by downregulating Foxp3 transcription [77]. Evidence 
showed HDACs in RA PBMCs were significantly downregulated 
compared with HCs [78]. Besides, the mice that knock out HDAC1 are 
more susceptible to the collagen-induced arthritis (CIA), with a low level 
of IL-17 and IL-6 in serum [79]. It demonstrated that histone modifi-
cation is also a good therapeutic target. Animal experiments proved that 
HDAC6 inhibitor CKD-506 effectively inhibited the inflammatory 
response caused by macrophages and enhanced the function of Treg 
cells, thus alleviating clinical phenotypes [80]. CKD-L, another HDAC6 
inhibitor, can also regulate Treg function by reducing the expression of 
cytotoxic T-lymphocyte associated protein (CTLA)-4 [81]. Aberrant 
histone modifications were summarized in Table 2. 

Noncoding RNA is the most widely used in biomarkers and treatment 
in RA. The differentially expressed miRNAs in PBMCs in RA patients and 
healthy people, especially miR-99 b-5p, could inhibit T cell apoptosis 
and upregulate the inflammatory factors, including IL-6, TNF-α, and 
IFN-γ [82]. In addition, the overexpression of miR-126 in RA patients 

Table 1 
Aberrant DNA methylation in SLE, RA, T1D, SSc.  

Disease Gene Origin Modification Pathway Reference 

SLE Global B cells Hypermethylation – [14,16] 
Global T cells Hypomethylation – [40] 
IFN regulated genes CD4+ T cells, CD8+ T cells monocytes, 

granulocytes, and B cells, PBMCs 
Hypomethylation IFN pathway [14,16,43,44,46, 

148,149] 
PRDM1 B cells Hypomethylation plasma cell differentiation [16] 
BCL6 CD4+ T cells Hypomethylation Tfh differentiation [26] 
IL-17 A CD4+ T cells Hypomethylation Th17/Treg imbalance [29] 
F11R CD4+ T cells Hypomethylation T cell adhesion, migration, and 

extravasation 
[41] 

CD70, CD11a, CD40L and 
perforin 

CD4+ T cells Hypomethylation T cell activation [40,150,151] 

HLA-DRB1 CD8+ T cells hypomethylation IFN, antigen presentation [149] 
RA Foxp3 PBMCs hypermethylation Th17/Treg imbalance [73] 

Global DNA B cells hypomethylation – [74] 
Global DNA RASFs hypomethylation – [94] 
TBX5 RASFs hypomethylation inflmmation [96] 

T1D INS Whole blood, serum, β cells hypomethylation β cell death [120] 
GCK whole blood hypomethylation β cell death [121] 
CHTOP Serum, β cells hypomethylation β cell death [122] 
ITGB3BP, AFF3, CTSH, 
PTPN2, CTLA4 

whole blood SNP-CpGs 
dependent 

Predicting T1D [152] 

SSc CD11a CD4+ T cells hypomethylation T cell activation [137] 
Foxp3 CD4+ T cells hypermethylation Th17/Treg imbalance [138] 
PARP-1 fibroblasts hypermethylated TGFβ signaling [143]  

Table 2 
Aberrant histone modification in SLE, RA, T1D, SSc.  

Disease Gene Origin Histone modification (±) Pathway Reference 

SLE BCL6 CD4+ T cells H3Ac+, H3K27me3- Tfh differentiation [25,26] 
IL-17 A CD4+ T cells H3Ac+,H4Ac+, H3K4me3+

H3K9me3- 
Th17/Treg imbalance [29,32] 

IL-17 F CD4+ T cells H4Ac+, H3K9me3- TLR2 pathway, Th17/Treg imbalance [32] 
TNFAIP3 CD4+ T cells H3K4me3- T cell activation [153] 
IL-10 T cells H3K18ac+ IL-10 contributes to the differentiation, activation and survival of B 

cells 
[30] 

– CD4+ T cells H3K27me3+ – [41] 
AICDA B cells H3K9Ac/K14Ac+ CSR, SHM [154] 

RA Foxp3 T cells Tip60 -, EZH2 - Th17/Treg imbalance [76,77] 
– RASFs HDAC1+ – [97] 
TBX5 RASFs H3K4me3, H3Ac  [96] 

T1D HLA-DRB1, HLA- 
DQB1 

monocytes H3K9Ac antigen presentation [117] 

S100A9, S100A12 macrophages H3Ac, H3K4me1, H3K4me3 inflammation [118] 
SSc – fibroblasts H3K27me3+ Notch pathway [141, 

155] 

+, Increased; –, Decreased. 
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Table 3 
Aberrant ncRNAs in SLE, RA, T1D, SSc.  

Disease Modification (ncRNAs+/− ) Origin Target Pathway Reference 

SLE Hsa_circ_0045272 - T cells hsa-miR-6127 sponge Apoptosis, IL-2 secretion [7] 
circIBTK - PBMCs miR-29 b sponge AKT pathway [8] 
hsa_circ_0012919 - CD4+ T cells miR-125a sponge DNA methylation, T cell activation [9] 
global circRNAs- PBMCs PKR Type I IFN pathway [10] 
hsa_circ_0082688, hsa_circ_0008675+ peripheral blood Predicting LN – [3] 
circHLA-C+ kidney tissues Predicting L.N. – [4] 
hsa_circ_0123190- kidney tissues hsa-miR-483–3p sponge renal fibrosis [156] 
linc0949- PBMCs Predicting SLEDAI and LN – [157] 
GAS5-, lnc7074-, linc0597+, lnc0640+, 
lnc5150+

Plasma Diagonosing SLE – [158] 

lncRNA ENST00000604411.1+, 
ENST00000501122.2+

moDCs Predicting SLEDAI – [2] 

LncRNA SLEAR - PBMCs BCL2, XIAP apoptosis [5] 
linc-p21+ PBMCs, urine cells miR-181a sponge Apoptosis, IL2 secretion [6] 
Lnc MALAT1- PBMCs TDP43 IFN [51] 
Lnc 00513+ Kidney tissue Promotes ISGs IFN [53] 
Lnc NEAT1+ PBMCs – IFN\BAFF [52] 
lnc RP11-2B6.2+ Kidney tissue SOCS1 IFN [54] 
miR-15 b- B cells CCND3 TLR7 pathway, B-cell development [17] 
miR-7, miR-21, miR-22 B cells PTEN PI3K/AKT pathway [18,34] 
miR-148a B cells PTEN, GADD45A, BIM PI3K/AKT pathway, apoptosis [19] 
miR-1246 B cells EBF1 B cell development [20] 
miR-152–3p+ B cells KLF5 BAFF secretion [21] 
miR-155+ B cells, CD4+T cells SHIP-1, CD1d in B cell, SOCS1 in T 

cell 
TLR9 pathway, antigen-presention, IL- 
21 secretion 

[22,23] 

miR-326+ B cells Ets-1 B cell differentiation [24] 
miR-142- CD4+ T cells IL-10, CD84, SAP T cell activation and B cell stimulation [27] 
miR-125a- CD4+ T cells STAT3 Th17/Treg balance [33] 
miR-101-3p- PBMCs HDAC9 Th17/Treg balance [38] 
miR-200a- CD4+T cells, serum, 

urine 
CTBP2 IL-2 secretion [39] 

miR-let-7f- BM-MSCs Il6 Th17/Treg balance [36] 
miR-26a-, miR-101- CD4+ T cells EZH2 – [41] 
miR574+, let-7b+, and miR21+ exosomes in plasma Sensored by TLR7 TLR7 pathway [45] 
miR-146a- PBMCs ISGs IFN pathway, microRNA maturation [49,50] 
miR-130 b- Kidney tissue IRF1 IFN pathway [159] 
miR-30e-5p+ PBMCs IFN negative regulators IFN pathway [160] 
miR-302 d- PBMCs IRF9 IFN pathway [161] 
miR-26a, miR-125a, miR-155, miR-30c, and 
miR-182- 

B cells AICDA, PRDM1 plasma cell differentiation [162] 

miR-21+ CD4+ T cells BDH2 iron metabolism [150] 
hsa-miR-10 b-5p+ T cells SRSF1 estrogen [163] 

RA lnc GAS5- RASFs miR128–3p sponge AKT/mTOR pathway [102] 
miR-126+ CD4+T cell DNMT1 DNA methylation [83] 
miR155+ RASFs MMP3 Inflammation [164] 
miR-21+ RASFs – Inflmmation [101] 
miR34a-5p+ RASFs XBP1 RASF inflammation [103] 
miR140-3p-, miR140-5p- RASFs SIRT-1 for miR140–3p, SDF-1 for 

miR140–5p 
RASF inflmmation and activation [105, 

106] 
miR-17–5p+ RASFs STAT3, JAK1 IL-6/STAT3 pathway [106] 

T1D miR-26a+ activated Tregs EZH2 Th17/Treg imbalance, predicting T1D [110] 
miRNA181a+ CD4+T cells NFAT5 PTEN/PI3K pathway [111] 
miRNA92a+ CD4+T cell KLF2 PTEN/PI3K pathway [112] 
MiR-885-3p- PBMCs TLR4 TLR4/NF-κB pathway [116] 
miR-204+ serum, β cell Predicting T1D β cell death [123] 
miR-101–3p+ Serum Predicting T1D β cell death [124] 
miR-23–27~24 clusters+ Plasma prognosing T1D C-peptide loss [125] 
miR-375+ Plasma prognosing T1D Islet transplantation [126] 
let-7c-5p-, miR-29a-3p-, let-7b-5p+, miR- 
21–5p+

Plasma prognosing T1D Renal function [127] 

miR-150- PBMCs, splenocytes and 
β cells 

PUMA NF-κB pathway [128] 

miR-21+ β cells PDCD4 Apoptosis, NF-κB pathway [129] 
LncRNA SRA+ plasma, PBMCs, β cells miR-146 b sponge IRAK1/LDHA/Lactate Pathway [130] 
Lnc13+ β-Cells Promotes STAT1 Inflammation [165] 

SSc miR-139-5+ pDCs USP24 TLR9 pathway, IFN pathway [140] 
miR-16-5p- fibroblasts NOTCH2 NOTCH signaling [144] 
miR33a-3p+ fibroblasts DKK-1 Wnt pathway [145] 
Lnc RNA 
HOTAIR+

fibroblasts miRNA-34a sponge NOTCH signaling [155] 

+, Increased; –, Decreased. 
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affected CD4+T cell methylation by DNMT1 [83]. However, more 
miRNAs participated in RA by disrupting the balance of Treg/Th17 
through interacting with transcription factors [84]. For DCs, the func-
tion of which can be regulated from the epigenetic level by miR-34a, and 
then the proliferation of Th17 was regulated to promote the incidence of 
RA [85]. Various miRNAs such as miR-146a, miR-155, miR let-7g-5p, 
miR-16, miR-17, miR-21, miR-34a, and miR-498 are all involved in 
regulating the Treg/Th17 axis of RA [86–92]. Aberrant ncRNAs were 
summarized in Table 3. 

3.3. Epigenetics and RA synovial fibroblasts 

The abnormal proliferation of RA synovial fibroblasts (RASFs) is a 
major cause of synovial inflammation and destruction of articular 
cartilage [93]. Epigenetics of RASFs has been further studied, providing 
a strategy for classification, diagnosis, prognosis, and precise treatment 
of RA. First, RASFs are global hypomethylated, which is associated with 
a range of disorders [94]. Hypomethylation of RASFs was accompanied 
by down-regulation of DNMT1 expression [95]. Compared with synovial 
fibroblast of osteoarthritis patients, it is proved that T-box transcription 
factor 5 (TBX5) in RASFs was hypomethylation [96] while HDAC1 in 
RASFs was significantly higher. In addition, animal experiments showed 
that inhibition of HDAC1 significantly alleviated CIA’s joint swelling 
and other symptoms [97]. In addition, EZH2 was upregulated in RASFs, 
causing overexpression of TNF-α and increased disease activity [98]. 

miRNAs in RASF are also involved in the erosive effect of RASFs, 
which can affect multiple pathways, such as JAK/STAT and NF-κB, to 
regulate the inflammatory response. Some miRNAs can upregulate the 
expression of TNF-α and other inflammatory factors, while some miR-
NAs alleviate the inflammatory response of RA. Among them, miR155 
and miR146a have the most related studies [99]. The upregulated 
miRNAs in RASFs included miR155, miR-21, miR128–3p, miR34a-5p, 
and miR574–5p, etc [100–104]. And the down-regulated miRNAs 
include miR140–3p, miR140–5p, miR17 [105–107], etc. 

In addition to direct function in epigenetic regulation, miRNA can 
also indirectly influence the inflammatory response of RA exosomes. 
Some exosomal-derived microRNAs can protect against joint and carti-
lage destruction in RASF. For example, miR-146a in exosomes from 
mesenchymal stem cells (MSCs) can upregulate Foxp3 expression to 
enhance the function of Treg cells, while exosomal microRNA-320a from 
MSCs can suppress activation of RASFs by downregulating CXCL9 [108]. 
MiR-424 in exosomes from RASFs also plays a role in RA pathogenesis by 
affecting T cell differentiation and disrupting the balance of Th17/Treg 
[109]. Exosomal miR-17 can decrease the level of TGFBR II to suppress 
Treg induction, leading to the inflammation of RA [89]. The charac-
teristics of stability and no immune rejection make exosomal miRNA a 
promising diagnostic biomarker and treatment method. 

4. Type 1 diabetes 

In contrast to insulin irresponsiveness in T2D, hyperglycemia in T1D 
patients was primarily caused by the disruption of islet β cells and T 
cells. Autoantibodies, including antibodies to insulin (IAA), glutamic 
acid decarboxylase (GADA) as well as islet antigen-2 (IA-2A), can even 
occur years before clinical T1D diagnosis. Those who are first-degree 
relatives of T1D patients with multiple islet autoantibodies were 
defined as T1D high-risk individuals [110]. 

4.1. Epigenetics and immune cells 

As an AID, T1D is also charactered by T cell dysfunction. Multiple 
research suggested that aberrant miRNAs could affect Treg cells to 
impair T cell tolerance. Compared to HCs, upregulated miR-26a in 
activated Tregs in T1D high-risk groups by decreasing EZH2 [110], 
miRNA181a in CD4+ T cells by regulating PTEN/PI3K/AKT pathway to 
reduce Foxp3 expression [111]. This pathway also involved in the 

increasing CCR7lowPD1highCXCR5+ Tfh precursor cells, which were 
modulated by miRNA92a [112]. Consequently, inhibiting miRNA181a 
and miRNA92a has been proved to ameliorate islet autoimmunity in 
murine and humanized models with antagomir applications [111,112]. 
In the course of T1D, CD8+ T cells recognize C-peptide of preproinsulin 
to kill β cells. It is proved that the endoplasmic reticulum (ER) stress of β 
cells, induced by IFN-γ and IL-1β, could increase the generation of the 
autoantigenic peptide by decreasing miR-17–5p expression [113]. 
Interestingly, at the same time, β cell-specific CD8+ T cell itself has a 
long-lived nature. Combining analysis of whole-genome bisulfite 
sequencing (WGBS) and single-cell ATAC-seq indicated that the epige-
netic programs, especially DNA methylation atlas, of β cell-specific 
CD8+ T cells are similar to stem-cell memory phenotype [114]. More-
over, HDAC was also hijacked in T1D CD4+ T cells to promote CD8+ T 
cells. With nonobese diabetic (NOD) mice models, Hsu et al. proved that 
enhanced IL-21 histone acetylation by HDAC2, induces extrafollicular 
helper T cell population and granzyme B-producing CD8+ T cells further 
[115]. 

In the monocyte-macrophage system, aberrant epigenetic changes 
such as miR-885–3p [116], H3K9Ac status of HLA-DRB1 and HLA-DQB1 
[117], H3Ac, H3K4me1, and H3K4me3 of inflammation regulator 
S100A9 and S100A12 [118], also have been revealed in the onset of 
T1D. 

4.2. Epigenetics and islet β cells 

Epigenetic alteration precedes loss of glucose homeostasis while 
correlates with autoantibodies production and β-cell death [119], indi-
cating its potential in predicting the onset of T1D. The most intensive 
studied susceptible gene of epigenetic modulation in T1D was pre-
proinsulin encoding gene INS [120]. Since β cell has increased unme-
thylated INS CpG sites, the elevation of unmethylated INS DNA in the 
circulation might represent β cell death. In addition, the unmethylated 
glucokinase (GCK) [121], chromatin target of PRMT1 (CHTOP) [122] 
were also proposed for the islet specificity. Increasing miRNAs such as 
miR-204 [123], miR-101–3p [124] also can be detected in the serum of 
high T1D risk subjects. After the onset of T1D, plasma circulating 
miR-23–27~24 clusters were suggested in predicting C-peptide loss 
[125], miR-375 in predicting early graft destruction and graft outcome 
[126], let-7c-5p, let-7b-5p, miR-29a-3p and miR-21–5p in predicting 
rapid progression to end-stage renal disease [127]. 

In the mechanical research of T1D pathogenesis, miR-150 [128], 
miR-21 [129] induced by NF-κB were found to prevent β cell inflam-
mation and apoptosis by targeting p53 upregulated modulator of 
apoptosis (PUMA) and programmed cell death 4 (PDCD4), respectively. 
On the contrary, increasing LncRNA SRAs in T1D patients can cause 
apoptosis of β cells and Treg dysfunction by directly inhibiting miR-146 
b through metabolic reprogramming [130]. In terms of biological 
therapy in T1D, miR-216a mimic nanodrug [131] were shown to pro-
mote β-cell proliferation by decreasing PTEN expression. 

5. Systemtic sclerosis 

SSc is an autoimmune disease of complicated scope. Patients have 
multiple organ damage such as vasculitis, fibrosis, and sclerosis, espe-
cially in skin. At the cellular level, it is usually manifested by abnormal 
function of vascular endothelial cells, fibroblasts, and immune cells. 
Severe disease may progress to death in five years [132]. Some advances 
have been made in the study of SSc epigenetics, mainly focusing on the 
above types of cells [133,134]. 

5.1. Epigenetics and immune cells 

Immune cells, especially CD4+ T cells, play a critical role in the onset 
and development of SSc [135]. Methylation microarray analysis of CD4+

T cells from SSC patients and healthy controls revealed the presence of 
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differentially methylated CpG positions and differentially expressed 
genes that are associated with the inflammatory function of T cells 
[136]. CD11a methylation level regulatory region in CD4+ T cells was 
significant decreased [137]. Similarly, Th17/Treg imbalance also 
participated in the pathogenesis of SSC. Patients with SSc were proved to 
have hypermethylation of the Foxp3 promoter region, affecting the 
differentiation and numbers of Treg, disrupting the balance of 
Th17/Treg and inducing the inflammatory response of SSc [138]. 

In addition, abnormal H3K4me3 and H3K27ac marks were found in 
SSc monocytes [139], upregulated miR-126 and miR-139-5 [140] were 
found in SSc pDCs. Both of them related to IFN pathway, which proves 
that the disruption of IFN is also involved in the pathogenesis of SSc. 

5.2. Epigenetics and fibroblasts 

Fibrosis is a prominent feature of SSc, in which the epigenetic 
regulation of fibroblasts plays an important role. Both EZH2 and H3K27 
were upregulated in fibrolasts of SSc, which lead to the fibrosis and anti- 
angiogenesis. Moreover, EZH2 inhibitors was proved to regulate fibro-
blast activity and have the potential to be therapeutic agents [141]. 

Another methylation modification, methyl cap binding protein-2 
(MeCP2), was crucial to SSc. The high expression of MeCP2 in fibro-
blasts in SSc patients can downregulate the expression of miR132 and 
mediate the occurrence and development of fibrosis by enhancing the 
Wnt pathway [142]. Zhang et al. found that the promoter region of the 
enzyme poly (ADP-ribose) polymerase-1 (PARP-1) was hypermethylated 
in fibroblasts of SSc patients, resulting in decreased expression of 
PARP-1. The low expression of PARP-1 may negatively regulate TGF-β 
signal transduction, thereby promoting the activity of SSc fibroblasts 
[143]. MicroRNAs also exert epigenetic regulation on fibroblasts. Low 
level of miR-16–5p activates fibrosis by positively regulating the NOTCH 
signaling [144]. In addition, miR33a-3p can downregulate level of 
DKK-1, an antagonist of Wnt pathway, and promote the fibrosis [145]. 

6. Conclusion 

This review looks back on the emerging areas and cellular pathways 
of epigenetic modulation involved in AIDs. The strong link between 
dysregulated immune cells and epigenetics enables it as diagnostic and 
prognostic biomarkers and facilitates the therapeutic usage of reprog-
ramming epigenetics both alone and in combination therapies [146]. 
However, to date, the side effect has limited epigenetics targeted drugs 
development in AIDs patients [147], although some DNMT inhibitors 
and HDAC inhibitors have been approved in anti-tumor immunity by the 
United States Food and Drug Administration (FDA) [146]. Thus, to 
obtain better management for AIDs patients and high-risk groups, there 
are broad prospects for exploring the etiological mechanism in-depth 
with advanced technologies. 
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