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Abstract: In this work, aluminium alloy ADC12 reinforced with various amounts of ZrB2 (0 wt.%,
3 wt.%, 6 wt.%, 9 wt.%) were synthesized by an in-situ reaction of molten aluminium with inorganic
salts K2ZrF6 & KBF4. XRD, EDAX, and SEM techniques are used for the characterization of the
fabricated composite. XRD analysis revealed the successful in situ formation of ZrB2 in the composite.
From the SEM images, it was concluded that the distribution of reinforcement was homogeneous in
the composites. A study of mechanical and tribological properties under the dry sliding condition
of ZrB2-reinforced ADC12 alloy has also been carried out. It is seen that there is an increase in
tensile strength by 18.8%, hardness by 64.2%, and an increase in wear resistance of the material after
reinforcement. The ductility of the material decreased considerably with an increase in the amount of
reinforcement. The composite’s impact strength decreased by 27.7% because of the addition of hard
ZrB2 particulates.

Keywords: metal matrix composites; ZrB2; ADC12; wear; mechanical properties

1. Introduction

Various industries have recognized aluminium alloy metal matrix composite (MMC)
as suitable material in various applications due to its property viz., strength, structural
rigidity, dimensional stability, and lightweight. The MMCs provide enhanced properties
over monolithic alloys. These type of materials retain their individual characteristics even
if incorporated into composites and exhibit their advantages [1–3]. Aluminium alloys are
widely used matrix materials for MMCs. The metal matrix composites are expected to
be a replacement of different conventional materials in many commercial and industrial
applications [2,4–7].

The aluminium alloy ADC12 is also widely known as the Japanese industrial standard
alloy. ADC12 is a common die-casting material with good castability, machining character-
istics, conductivity, and minimal die-casting defects [8]. The variation in properties with
the addition of 2–3 wt.% in situ nano ZrB2-reinforced in A356 alloy was carried out by Tao
et al. [9]. Their results showed that the addition influenced the distribution and size of the
ZrB2. Dinaharan et al. [10] studied ZrB2-reinforced AA6061 aluminium alloy composites
and found an increase in ultimate tensile strength (UTS) and hardness with an increase
in ZrB2 content. The effect of micro and nano-size reinforcement of TiB2 on aluminium
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metal composites (AMCs) was studied by Akbari et al. [11]. They employed the stir casting
method for the preparation of composites with different vol.% (0, 0.5, 1.5, 3, and 5) of TiB2.
At elevated temperature, a comparative study of mechanical properties on AA6061/TiB2
and AA7015/TiB2 composites was performed by Oñoro [12]. The results showed that
at room temperature as well as elevated temperature, the AA7015-TiB2 composites have
higher strength than that of AA6061-TiB2. The modulus elasticity of the Al-Si/TiB2 compos-
ite in the temperature range of 25–3500 ◦C was studied by Han et al. [13]. They concluded
that the reinforced alloy has a higher yield and tensile strength compared to unreinforced
alloy at room temperature. Though, in the temperature range of 200–3500 ◦C, no significant
increase in the yield and tensile strength was reported.

There have been few works with reinforcement of ADC12 alloys in literature. Sun
et al. [14] synthesized in situ Al3Ti/ADC12 composite using the reaction system with the
ultrasonic-assisted direct melt method. The results showed that ultrasonic chemistry reac-
tions accelerated the formation of Al3Ti in comparison to the traditional in situ method. The
microstructure of composites with Al3Ti-reinforced particles of 1–2 µm in size was found
well distributed. It was also found that the tensile strength and elongation rate of soni-
cated composites improved in comparison to those without ultrasonication. Kakaravada
et al. [15] studied A356/TiB2/TiC composites synthesized with a K2TiF6-KBF4-graphite
(C) reaction system for different reinforcement ratios. They found that with the increase in
volume fraction of the reinforcement, the hardness increases by 49% at 7.5% reinforcement.
The 7.5% reinforced composite retained the UTS up to 84.4% and the ductility up to 27% at
3000 ◦C.

The practicability of the in-situ formation has been constituted in studies on metal
alloys successfully reinforced in-situ ZrB2 particulates [16–18]. Kumar et al. [16] developed
ZrB2 particles-reinforced aluminium alloy composites by an in-situ reaction of molten
AA5052 alloy with two inorganic salts K2ZrF6 and KBF4 at a temperature of 860 ◦C with
different volume percent (i.e., 0 vol.%, 3 vol.%, 6 vol.%, 9 vol.%, and 10 vol.%) of the
reinforcement. The composites’ density and mechanical properties increase with an increase
in the amount of reinforcement up to 9 vol.%. Zhang et al. [19] produced A356/ZrB2 AMCs
using in situ reaction between K2ZrF6 and KBF4 and observed that the wear rate of the
composites decreased with an increase in ZrB2 particulates reinforcement. In another study,
Kumar et al. [20] investigated AA6351/ZrB2 in situ AMCs in which the reinforcement
was produced by mixing K2ZrF6 and KBF4 in the molten state of base matrix alloy. The
dry sliding wear behaviour was examined by varying the amount of metal reinforcement.
Janudom et al. [21] investigated the feasibility study of die-casting of ADC12 aluminium
alloy in a semi-solid state. The effect of reinforcement with graphene nanoplates (GNPs)
and ultrasonication on microstructure and mechanical properties of ADC12 composites
were examined by Xiong et al. [22]. The optimal value of GNPs reinforcement was found
to be 0.9 wt.%, and optimal ultrasonic time 12 min. The hardness, the tensile strength,
and the yield strength of the composite produced under the optimal condition showed
improvement by 34.8%, 30.5%, and 42.7% compared with base matrix alloy.

Based on the literature reported above, it is fair to say that aluminium alloy ADC12
has a good affinity to adopt ZrB2 as reinforcement material. The combination of ADC12
alloy as a matrix and ZrB2 as reinforcement has not been studied until now. The phase
analysis, mechanical, and wear behaviour of ZrB2-reinforced ADC12 matrix composite can
provide a new dimension in material studies. In this work, halide salts K2ZrF6 (potassium
hexafluoro-zirconate) and KBF4 (potassium tetrafluoroborate) are used for the formation
of ZrB2 (Zirconium diboride). Aluminium alloy ADC12 is then reinforced with various
amounts of ZrB2 (0 wt.%, 3 wt.%, 6 wt.%, 9 wt.%) by in situ reaction of molten aluminium
inorganic salts. Various mechanical, physical, and wear tests, XRD, EDAX, and SEM, were
used to characterize the composite.
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2. Materials and Methods
2.1. Materials

The raw materials used in the present experiment are aluminium alloy ADC12 (die-
cast), halide salts K2ZrF6 and KBF4. ADC12 was procured from M/s Balaji aluminium cast,
Ludhiana). The material was received in the form of bricks. The chemical composition
of the ADC12 alloy measured using the optical emission spectrometer (OES) is shown
in Table 1. Salts K2ZrF6 and KBF4 were procured from M/s Sai scientific and traders,
Roorkee, India.

Table 1. Chemical composition of ADC12 alloy.

Si Zn Cu Fe Mn Mg Ni Al

10.5 2.2 1.5 1.3 0.11 0.09 0.88 Bal

2.2. Fabrication of ADC12/ZrB2 Composites

In the present study, the stir casting method was used for the preparation of the
composite. The procedure has been explained in our previous studies in detail [23]. A pit
furnace was used into which coke was placed and burnt. An A6-sized crucible was used
for a pit furnace and was made up of graphite and clay. K2ZrF6 and KBF4 were added in
molten aluminium alloy ADC12 and mixed for 30 min at 600 rpm. After 30 min, the molten
metal was poured into an iron mould of the square shape, and the composite was cooled in
the open atmosphere.

2.3. Material Characterization

XRD test was performed using X’Pert Pro, measurement range: 5◦ to 140◦, the working
conditions were 45 kV voltage and 40 mA current. SEM was performed using SEM
Model ZEISS EVO 18 (Berlin, Germany). The Vickers hardness test was performed on
Model—SSS-VM 50 with test loads—5–50 Kgf. A diamond indenter in the shape of a
right pyramid with a square base and an angle of 136◦ between opposite faces was used.
ASTM A370 standard [24] was used for preparing the tensile sample in which the size is
10 mm × 10 mm × 55 mm. Tensile test was performed by the HLC591 model, with a load
accuracy of ±0.5% of the measured load from 2% to 100% of the capacity of the machine,
displacement resolution—0.01 mm, displacement accuracy ±0.5% of the measured value of
displacement, extension accuracy ±0.5% of the measured value of extension and maximum
capacity 400 kN. The Charpy test was performed by machine model AIT 300 D, maximum
impact energy 300 J, striking velocity 5.308 m/s, pendulum weight 21.3 kg, drop angle 140◦.
The sliding wear test was performed on a pin on a disc tribometer. ASTM G40 standard [25]
was used for the sample preparation. Test samples were prepared with a spherical tip, and
the length and diameter of samples were 32 mm and 6 mm, respectively. The samples are
tested at different rpm (200, 400, and 600) and different loads (10 N, 20 N, 30 N). For all the
tests, the readings were taken thrice to establish repeatability, and their average is reported
in the next sections.

3. Results and Discussion
3.1. XRD Spectral Patterns of ADC12/ZrB2 Composites

XRD analysis is used to study the structure, composition, and physical properties of
the material. The XRD spectral pattern of ADC12/ZrB2 composites is shown in Figure 1.
The peaks which belong to ZrB2 particulates are visible. The chemical reactions between
the molten aluminium and the inorganic salts K2ZrF6 and KBF4 produces ZrB2 particulates.
From the above XRD results, it is clear that the diffraction peaks of Al3Zr and AlB2 are
absent, which confirms the completion of the in-situ reaction between added inorganic salts.
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Figure 1. XRD of ADC12 with ZrB2 reinforcement.

3.2. Microstructural Study of ADC12/ZrB2 Composites

Scanning electron microscopy (SEM) is used to examine the voids in the materials, the
distribution of reinforcement, and the mode of failure. The dispersion of in situ formed ZrB2
particulates can be seen over the aluminium matrix (Figure 2). The dispersion of reinforced
particles in the alloy is almost homogeneous throughout the composites. However, the
accumulation of particles at some places was also observed. The dispersion of particles
within the matrix depends on many factors such as wettability of the reinforcement, stirrer
speed and time of stirring, shape and size of the reinforcements. The results obtained by
EDAX are presented in Figure 3. It shows the peaks of the different elements with their
weight%. Since it is an aluminium alloy, the alloying constituent and Zr and B constituents
can also be seen in the EDAX results.
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Figure 3. Energy spectrum produced by EDAX analysis for (a) 3 wt.% ZrB2 composites; (b) 6 wt.%
ZrB2 composite; (c) 9 wt.% ZrB2 composite.

3.3. Hardness Test

Figure 4 shows the variation of microhardness in ADC12/ZrB2 composite for dif-
ferent wt.%. It is seen that the presence of ZrB2 particles enhanced the hardness of the
composite compared with pure ADC12. During the solidification, due to different thermal
expansion of ADC12 and ZrB2, strain hardening occurs, increasing the hardness of the
composite. Thus, grain refinement may also be a cause for increment in the hardness of the
ADC12/ZrB2 composite [10,23]. The hardness for pure ADC12 is 55.1 HV, and with 3 wt.%,
6 wt.%, 9 wt.% ZrB2, the hardness is 75.1 HV, 83.1 HV, and 90.5 HV, respectively. Hence,
the microhardness increases by 36%, 50.8%, and 64.2% for 3%, 6%, 9% ZrB2 composite,
respectively, when compared to pure ADC12.
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Figure 4. Microhardness of ADC12/ZrB2 in-situ composite.

3.4. Sliding Wear Test

A sliding wear test was performed on a pin on a disc dry sliding tribometer. The
samples are tested at different rpm (200, 400, and 600) and different load (10 N, 20 N, 30 N).
The wear was measured in terms of worn height (µm). The wear tests were repeated three
times for each type of material composition. The average of three wear was reported at
different velocity and applied normal load. Figure 5 present the worn height of pure alloy
and composite at different wt.% (0, 3, 6, and 9) of reinforcement with different RPM (600,
400, 200) and a constant normal load of 10 N. Similarly, Figures 6 and 7 show the worn
height of pure alloy and composites at 20 N and 30 N, respectively. It has been observed
that as the amount of ZrB2 increases, the wear resistance of the composite also increases
due to high microhardness and the good interfacial bonding between the reinforcement
and the matrix alloy. This is due to the presence of embedded hard ceramic particles in
the soft matrix. A similar observation on wear behaviours was also reported by Kumar
et al. [20,26]. The wear rate is proportional to the normal load and sliding velocity. The
difference in the coefficient of thermal expansion between ADC12 and ZrB2 reinforcement
creates a strain field at the interface due to which ZrB2 particles restrict the expansion of the
ADC12 matrix. This will result in the enhancement of dislocation density. This increment
in dislocation density increases the hardness and wear resistance of the composites. As the
load and speed are increases, friction between pin and disc also increases. This is the only
reason behind the higher rate of material wear [23]. The nature of wear at low load and
low sliding velocity was the combination of abrasion and delamination, whereas adhesion
and softening/melt wear was observed at higher load and high sliding velocity.
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3.5. Tensile Test

The tensile test was performed for determining the ultimate tensile strength (UTS) and
yield strength (YS) of the material. It can be seen that the tensile strength of the material
increased with an increase in the reinforcement of ZrB2 particles, whereas the ductility of
the composite decreased, as seen from the stress-strain plot presented in Figure 8. Several
strengthening mechanisms can be used to discuss the behaviours of the composites under
tensile loading. Dislocation loads around the ZrB2 particles occur in the composites, which
create the dislocation forest. Interaction between two dislocations is repulsive; hence,
the materials’ dislocation will produce back stress for the further dislocation movement.
Therefore, immense stress is required to cross through the dislocation forest. Ultimately
it increases the strength of the material. According to the Hall–Petch relationship, grain
refinement by ZrB2 can also provide additional strength to the material [10]. It is a method
in which strength is provided by reducing average particle size. Whenever there is grain
refinement, by applying the load, dislocation reaches the grain boundary; since atoms on
the other side are oriented slightly, larger stress is required by dislocation to change its
coarseness. This increases the strength of the material [27]. The ultimate tensile strength
of the material increases by 6.8%, 11.4%, and 18.8% for 3%, 6%, and 9% ZrB2 composite,
respectively, as compared to pure ADC12, as shown in Table 2.
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Table 2. Obtained strength for the composite.

Composition Yield Strength (MPa) Ultimate Tensile Strength (MPa)

ADC12 90.54 136.34
3% ZrB2 110.52 145.66
6% ZrB2 121.36 152
9% ZrB2 138 161.98

3.6. Impact Test

The Charpy test was performed for determining the impact strength of the material.
The results obtained from the test are shown in Figure 9. The impact strength values indicate
that impact strength decreases with an increase in ZrB2 concentration compared to the base
alloy ADC12. Distributing hard particles in soft material reduces the material absorption
capability of the material [28]. The more the dispersion of ZrB2 particles, the lesser will
be the impact strength. Whenever there is an impact, the bonding between the particles
and the matrix breaks, due to which new surfaces will appear, and energy will release.
Impact strength of ADC12 is 5.4 J/cm2 and but with addition of 3, 6, 9 wt.% of ZrB2, impact
strength reaches to 4.7 J/cm2, 4.3 J/cm2, 3.9 J/cm2, respectively. The impact strength of the
composite material as compared to pure ADC12 is decreased by 12.9%, 20.3%, and 27.7%
on addition of 3%, 6%, and 9% wt. of ZrB2 reinforcement, respectively. The impact strength
of the composites decreases as the wt.% of the reinforcement increases due to the presence
of hard ceramic particles. Similar observation also reported by previous researchers [29–31].
The de-bonding of ceramic reinforcement and matrix occurs easily during impact testing.
As the amount of reinforcement increased, the porosity also increased, the presence of
porosity may also be the reason behind the decrease in impact strength of the composites.
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4. Conclusions

In this work, the mechanical and tribological properties of ZrB2-reinforced ADC12
with different wt.% were evaluated. The significant conclusions based on the above
study are

• ADC12/ZrB2 MMC having different content (0, 3, 6, and 9 wt.%) of ZrB2 particulate
were fabricated via in situ reaction between melted aluminium and the salts K2ZrF6
and KBF4. The XRD results confirmed the successful formation of ZrB2 particulates;

• The microstructure of the composite showed homogeneous dispersion of ZrB2 parti-
cles. The spectrum produced by the EDAX shows the composite elemental composi-
tion in which the Zr and B constituents are present;

• Microhardness of the MMC increases by 36%, 50.8%, and 64.2% for 3%, 6%, 9% ZrB2
reinforcement, respectively, as compared to pure ADC12;

• The wear test concluded that with an increase in the reinforcement, the wear resistance
of the material increased, and as the load increases wear rate also increases;

• The tensile test shows that the material’s tensile strength increased with the increas-
ing amount of reinforcement with the reduction in ductility. The ultimate tensile
strength of the material increases by 6.8%, 11.4%, and 18.8% for 3%, 6%, and 9% ZrB2
composites, respectively, as compared to pure ADC12;

• As the amount of reinforcement increases, the material’s impact strength decreased
because of the mixing of hard particles in the soft matrix. Impact strength of the
material decreased by 12.9%, 20.3%, and 27.7% for 3%, 6%, 9% ZrB2 reinforcement,
respectively, as compared to pure ADC12.

Thus, it may be stated that the aluminium alloy composites have prospective applica-
tions in automobile industries, such as brakes and engine cylinders. From this research,
it can be concluded that the in-situ reinforcement of ZrB2 in ADC12 can enhance its me-
chanical wear behaviour and also appropriate for applications in the transportation and
defence industries.
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