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ABSTRACT

The integration of genomics, transcriptomics, pro-
teomics and phenotypic traits across genetically di-
verse populations is a powerful approach to discover
novel biological regulators. The increasing volume
of complex data require new and easy-to-use tools
accessible to a variety of scientists for the discov-
ery and visualization of functionally relevant asso-
ciations. To meet this requirement, we developed
CoffeeProt, an open-source tool that analyses ge-
netic variants associated to protein networks, other
omics datatypes and phenotypic traits. CoffeeProt
uses transcriptomics or proteomics data to perform
correlation network analyses and annotates results
with protein-protein interactions, subcellular local-
isations and drug associations. It then integrates
genetic variants associated with gene expression
(eQTLs) or protein abundance (pQTLs) and includes
predictions of the potential consequences of vari-
ants on gene function. Finally, genetic variants are
co-mapped to molecular or phenotypic traits either
provided by the user or retrieved directly from pub-
licly available GWAS results. We demonstrate its util-
ity with the analysis of mouse and human population
data enabling the rapid identification of genetic vari-
ants associated with druggable proteins and clini-
cal traits. We expect that CoffeeProt will serve the
systems genetics and basic science research com-
munities, leading to the discovery of novel biologi-
cally relevant associations. CoffeeProt is available at
www.coffeeprot.com.

GRAPHICAL ABSTRACT

INTRODUCTION

The field of genetics has realized significant progress in the
discovery of phenotype-associated genetic variation in re-
cent years (1). As of February 2021, over 247,000 genetic
associations have been extracted from more than 11,600
genome-wide associations studies (GWAS), summarised in
the GWAS Catalog (2). This success is attributable to tech-
nological advances, access to increasing amounts of ge-
netic and phenotypic data, and the continuous develop-
ment of novel analytical tools. The functional relevance
of phenotype–genotype associations in diverse populations
and environments is a rapidly evolving and challenging area
in deciphering molecular mechanisms of complex health
and disease traits. Systems genetics is an approach in which
intermediate molecular phenotypes are examined in rela-
tion to genetic variation to improve our understanding of
complex traits and common diseases (3). Evidently, the in-
tegration of different biological layers has distinct advan-
tages over the analysis of a single biological layer as the
flow of information can be modelled to identify and prior-
itize core regulators for functional validation (4). Linking
genetic loci to complex traits via association analysis can
be better understood through linking quantitative trait loci
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(QTL) across biological layers. Such examples could include
proteins (pQTL), transcripts (eQTL) and other molecular
traits (e.g. molQTL) (5). However, a significant challenge
of these studies is that the number of associations can be
very large, requiring complex integrations, filtering and data
visualizations to interpret biologically relevant interactions
and discover potential new causal relationships for subse-
quent validation. Collated lists of computational resources
used in the field of systems genetics are available (6), such as
Mergeomics (7), WGCNA (8), MEGENA (9), MOFA (10),
intermediate (11) and ARACNE (12). These tools are used
to identify key drivers in biological pathways, constructing
gene co-expression networks, performing mediation anal-
ysis and inferring relationships between quantitative mea-
sures however, usage of such resources requires knowledge
of computational languages such as Python or R. ProGem
is a recent tool developed by Stacey et al. to identify and
prioritize causal genes at molecular QTLs (13). This power-
ful framework leverages positional and QTL data combined
with pathway analysis to prioritize possible genes under-
lying the biological mechanisms. Additionally, LipidGenie
(14), GeneNetwork (15) and Systems-Genetics.org (Gene-
Bridge & multispecies expression compendia) (16) are re-
sources that enable the browsing of QTLs or phenotype as-
sociations from various genetic cohorts, but do not allow
the analysis of user-generated datasets. Some limitations of
all the tools mentioned above are that they either require ad-
vanced experience in computational analysis, are not avail-
able online or they do not have linked visualization features.
This means they may not be accessible to a broad range
of scientists and the time required to learn these compu-
tational protocols may be prohibitive. Furthermore, many
of these tools are not focused on the inclusion of proteomic
data with key annotations such as protein-protein interac-
tions or subcellular localisation. The inclusion of this data
offers exciting opportunities to further investigate the mech-
anisms of genotype and trait associations. For example, the
integration of pQTLs with protein-protein interaction net-
works has the capacity to define genetic regulation of pro-
tein complexes (11) or the inclusion of subcellular locali-
sation and molQTLs can identify compartmentalized as-
sociations (17). However, the annotation of large volumes
of systems genetic data to identify, visualize and prioritize
functional assessment of key regulators remains a daunting
task.

Here, we present CoffeeProt, an easy-to-use online tool
to enable the integrated analysis of transcriptomics and/or
proteomics data with combined genetic/molecular pheno-
typic associations and functional annotations followed by
higher-order visualizations (Figure 1). CoffeeProt differs
from existing tools by performing co-expression analyses
and annotates findings in the context of protein-protein in-
teractions and subcellular localisations and seamlessly in-
tegrates QTL data with interactive networks and visualiza-
tions all in the one online platform. Importantly, usage of
CoffeeProt requires no bioinformatics or coding experience.
Resources including the GWAS Catalog (2), the Drug Gene
Interaction Database (DGIdb) (18) and Ensembl variant ef-
fect (19) annotations are integrated in the application, al-
lowing for easy access to publicly available datasets and
variant annotations. By allowing users to upload a variety

of data types, combined with the annotation of several exist-
ing resources with novel visualisation in a single workflow,
CoffeeProt significantly reduces the time users would spend
processing and integrating multi-omic data. Ultimately, this
tool greatly enhances the ability to gain biological insights
from systems genetics data. We believe that our interactive
workflow offers advantages in the inspection of biological
associations and the prioritization of candidates, as the con-
clusions drawn from a biological network rely greatly on
its annotations and the level of displayed genetic informa-
tion. Ultimately, CoffeeProt enables the rapid identification
and prioritization of functionally relevant targets for follow
up studies. CoffeeProt is freely accessible through an online
user interface at www.coffeeprot.com, allowing analyses to
be performed without programming knowledge or software
installation.

MATERIALS AND METHODS

Data input & processing

The first step of the CoffeeProt workflow involves the user
to upload input data: (i) transcriptomics or proteomics
data matrix, (ii) eQTL or pQTL data, (iii) and GWAS or
molQTL datasets using the web interface (Figure 1). Ex-
ample input files are available to download from the Cof-
feeProt welcome page. Datasets can be uploaded as comma
separated .csv files, tab separated .txt files or Excel files in
.xls or .xlsx formats. CoffeeProt automatically detects the
file format and validates the dataset prior to data process-
ing. Users can upload only (i) and/or (ii) datasets and skip
(iii) GWAS/molQTL associations if they choose.

Transcriptomics/proteomics data must be uploaded as a
matrix in which the first column contains identifiers, and
the remaining columns contain quantitative measurements.
The accepted identifiers are gene symbols, Uniprot iden-
tifiers and Ensembl gene identifiers. CoffeeProt automati-
cally detects the identifiers and converts them to gene names
during the processing steps since these identifiers are re-
quired for several downstream analyses. Missing values in
the data can be addressed by imputation or by removing
proteins of which the number of missing values exceeds the
cut-off defined by the user. Pair-wise protein-protein corre-
lation (i.e. co-expression or co-regulation analyses) can be
performed using either the Pearson correlation coefficient
(PCC), Spearman’s rank correlation coefficient or biweight
midcorrelation (bicor) as implemented in the WGCNA R
package (20). Following the correlation analysis and correc-
tion for multiple hypothesis testing with either Benjamini-
Hochberg or Bonferroni, a list of protein pairs and their co-
regulation metrics is created including the P-value, q-value
and correlation coefficient.

For the e/pQTL data upload the list should contain sep-
arate columns containing (i) RefSeq identifiers (rsIDs), (ii)
SNP location, (iii) SNP chromosome, (iv) gene names, (v)
gene start location, (vi) gene end location, (vii) gene chro-
mosome, (viii) a measure of significance and (ix) a proxy
or grouping column. Regarding the SNP and gene location
columns, measures such as physical position (bp) or genetic
distance (cM) are accepted. Non-cumulative measures (e.g.
a measure that starts at zero for each chromosome) will be
converted to a cumulative relative SNP location to allow the

http://www.coffeeprot.com
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Figure 1. CoffeeProt workflow. The CoffeeProt workflow starts with users accessing the CoffeeProt web user interface to upload datafiles and specify
analysis parameters (1). The user interface and server backend running R are connected using the shiny R package (2). Feature annotations are performed
based on local databases included in CoffeeProt as well as remotely hosted databases on the Melbourne Research Cloud (3). User data is analysed to
perform summary statistics (I), correlation (II), interaction (III) and network (IV) analyses (4). The results are displayed in the web interface for result
interpretation by the user (5). Finally, all individual tables and plots can be exported (6). (QTL: quantitative trait loci; PPI: protein–protein interaction;
DGI: drug–gene interaction).

generation of Manhattan plots. The measure of significance
column should contain either P-values or logarithm of the
odds ratio (LOD) scores. Filtering of the e/pQTL dataset
is allowed using a single measure of significance, or sepa-
rate cut-offs for each QTL proxy. A proxy can be specified
to allow separate cut-offs when the dataset contain both
SNPs located near the gene it affects (local or cis-e/pQTLs)
or SNPs that affect genes located in other regions of the
genome (distant or trans-e/pQTLs). Due to the large file
sizes common in QTL files, it is recommended to filter QTL
data prior to uploading to CoffeeProt, to reduce the time
required to upload data.

The third type of data upload is the association to pheno-
typic or molecular traits (GWAS or molQTLs). These could
include associations such as metabolite-QTLs (metQTLs),
lipid-QTLs (lQTLs), or others generated by the user. Cof-
feeProt enables easy access to publicly available data from
the GWAS Catalog (2) for instances where the user only has
access to proteomics and pQTL data. The required data for-
mat is like the e/pQTL upload columns mentioned above
however, instead of gene/protein names, a molecule or phe-
notypic trait is listed as associated to the genetic variants.
For the molQTL/GWAS data upload the matrix should
contain separate columns containing (i) RefSeq identifiers
(rsIDs), (ii) phenotypic trait(s), (iii) SNP location, (iv) SNP
chromosome, (v) a measure of significance and (vi) a group-
ing column. The use of molQTL/GWAS in CoffeeProt al-
lows for the discovery of SNP-protein associations that
share associations with molecular or clinical phenotypes
via a co-mapping SNP. The molQTL/GWAS tab in Cof-
feeProt contains a table listing all published studies in the

GWAS Catalog, including the journal article title, publica-
tion date and traits investigated. A user can simply select a
study of interest and click the download button to retrieve
a list of variants associated to phenotypes that are directly
usable as input molQTL data in CoffeeProt. The GWAS
Catalog representational state transfer (REST) application
programming interface (API) is accessed through the gwas-
rapidd R package (21). First all datasets related to the user
selected study are retrieved using the get associations func-
tion, followed by variant annotation using the get variants
function. Finally, the data table is trimmed to retain the six
columns required for further analysis in CoffeeProt.

Annotation

Imported proteins are annotated using subcellular localisa-
tions from the Cell Atlas as determined using immunoflu-
orescence (22). To address the varying specificity of the lo-
calisations in the database, we also added the ancestor lo-
calisations from QuickGO (23) for overly specific annota-
tions. For example, a protein present in a nuclear speck
is also considered to be present in the nucleoplasm and
the nucleus. This step is essential in determining whether
two correlated proteins are located in the same organelle.
Furthermore, drug interactions from the Drug Gene In-
teraction Database (DGIdb) are searched and used in sev-
eral visualizations (18). All protein-protein correlation pairs
are searched against the STRING database (24), as well
as the CORUM (25) and BioPlex 3.0 (https://bioplex.hms.
harvard.edu/interactions.php) (26) protein–protein interac-
tion databases to detect previously reported associations.

https://bioplex.hms.harvard.edu/interactions.php
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For the interactions in the BioPlex 3.0 database we only
considered the top 10th percentile (11817/118162) as corre-
lated protein–protein interactions based on a previous pub-
lication by Huttlin et al. showing significant overlap be-
tween CORUM protein-protein interactions and the top
BioPlex interactions (27). A PostgreSQL database (v 11.9)
hosted on the Nectar Research Cloud is used for the an-
notation of RefSeq identifiers in the e/pQTL datasets.
This database contains both rsIDs and variant effects de-
fined by the Sequence Ontology (28) which were retrieved
from the latest Ensembl variation database (v100) (ftp://ftp.
ensembl.org/pub/current variation/vcf/) (19). Additionally,
the rsIDs are assigned variant consequence impact ratings
as used by variant annotation tools such as snpEff (29).
Impact ratings refer to the disruptive effects the variant
has on the functioning or effectiveness of a protein. High-
impact variants are likely to cause protein truncation, loss
of function or the triggering of nonsense mediated decay.
A moderate-impact variant consequence is non-disruptive
but may cause changes in protein activity or function such
as an inframe insertion or deletion. A low-impact variant
in unlikely to cause a change in protein behaviour such
as a synonymous variant. Finally, modifier-impact variant
consequences affect non-coding areas are also annotated
and these may influence the expression of the protein such
as variants located in transcription factor binding sites or
other regulatory elements (29).

Analysis and visualization

CoffeeProt allows the customization of figures with user-
selected cut-offs and the interactive selection of target
genes/proteins, complexes, and phenotypes or molecular
traits. These data are integrated via network visualizations
to ultimately understand how genetic variants are associ-
ated to protein complexes and different biological layers or
phenotypes. CoffeeProt initially displays several plots re-
lated to the filtering and annotations specific to each of
the uploaded datasets. Examples of these quality control
plots are shown in Supplementary Figures S1 and S2. For
transcriptomics/proteomics datasets, multiple gauge charts
are produced to highlight the number of proteins filtered by
the missing value cut-off, and the number of proteins anno-
tated by protein localisation or annotated with known drug
interactions. Similarly, for QTL datasets multiple donut
charts highlight the distribution of QTLs annotated by the
proxy, grouping column, variant effects and variant impact
ratings.

Following pair-wise correlation analysis, a summary tab
contains visualizations related to the protein-protein cor-
relation analysis. Histograms show the distribution of cor-
relation coefficients or corresponding regression q-values,
highlighting the proportion that are associated based on
user-defined cut-offs. Additionally, the number of corre-
lated partners per protein is shown to highlight the propor-
tion of highly connected proteins in the data set. To assess
the database overlap of co-regulation data, chi-squared tests
of independence are performed to determine the relation-
ship between shared database presence and correlation co-
efficients of protein-protein pairs. Co-regulated proteins are
expected to be enriched in the same cellular location and the

same protein complexes as previously shown by Kustatscher
et al. (30). The interactive nature of CoffeeProt allows users
to adjust correlation coefficient or q-value cut-offs to ensure
functionally related protein pairs are significantly enriched.
Sensitivity analyses can be performed using CoffeeProt to
assess the effects of these input parameters on the fraction
of protein pairs present in the reference databases. Over 70
combinations of correlation coefficient and q-value cut-offs
are tested for the different databases and visualized (e.g.
Supplementary Figure S3)

CoffeeProt has several functionalities to explore and vi-
sualise interactions between genetic variants and the vari-
ous biological layers. First, a Manhattan plot can be cre-
ated using the uploaded e/pQTL data, highlighting the
loci associated with the abundances of specific transcripts
or proteins. Next, we introduced a novel visualisation to
display co-regulated protein networks linked to the Man-
hattan plot to understand how genetic variants may regu-
late protein complexes. Finally, several interactive network
plots can be created using one or multiple biological lay-
ers with nodes containing SNPs, transcripts, proteins or
molecular/phenotypic traits. These network plots can be
customised by filtering interactions previously reported in
the CORUM or BioPlex 3.0 databases or proteins present
in an organelle of interest, by annotating the network with
drug interactions, or by dynamically modulating signifi-
cance thresholds. Furthermore, edges of the networks can
be annotated with proxies (i.e cis- versus trans-associations)
or variant effect predictions. The networks can be modified
to show all the associations of a single gene, a co-regulated
complex or all the associations to a molecular/phenotypic
trait of interest. To reduce the complexity of the network
plots which are products of genetic linkage, it is possible to
summarize the large number of individual SNPs into chro-
mosome nodes or linkage disequilibrium (LD) block nodes.
To enable the latter option, a three-column LD block file
containing the chromosome, start location and end loca-
tion of the LD blocks should be uploaded along with the
eQTL/pQTL data. The chromosome location format in the
LD block should match the format in the QTL data files.
A significant feature of CoffeeProt is the identification and
visualization of associations between transcripts/proteins
and molecular or phenotypic traits based on shared co-
mapped SNP rsIDs. This is important because it al-
lows rapid identification of potential causative genes or
proteins which underlie associations between significant
SNPs and phenotypic or molecular traits for functional
validation.

Reporting

After completing the analysis workflow, it is possible to
download all figures and tables produced by the user. These
processed and annotated datasets required to produce all
images can be exported as .csv files for further analysis out-
side of CoffeeProt. All plots created in the tool can be di-
rectly exported in various formats, including vector-based
images in .svg and .pdf formats and in various dimensions.
Alternatively, zip compressed folders containing all plots or
tables can be downloaded. The interactive network plots
can be downloaded as .html files.

ftp://ftp.ensembl.org/pub/current_variation/vcf/
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Web server implementation

CoffeeProt was developed using the R programming lan-
guage for the backend and relies on the shiny package for
the web server front-end in addition to HTML, CSS and
JavaScript. Several tidyverse packages are used for data
wrangling and data visualization. Furthermore, CoffeeProt
relies on the WGCNA package for the Pearson’s, Spear-
man’s and bicor correlation analyses (8). Circos and in-
teractive network plots are created using the circlize (31)
and networkD3 R packages respectively. The GWAS Cat-
alog is accessed using the gwasrapidd package (21). Cof-
feeProt is deployed on the Nectar Research Cloud and
Melbourne Research Cloud, utilizing hypervisors built on
AMD EPYC 2 (base CPU clock speed 2.0 GHz, burst clock
speed 3.35 GHz) and running Ubuntu 18.04.

Privacy and security

The uploaded data is only available to be analysed if the
user is connected to the CoffeeProt server. No user data
is retained after the analysis session has been terminated.
CoffeeProt does not require raw genomics or proteomics
data and the user can de-identify sample information. Se-
cure HTTPS connections can be used to transfer data to,
and from the CoffeeProt servers.

RESULTS

Case study: An integrative systems genetic analysis of mam-
malian lipid metabolism

To illustrate the utilities of the CoffeeProt tool, we analysed
data previously published by Parker et al. (17). Here, liver
proteomic and lipidomic analysis was performed across
>100 genetically diverse inbred mouse strains (>300 in-
dividual mice) and integrated with genomic data to iden-
tify pQTLs and lipid-QTLs (lQTLs). A detailed descrip-
tion of the data and quality control analysis performed in
CoffeeProt is presented in the Supplementary Material and
Supplementary Figure S1. To visualize the associations be-
tween genetic variation and co-regulated protein networks,
CoffeeProt produces SNP-protein plots. Figure 2A displays
a Manhattan plot created using pQTL data and loci are
linked by edges to co-regulated networks depicted as arc di-
agrams. The edge starts at the position of the SNP under-
neath the Manhattan plot and ends on the associated pro-
tein underneath. The protein is linked to other correlated
proteins via arc diagrams which are grouped according to
their CORUM protein complexes. In the protein arc dia-
gram, complexes are first arranged by size (largest to small-
est), and individual proteins are ordered by the number of
protein-protein correlations (most to least). The lines link-
ing the loci to the co-regulated networks are further anno-
tated with the cis-/trans-proxies based on the genomic prox-
imity of each SNP to its associated protein. In Figure 2B,
Mitochondrial Complex I (CORUM ID 382) has been se-
lected to investigate variants associated to precise subunits
which have now been annotated with impact ratings. In this
example, a high-impact trans-pQTL associated to NDUFS2
has been identified and analysis of the annotated pQTL ta-
ble identifies a trans-acting variant in a predicted splicing
acceptor site (rs27441698) within the Sptbn5 gene.

We next demonstrate CoffeeProt’s ability to generate
multi-omic visualizations via interactive networks. Users
can select various co-regulated networks based on the CO-
RUM or BioPlex databases and integrate associated genetic
variants as nodes with links annotated by proxy, variant ef-
fects or impact ratings. Figure 2C displays an alternative
network view of the pQTLs associated to Mitochondrial
Complex I with the example high-impact association men-
tioned above shown in red and indicated by a red arrow-
head. A further co-regulated network highlighting fibrino-
gen proteins FGA, FGB and FGG is shown in Figure 2D.
Here, several co-mapping individual SNPs are presented in
the top network with 41 trans-pQTLs located on chromo-
some 8. These SNPs can be grouped and summarised based
on LD block nodes shown in the middle network or based
on chromosome nodes shown in the bottom network. Inter-
estingly, out of the 41 individual SNPs, 36 are located within
known LD blocks, with a single LD block on chromosome 8
connecting the FGB and FGG proteins. Networks can also
be created showing only proteins located in an organelle
of interest (Figure 2D). Here, the peroxisomal proteins
ACOX1-CAT-HSD17B4-ABCD3-DECR2 are connected
through protein-protein interactions and through shared
genetic mutations. CoffeeProt also allows users to perform
a molecular or phenotypic-centric network analysis to in-
vestigate potential upstream protein and genetic regula-
tors. Figure 2F highlights co-mapping pQTLs and lQTLs to
hepatic cholesterol ester abundance. Two previously char-
acterized regulators of cholesterol metabolism are high-
lighted with red arrows including CYP51, a monooxyge-
nase catalysing the first step in the conversion of lanosterol
into cholesterol (32), and TMEM97, a lysosomal protein
associated with the regulation of low-density lipoproteins
(LDLs) and cholesterol ester metabolism (33). These exam-
ples demonstrate CoffeeProt’s ability to identify previously
reported regulators of lipid metabolism but also highlight
many more uncharacterized associations for future func-
tional validation.

Case study: Genomic atlas of the human plasma proteome

As a second case study we used CoffeeProt to analyse ge-
netic associations of the human plasma proteome from
the INTERVAL study published by Sun et al. (34). Here,
plasma proteomic analysis was performed across >3,300
healthy participants and integrated with genomic data via
pQTL analysis. A detailed description of the data and qual-
ity control analysis performed in CoffeeProt is presented
in the Supplementary Material and Supplementary Fig-
ure S2. We initially investigated cis-pQTL and focused on
intragenic SNPs (i.e within introns or exons) given their
greater potential to impact protein function and investi-
gated their associations to the abundance of co-regulated
protein networks. Figure 3A displays a SNP-protein plot
with pQTLs associated to co-regulated protease comple-
ment factors CFB, CFH, CFI and APCS. CoffeeProt iden-
tified previously characterized high-impact SNPs including
rs4151667 and rs641153, resulting in non-synonymous L9H
and R32Q variants of CFB, respectively (35,36). A total of
57 cis-acting variants associated to CFH were also associ-
ated to CFB in trans- such as rs371972000 which is located



Nucleic Acids Research, 2021, Vol. 49, Web Server issue W109

1

5

75

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X

-L
og

10
(P

)

cis-pQTL
trans-pQTL

A

nd
uf

a1
2

m
tn

d3
nd

uf
v2

nd
uf

a1
0

nd
uf

s4
nd

uf
s1

nd
uf

s2
nd

uf
b4

nd
uf

b1
1

nd
uf

v1
nd

uf
v3

nd
uf

a8
nd

uf
s6

nd
uf

b7
nd

uf
b9

nd
uf

s5
nd

uf
a6

nd
uf

b1
0

nd
uf

s8
nd

uf
a9

nd
uf

s3
m

tn
d1

nd
uf

a7
nd

uf
b8

nd
uf

a3
nd

uf
a2

nd
uf

a1
1

nd
uf

b5
nd

uf
a5

nd
uf

a4 Mitochondrial complex I
SNP

high
moderate

low
modifier

B

chromosome

Mitochondrial Complex I (CORUM ID 382)

5

75

-L
og

10
(P

)

CB

CE.18.0

CE.17.0

CE.16.0
CE.18.1

CE.14.0

CE.15.0

SNP
protein

F

lipid (cholesterol ester)

D

Fibrinogen proteins
SNP

E

fgagga

fgb

fgfffggg

fga

fgb

fggfggfggff

Chr_8Cfga

fgb

fggf

abcd3

hsd17b4

Peroxisomal proteins
SNP

Individual SNPs

Summarised
by LD blocks

Summarised
by chromosome

pQTL
P:P correlation trans-pQTL

cis-pQTL

Mitochondrial Complex I pre-rRNP Complex

40S Ribosome

Spliceosome

Proteasome

TRBP Complex

CCT Complex

Fibrinogen complex
DNAJ Complex

Figure 2. Visualisation of associations between SNPs and the abundance of protein co-regulated networks or lipids. (A) QTL-protein associations of all
correlated CORUM protein networks with associations coloured by cis- or trans-proxy. (B) SNPs associated to Mitochondrial complex I subunits with
associations coloured by variant impact. (C) Network plot revealing SNPs associated to Mitochondrial complex I subunits. (D) Network of SNPs associated
with fibrinogen proteins shown as individual SNPs, summarized into LD blocks or chromosomes. (E) Network of proteins located in peroxisomes (vesicles),
according to Human Protein Atlas annotations. (F) Phenotype bait-network showing co-mapping SNPs to proteins and cholesterol ester (CE) lipid species
in which CE 14:0. CE 15:0. CE 16:0, CE 17:0. CE 18:0 and CE 18:1 were selected as targets.



W110 Nucleic Acids Research, 2021, Vol. 49, Web Server issue

11

300

-L
og

10
(P

)

chromosome1 3 5 7 9 11 13 15 17 2119

APCS CFB CFH CFI

cis-pQTL
trans-pQTL
P-P correlation

A SNP

clinical phenotype

B

Age-related macular degenerationdd

Asthma

Blood protein levels

Exudative age-related macular degeneration

IgA nephropathy

Protein levels in obesity

Pulse pressure

Schizophrenia

CFI

CFH

CFB

protein

GWAS Catalog
intergenic-pQTL
intragenic-pQTL

Meningococcal disease

Serum C3d:c3 ratio (complement activation)

Age-related Macular degeneration (MTAG)

MMP8 levels
Circulating myeloperoxidase levels

DC

hemoglobin measurement erythrocyte count mean corpuscular volume
granulocyte countleukocyte countbasophil count

eosinophil count

E

C15orf48

ITIH1

JAKMIP3

NAT1

rs3617
rs66782572

SIGIRR

ABO

T2TNTT3GNTGNGNGNGNB3GB3GB3BBB3 NT3GGNNB NNT2TTTTB4GAB4GAALALLLALALALGALGAGALALLALLLG4GAALGNTNTGNNNNNNNNGGGGB3GB3GB3B3BBBB3G3GNTNTGNGNNNNNBB NTNTTT1TTTTTTT1TTTT22T2TTTTT2TTTTTTTLLLLTTTTTT

BCAM

C1GALA T1C1LL

CDCD
CD3CD36CD3CDCD36CD36CD36CDCD

1555AAAAAAAA
NNNN

20 DSG2DNNNGNGNGN M20BMAMM2MMMGGGGGGG

FFFFFAM3B3AMAMAMA BFFFFFFF

M3D
NGNGNNGNGNGNGNNNNGGGGGGAMAMAMMAMGGGGGGGGGG

GFRAL

OLM1OOO 1ALALAAALALAAAALPIPIIILPLPPPALALLLPIIIIAAAAAAAAAAAAAAAA
NNNNNNFFFFALALALALAAALALALALLL
NGNGNGNGNGGGAMAMMMAAAAAAMMMMMMPIPIPIPIIIIILPPLPPLPLPLPLPLPPPPIIIIII

GGGGGGGGGGGFF
LLLL
GG

AM1D

ICAM2ICA

CLCCC

D2D20D2DD20D2 L27RAL27RARARAL27RLIL3LLCDCDCDCDRD2D2D2D22222RDDDD

INSRNSRNSRINB4GB4GB4GB4GGGGGB4GB4GB4B4B4GB4G4G4G
ISLISLLLLLLLLLLLL3RL3RL3RL3RL3L3RRRRRRRRRRRR

JAG1AG1AAAG

3GN3GGGGGGGGGB3B3BBBB33GN
HSSHSST1ST1ST11TTSTSS 11AAAAAAAAAAAAAAA

3GN3GN3GGGGGGGGGGGGG3B3B33333GNGN
NNNN55551515155115555PIPIIIIIIIALPALPALPLPLLPPPLLLLLPPPIPIIIIIIIII1ALALALALALALALALLPILPILPL ILPLPLPLPPPLLLLLLPPIIIIII5PIIPIIPIIIIALPALPALPLALPALPALALALALPPPLLLLLLLLPPIIIIIST1T1ST1T1STTSTTTSTTSTSTTSTSST1T11111ALPALPALPALPALPALPALLLLLLAAAAA PPPPLLLLLLLLPPPPP

JJJAJJAJALIFRRFFRRFRFRFRAG1AG1AGAGG1G1AG1AGAG1AGAG1AG1
IININ
J

MAN1N1N111AN11AAAN111N1N1N111MAN111NSRNSRSRSRRRNSRNSR
MBL2M 2M 2MMLIFRLIFRFRFRRFRFRMMMMMMMMMMMMANMANMANMANANANMANMANMANMAN
FF
J
F
J
FFFF
JAJJ

METMEAM3BAM3BM3M3AMAMAAAMAMM3B3
CCC

99090999DD0 IL99990 DD00 LLL NOTCH1HN HDSG2DSG2DSS
27RA27RA27R27R27RA27RAR

CCCCCCCCCC PEAR1DDDDDDD36D36D3D3D3D3

ENENNNNNNNNNNNNNNN OX2OXO
M20B0MM2M

M
LGGGGGGGGGGGLT4T4TTT4T4T4T44GGGGGGAMAMAMAGGGGGGGTTTTTTTTLGGGGGGGGGGL666666666TTTTTTTTTTTTTTTTTL

rs10901252

H1CH1HHH

1
rs149037075

LT1LL
A2

LLLLLLLLLLT1TTTTTTTTTTT1TTTTTTLLLLLLLLLL
1A1AAAA1AAA11AA11

rs8176643IIIIII SELESC1GAC1GA
CAM2CAM2CACA

LLLCLCL M3DM3DMMMM AAM3DM3DM3DM3DMMMMEEEECCCECEICAICAICACA333EEEEE

SEMA6AAAAMMAS AS MMSS MMMMMMMMMA6AAAAAAAAA6AAAAAAMAMAMAMAMMMMMMMAMAMM PP
AA2020000200200A00
RRRLRRLLRRLRRRRRLRLRLRLLRRAAAAAAAAARAARAAAAARAAARAAAAAAAAAAAAAAAA00000000000000000000A000000000000AA0000000000000AAAAAA
R

202RA22222020222
LLLLLLLLLLLRARARRR 09000900000000000000

TETETETTETETETEL27RL27R2222L27R27RL2L22727L22

AAAAAAAAFAAAAFFAAAACCCCGGTHTTTTTGTHGG
L6L666

GGG
L6LL6L66L

GG
66666666
GLGLGGGGG FFFFLLFFLFFFLLLLLLLLL
STSTSSSSSSFFFFGLGGLGGGGGGGGGGGGG FFFFFFFFFFFFFFFFAAFFLCFAAAAFFFFFFFFAAFFFFFLCLCLCCFFFFGGGG

6S6S
GGGG AMAMAMAMAMAMAMAMAMAMAMAAAAAAAAAAAAAEEEECCCCCECEE

TIETIETIT E1E1E1EEEEEEEEEEE111111111111111E1E111E111E1E11EEEE111111111111
LLL
CCC

ILILLIL22222IIIILILIL999999IIIIILLILILIIII
CCCCCC

22
CCCCC

222R22R22R2R22RR IIIIIIIIAA99
R22IIR22R22IIIIIIII22R2R222R22RR222222IIII999I9999

22IIIIIIII2222222 TTTTTLLLLLLLLLLLL99IL999LL
CCCCCCCCCCCCC

RRRRRRRAAAAAAAAAAAAAA0909090
RR2
0A0
RRRAAAAAARRRR999

TTTTTTTTLLLLLLLLL TLL1L1LLLTLL1L1T L11LL1LL1L111TLLL1TLL1L1L111111111111L1L1L1111
D36D36663636D3D36666D3D3

RARAARAAAARRARARARARARARARARARARARARARARARAAARARAAAAAAAAAAAEKEKEKEKKEKEKKKKKKKEKEKKEEEKEKEKEKEKEKKEKEKKK27R27R7R27R27R7R7R27R27R7R7R7R7RRR7R7R7R7R27R27R7R7R7R27R7R7R27R27R7RRRR
FLLNGNN
ILLLLLLFLFLLLILLLILLLLLLLFFNNNIIFFFFF
NNNN
IFFLLLLGGLLLLLLLLLLLLLLLIIIIIIIIIILLLLLLLLLLL
NGNGGNENFNNNNNNLLLLGGGGLLLLLL6L6L6LLLLII TTTTTL6L6LLLLLL6L6 MM

OX2OX2OOXXOO
FAMAMAAF

T4T4T44TTTTTTTTTT44TTTSTSTSTSTTTTTSTS6S6SSSS6 FF
T44T444444TTT TTSSTSTTTSSSFFFFF MMMMFFAMAMAMAAAAAFFFFFAAAAAAAAFFFFFFFFFFAMAMAMAMAAAAFFFFFF6S66S66S6SSSTSTSTSTSSSSSSSSFFFFFSTSTTTSSFFFFFFFFFFFFTTFFFFFSSSSSSSSSSSSSSSSS AMAMAMAMAMAGGGGGIIGGGIGLLILLGGGGGIILGGGGGGGGGGGGGLGLLLGGGGGGGGGGICICLLLLLLICLLILTHGGGGGLGLGGGGGGLGLLLLLLLGGGGGG TPST2TT AMAAM5AM5EEEECAACCCCACECEICAICAICAICAEEEE AAAAEEEEEEECCCCCCCEEEEEICAICAICAICAICAICAICAEEEEEEE

AMINOPHYLLINE
AMLEXANOX
APREMILAST

BECAMPANEL

BENRALIZUMAB

BERTILIMUMAB

C1QTNF5

C4A
C4B

CCL11

CCL17

CD96

CGA

CLEC5A

CRISABOROLE

CX1739
DASOLAMPANEL

DEFB119

DIPYRIDAMOLE
DYPHYLLINE

FARAMPATOR

FLAVOXATE HYDROCHLORIDE

GRIA4

GRP

H6PD

IFNGR1

IL18R1IL1RL1

IL21

IL5RA

IL7R INTERFERON GAMMA-1B

IRAMPANEL
MIBAMPATOR

MICB

MK-8777MTHFS

OXTRIPHYLLINE

PDE4D

PENTOXIFYLLINE

PERAMPANEL
PF-04958242

POMC

ROFLUMILAST

RPN1

SELURAMPANEL
TEZAMPANEL

THEOPHYLLINE
THEOPHYLLINE SODIUM GLYCINATE

TOPIRAMATE
USP25

VCAM1

ZONAMPANEL

I II III IV

V VI VII

GWAS Catalog cis-pQTL trans-pQTL
phenotype SNP protein drug

drug interaction

I II III

I

II

III

IV

V

VI

VII

IV

Advanced age-related macular degeneration

nephrotic syndrome

Idiopathic nephrophathy

EBNA IgG1 leves

Figure 3. Integration of co-regulation networks, pQTL and GWAS in human plasma samples. (A) A SNP-protein association plot highlights cis- and
trans-pQTLs associated with a co-regulated protein network of complement factors. (B) The CFB-CFH-CFI network reveals shared SNPs between the
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bait-network of the eosinophil count phenotype associated with pQTLs. Drug interactions from the DGIdb were integrated with proteins in the network.
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<5kB to the transcriptional start of CFH. Given the abun-
dances of these two proteins are correlated, these data sug-
gest genetic regulation of CFH in cis subsequently regulates
the abundance of CFB which warrants further functional
validation. Integrating co-mapping SNPs between protein
abundance and phenotypic traits (GWAS Catalog, all asso-
ciations file from 2020-10-07, v1.0.2, P < 1e–11) (Figure 3B)
highlights several well characterised intragenic co-mapping
SNPs associated to CFH and CFB, and age-related mac-
ular degeneration (37) including several other less charac-
terised phenotypic associations such as potential links be-
tween CFB, CFH and obesity.

We next used CoffeeProt to identify co-mapping asso-
ciations between plasma pQTLs and 36 blood cell traits
that were directly downloaded from the GWAS Catalog in
CoffeeProt (38). Figure 3C displays associations to vari-
ous blood cell counts and other clinical measures includ-
ing mean corpuscular volume (MCV) and hemoglobin con-
tent. This interactive network provides an exciting glimpse
into the complex genetic regulation of human blood and
plasma proteome revealing several known and novel associ-
ations. Red blood cell associations are clustered on the right
(I–III) while other blood cells (granulocyte, leukocyte, ba-
sophil, eosinophil) are clustered on the left (IV–VII). Fig-
ure 3D highlights previously characterized cis-acting SNPs
in the ABO locus including rs149037075 and rs10901252
which CoffeeProt has annotated as 3 prime UTR variants,
and rs8176643, annotated as an intron variant. The latter
was validated in a meta-analysis of SNPs in the ABO lo-
cus and their associations with red blood cell traits (39),
and agrees with a study by Emilsson et al. who identi-
fied over 40 proteins via trans-pQTLs associated with vari-
ants located on the ABO gene, which were also associ-
ated with cardiovascular disease and hemostasis (40). The
traits ‘hemoglobin measurement’ and ‘erythrocyte count’
are both associated with two separate SNPs (rs66782572
and rs3617) which are cis-pQTLs for the protein ITIH1
(Figure 3D). This gene is a known marker for high-altitude
adaptation and is differentially regulated in response to low-
oxygen levels, but a causal role of this protein in red blood
cell biology is unknown and warrants further investigation
(41,42). We next expanded our analysis focusing on ge-
netic and protein factors associated to eosinophil counts
with the aim to identify potential drug interactions (Fig-
ure 3E). The variant rs1695315 was associated to eosinophil
counts and is a cis-pQTL for IL5RA which was anno-
tated as a target of the monoclonal antibody Benralizumab
approved for the treatment of severe eosinophilic asthma
and eosinophilic oesophagitis. CoffeeProt also identified
rs2228467 as a trans-pQTL associated to eosinophil counts
and Eotaxin (CCL11), a chemokine targeted by the mon-
oclonal antibody Bertilimumab approved for the treatment
of bullous pemphigoid in patients with eosinophilia. Impor-
tantly, both variants have recently been identified as causal
for eosinophil counts using mendelian randomization (MR)
analysis (43). While a recent phenome-wide MR study us-
ing >1000 plasma proteins included several bloody cell phe-
notypes (44), eosinophil counts were not included in the
analysis and therefore further experiments are required to
investigate potential causal roles of the identified proteins.
Taken together, these examples highlight the power of Cof-

feeProt to rapidly integrate, visualize and interrogate mul-
tiple associations to complex human traits which includes
an overview of known drug interactions but also highlights
other potential druggable targets to potentially modulate
eosinophil biology.

SUMMARY

We present CoffeeProt, a novel online tool for the corre-
lation and functional enrichment of proteome-wide sys-
tems genetics. CoffeeProt is flexible and accepts a variety of
datatypes, starting with transcriptomics or proteomics data
from population studies. The workflow significantly reduces
the time users would otherwise spend on pre-processing,
annotating, analysing and/or visualizing of their systems
genetics data. The use of a dedicated database for SNP
variant effects has allowed the rapid annotation of QTLs,
enabling easy prioritization of associations based on pre-
dicted variant impacts. By allowing integrative analyses to
be performed on co-regulated network analysis, e/pQTL,
molQTL and phenotypic data, users can visualize and dis-
cover interactions and associations which may otherwise
have been missed. Furthermore, mapping cis- and trans-
e/pQTL data onto protein-protein co-regulated networks
offers several advantages to investigate the genetic effects
on protein complexes and potentially limit false positive as-
sociations by observing co-mapping SNPs. As shown in two
case studies, CoffeeProt allows for the integration of multi-
ple -omics datasets for the discovery of biologically relevant
associations. We aim to support and continually improve
CoffeeProt over the coming years based on user feedback
and the changing bioinformatics requirements in the sys-
tems genetics field.

DATA AVAILABILITY

CoffeeProt is accessible as a website (www.coffeeprot.
com) and the source code is publicly available (https://
github.com/JeffreyMolendijk/CoffeeProt). No login is re-
quired to use CoffeeProt and detailed documentation is
provided on the website. The Parker HMDP data files
used as case study 1 are included as demo files avail-
able to download through the CoffeeProt website. Ref-
Seq identifiers and variant effects defined by the Se-
quence Ontology (28) which were retrieved from the lat-
est Ensembl variation database (v100) (ftp://ftp.ensembl.
org/pub/current variation/vcf/). Subcellular protein local-
isation information was downloaded from the Human
Protein Atlas (22) (https://www.proteinatlas.org/download/
subcellular location.tsv.zip). The Drug Gene Interaction
Database (18) (October 2020 version) was downloaded
from (https://www.dgidb.org/downloads). GENCODE hu-
man release 19 (CRCh37.p13) was used to retrieve ge-
nomic locations for the pQTL data in the second case
study. The CORUM database was downloaded from http://
mips.helmholtz-muenchen.de/corum/#download. BioPlex
3.0 was downloaded from https://bioplex.hms.harvard.edu/
interactions.php. The data used in case study 2 (Sun et al.)
are available through the European Genotype Archive (ac-
cession number EGAS00001002555).

http://www.coffeeprot.com
https://github.com/JeffreyMolendijk/CoffeeProt
ftp://ftp.ensembl.org/pub/current_variation/vcf/
https://www.proteinatlas.org/download/subcellular_location.tsv.zip
https://www.dgidb.org/downloads
http://mips.helmholtz-muenchen.de/corum/#download
https://bioplex.hms.harvard.edu/interactions.php


W112 Nucleic Acids Research, 2021, Vol. 49, Web Server issue

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

This research was supported by use of the Nectar Research
Cloud and by the University of Melbourne Research Plat-
form Services. The Nectar Research Cloud is a collabo-
rative Australian research platform supported by the Na-
tional Collaborative Research Infrastructure Strategy. We
would like to thank the Melbourne Mass Spectrometry and
Proteomics Facility of The Bio21 Molecular Science and
Biotechnology Institute at The University of Melbourne for
the support of mass spectrometry analysis. We would like to
thank Adam S. Butterworth for providing access to the pro-
teomics and pQTL data from the INTERVAL study. The
contents of the published material are solely the responsi-
bility of the individual authors and do not reflect the view
of funding bodies.

FUNDING

Australian National Health and Medical Research Coun-
cil Ideas Grant [APP1184363]; B.L.P. is supported by the
University of Melbourne Driving Research Momentum
program; M.M.S. is supported by National Institute of
Health [DK097771, HL138193]. Funding for open access
charge: University of Melbourne.
Conflict of interest statement. None declared.

REFERENCES
1. Claussnitzer,M., Cho,J.H., Collins,R., Cox,N.J., Dermitzakis,E.T.,

Hurles,M.E., Kathiresan,S., Kenny,E.E., Lindgren,C.M.,
MacArthur,D.G. et al. (2020) A brief history of human disease
genetics. Nature, 577, 179–189.

2. Buniello,A., MacArthur,J.A.L., Cerezo,M., Harris,L.W., Hayhurst,J.,
Malangone,C., McMahon,A., Morales,J., Mountjoy,E., Sollis,E.
et al. (2019) The NHGRI-EBI GWAS Catalog of published
genome-wide association studies, targeted arrays and summary
statistics 2019. Nucleic Acids Res., 47, D1005–D1012.

3. Civelek,M. and Lusis,A.J. (2014) Systems genetics approaches to
understand complex traits. Nat. Rev. Genet., 15, 34–48.

4. Williams,E.G. and Auwerx,J. (2015) The convergence of systems and
reductionist approaches in complex trait analysis. Cell, 162, 23–32.

5. Ye,Y., Zhang,Z., Liu,Y., Diao,L. and Han,L. (2020) A multi-omics
perspective of quantitative trait loci in precision medicine. Trends
Genet.: TIG, 36, 318–336.

6. Seldin,M., Yang,X. and Lusis,A.J. (2019) Systems genetics
applications in metabolism research. Nat. Metab., 1, 1038–1050.

7. Arneson,D., Bhattacharya,A., Shu,L., Mäkinen,V.P. and Yang,X.
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