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Controlled cortical impact (CCI) on porcine brain is often utilized to investigate the
pathophysiology and functional outcome of focal traumatic brain injury (TBI), such as
cerebral contusion (CC). Using a finite element (FE) model of the porcine brain, the localized
brain strain and strain rate resulting from CCI can be computed and compared to the
experimentally assessed cortical lesion. This way, tissue-level injury metrics and
corresponding thresholds specific for CC can be established. However, the variability
and uncertainty associated with the CCI experimental parameters contribute to the
uncertainty of the provoked cortical lesion and, in turn, of the predicted injury metrics.
Uncertainty quantification via probabilistic methods (Monte Carlo simulation, MCS)
requires a large number of FE simulations, which results in a time-consuming process.
Following the recent success of machine learning (ML) in TBI biomechanical modeling, we
developed an artificial neural network as surrogate of the FE porcine brain model to predict
the brain strain and the strain rate in a computationally efficient way. We assessed the
effect of several experimental and modeling parameters on four FE-derived CC injury
metrics (maximum principal strain, maximum principal strain rate, product of maximum
principal strain and strain rate, and maximum shear strain). Next, we compared the in silico
brain mechanical response with cortical damage data from in vivo CCI experiments on pig
brains to evaluate the predictive performance of the CC injury metrics. Our ML surrogate
was capable of rapidly predicting the outcome of the FE porcine brain undergoing CCI. The
now computationally efficient MCS showed that depth and velocity of indentation were the
most influential parameters for the strain and the strain rate-based injury metrics,
respectively. The sensitivity analysis and comparison with the cortical damage
experimental data indicate a better performance of maximum principal strain and
maximum shear strain as tissue-level injury metrics for CC. These results provide
guidelines to optimize the design of CCI tests and bring new insights to the
understanding of the mechanical response of brain tissue to focal traumatic brain
injury. Our findings also highlight the potential of using ML for computationally efficient
TBI biomechanics investigations.
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INTRODUCTION

Cerebral contusion (CC) is a common type of traumatic brain
injury (TBI) found across all age groups, which is often associated
with lifelong disability and mortality (Alahmadi et al., 2010;
Kirkman et al., 2013; Melvin and Yoganandan, 2015). CC is a
focal TBI occurring from direct impacts and consisting of a bruise
on the brain’s surface (Hardman and Manoukian, 2002). CC is
pathologically characterized by hemorrhagic lesions
accompanied by necrosis and edema that generate within the
cortex. In severe cases, CC can develop in the subcortical white
matter, which may require immediate surgical intervention
(McGinn and Povlishock, 2016). Besides falls and assaults,
accidents on public roads are a major cause of CC (Ratnaike
et al., 2011). Depreitere et al. (2004) found that 73% of the victims
of bicycle-related casualties were diagnosed with CC. There is still
no consensus on the mechanism causing CC, although a few
theories have been proposed; these include the cavitation arising
from the negative pressures generated at the opposite side with
respect to the impact location (Gross, 1958) and the shear strain
at bony protuberances consequent to the relative motion between
skull and brain tissue (Holbourn, 1943), which could explain why
the majority of CC are observed in the frontal and temporal lobes
(Ommaya and Ommaya, 1995; Depreitere et al., 2004; Ratnaike
et al., 2011).

Controlled cortical impact (CCI) is commonly used as a model
of brain trauma to investigate the mechanopathology of CC in
vivo on different animal species, including ferret, rodent, swine,
and nonhuman primates (Xiong et al., 2013; Osier and Dixon,
2017; Kinder et al., 2019). In CCI experiments, a pneumatically or
electromagnetically driven piston delivers the impact on the
animal’s exposed brain with a preestablished velocity and
depth of indentation, therefore inducing a reproducible and
localized injury. The swine model has been largely used
because of the similarities with humans in terms of
pathological features (Kinder et al., 2019) and brain tissue’s
mechanical properties (MacManus et al., 2020). However, a
large span of values has been reported in the literature for
experimental parameters, including but not limited to, the
geometrical characteristics of the impactor or the depth and
velocity of impact (Duhaime et al., 2000; Alessandri et al.,
2003; Manley et al., 2006; Meissner et al., 2011; Sindelar et al.,
2017; De Kegel et al., 2021). The variability and the uncertainty of
the experimental parameters all contribute to the uncertainty in
the injury outcome provoked by CCI.

Computational models of the head have been extensively used
to quantify in mechanical terms the intracranial response to TBI
by analyzing the relationship between the functional/structural
damage and the brain tissue’s stress and strain fields (Chen et al.,
2014). In particular, finite element (FE) models have been
regarded as valuable tools to determine tissue-level local injury
thresholds for specific types of TBI (Kleiven, 2007; Scott et al.,
2016; Giordano et al., 2017; Zhao et al., 2017; Horstemeyer et al.,

2019; Zhou et al., 2019; Hajiaghamemar et al., 2020; Trotta et al.,
2020; Wu et al., 2021). Regarding CC, several injury metrics have
been proposed based on different quantities, with lack of
agreement on which criterion outperforms the others. These
metrics include maximum principal strain (Shreiber et al.,
1997; Miller et al., 1998; Viano and Lövsund, 1999; Mao et al.,
2010b; Mao and Yang, 2011), shear strain (Mao and Yang, 2011),
strain rate (Viano and Lövsund, 1999; King et al., 2003), product
of strain and strain rate (Viano and Lövsund, 1999; King et al.,
2003), strain energy density (Shreiber et al., 1997; Mao and Yang,
2011), von Mises stress (Shreiber et al., 1997; Miller et al., 1998),
maximum principal stress (Shreiber et al., 1997), shear stress
(Huang et al., 2000), and intracranial pressure (Miller et al., 1998;
Huang et al., 2000; Takhounts et al., 2003; Mao and Yang, 2011;
Mao et al., 2013). In the case of focal injury patterns resulting
from, for example, CCI or dynamic vacuum pressure tests, the use
of strain and strain rate injury criteria is preferred over other
metrics assessed in the literature, such as those based on stress,
intracranial pressure, or strain energy (Shreiber et al., 1997; Mao
and Yang, 2011). While several FE models of the pig brain have
been developed to investigate different diffuse TBI scenarios
(Coats et al., 2012; Zhu et al., 2013; Yates and Untaroiu, 2016;
Hajiaghamemar and Margulies, 2021; Wu et al., 2021), no
computational model has specifically targeted the localized
brain response to CCI experiments.

A recognized disadvantage of FE head models that have a
high degree of geometrical complexity and biofidelity is the
significant simulation runtime (Takhounts et al., 2008; Wu
et al., 2020; Ghazi et al., 2021; Zhan et al., 2021) even when
using high-performance computing platforms. This hampers
the feasibility of studies that require repeated simulations,
such as design optimization workflows, parameter
estimation, or uncertainty quantification analyses. For the
latter category, probabilistic methods are commonly used in
biomechanics (Pal et al., 2008; Laz and Browne, 2010;
Strickland et al., 2010; Bartsoen et al., 2021). Among them,
the Monte Carlo simulation (MCS) is regarded as the gold
standard technique because of its robustness and ability to
converge to the correct uncertainty distribution solution (Laz
and Browne, 2010). However, MCS is a time-consuming
technique since it involves random sampling of the
complex model, for example, the FE porcine brain model,
depending on the statistical distribution of the input
parameters. The accuracy of the solution (i.e., the
uncertainty of the outcome of the model) depends on the
number of samples considered, which can lead to
computationally costly analyses. A time-efficient
alternative is to use surrogates of the computationally
expensive FE models. The development and
implementation of supervised machine learning
(ML)–based surrogates of complex biomechanics models is
relatively recent. Promising applications of the ML surrogates
include parameter estimation and uncertainty quantification

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org October 2021 | Volume 9 | Article 7141282

Menichetti et al. ML for CC-Metrics Uncertainty Quantification

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


problems across several fields, such as TBI (Cai et al., 2018;
Wu et al., 2019; Ghazi et al., 2021; Schroder et al., 2021; Zhan
et al., 2021), cardiovascular (Davies et al., 2019; Cai et al.,
2021) and musculoskeletal biomechanics (Pal et al., 2008;
Strickland et al., 2010; Bartsoen et al., 2021). Regarding the
research on head impact biomechanics, Wu et al. (2019),
Ghazi et al. (2021), Zhan et al. (2021) employed machine
learning algorithms to predict the brain strain response of
computationally expensive FE models of the human head in
an accurate and time-efficient way. Once trained and tested,
the ML surrogates can estimate the outcome of the complex
model in a conveniently short time frame. In the case of
uncertainty quantification problems, an MCS can be directly
performed on the ML surrogate outcome with the advantage
of reducing dramatically the computational cost, albeit
accepting a degree of approximation (Laz and Browne, 2010).

This study has four main outcomes. First, we present the FE
model of an atlas-based porcine brain undergoing CCI, which
predicts the mechanical response of the brain tissue to the
impact. Second, we develop an artificial neural network as a
computationally efficient ML surrogate of the FE pig brain
model. Third, by means of the ML surrogate model, we
evaluate the effect of different experimental and modeling
parameters on four potential CC injury metrics, that is,
maximum principal strain, maximum principal strain rate,
product of maximum principal strain and strain rate, and
maximum shear strain. Finally, we compare the experimental
cortical injury data from in vivo CCI tests on pig brain with
the in silico results in order to evaluate the prediction
performance of the tissue-level injury metrics specific for CC.

MATERIALS AND METHODS

Controlled Cortical Impact Tests
The experimental data on the assessment of CC damage were
retrieved from a previous study within our research group, where
34 Landrace male domestic pigs, aged 4–5 months, and weighing
on average 60.7 ± 10.9 kg underwent controlled cortical impacts in
vivo (Figure 1). The full description of the experimental protocol
can be found in De Kegel et al. (2021) and it is briefly summarized
here. General anesthesia was induced to the animals prior to
performing craniotomy, which was done unilaterally on the left
hemisphere and was located immediately parasagittal and posterior
to the coronal suture. Afterward, the impact was delivered directly
on the exposed dura mater by means of an electromagnetically
controlled cortical impactor (PinPoint PCI3000, Hatteras
Instrument Inc.), which regulated the impact depth (range
between 1.1–12.6 mm), velocity (range between 0.4–2.2 m/s),
and dwell time (� 200 ms) of an hemispherical stainless steel tip
(diameter � 10mm). A brain magnetic resonance (MR) scan
(Prisma Fit 3T scanner, Siemens) was performed under general
anesthesia 48 h after the impact to ensure full development of CC.
The presence of cortical damage and underlying white matter
edemawere evaluated on theMR scans by a senior neuroradiologist
and a senior neurosurgeon. The volume of white matter edema was
quantified using image segmentation (Mimics, Materialise). After
the scans, the animals were euthanized and the brain was extracted
for histology processing with the aim of confirming the presence of
cortical necrosis, an indicator of the provoked CC. Table 1
summarizes the combination of impact parameters chosen and
the cortical damage evaluation in the 14 cases of the cohort for
which full CC assessment was possible.

Development and Validation of the FEModel
of the Porcine Brain Undergoing CCI
The FE model mimics the experimental loading conditions that
the porcine brains underwent during CCI testing. The model

FIGURE 1 | Controlled cortical impact setup [adapted from De Kegel
(2018)] and positioning of the animal prior to testing. The white arrow indicates
the point where the craniotomy is performed after sedating the animal. The
circular image on the top right corner illustrates how the probe is
mounted on the electromagnetically driven actuator and is placed over the
closed dura mater before the impact.

TABLE 1 | Experimental impact parameters and results of the CCI performed in
vivo on the pig brain (De Kegel et al., 2021) for which medical imaging and
histological assessment of CC were available. In case of detectable disruption of
the cortical layer the “Cortical damage” is marked as “ + ,” otherwise as “ −. ” The
animal number in parentheses refers to the numbering used in De Kegel et al.
(2021).

Animal # Peak depth (mm) Velocity (m/s) Cortical damage

I (12) 11.2 2.1 +
II (13) 8.9 2.2 −

III (14) 9.1 1.8 +
IV (15) 10.8 1.8 +
V (16) 10.8 1.8 +
VI (17) 12.6 1.7 +
VII (18) 8.9 2.2 +
VIII (19) 6.9 2.2 +
IX (20) 5.5 2.0 +
X (21) 4.3 1.5 −

XI (22) 2.3 0.8 −

XII (31) 2.0 0.4 −

XIII (33) 1.1 0.4 −

XIV (34) 2.8 0.4 +
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consists of the impacting probe, the skull, the meningeal complex,
the cerebrospinal fluid, and the brain. The geometry of the brain
was generated in 3-Matic (Materialise) after segmentation in
Mimics (Materialise) using a high voxel resolution (100 μm ×
150 μm × 100 μm)MR image-based 3D atlas of the domestic pig’s
brain (Saikali et al., 2010). The obtained mask was smoothed
while preserving the gyral pattern. The 3D atlas-based geometry
was rescaled by a factor of 1.27 to match the average brain size of
the pigs of the experimental cohort, calculated by measuring the
anteroposterior length of the corpus callosum in the sagittal plane
of every post-CCI MR scan. Since the standard deviation of the
scaling factors was relatively low (� 0.07), we used a single brain
size for all CCI cases. In order to reduce the computational cost,
only the left hemisphere was considered for the model. This is a
fair approximation, justified by the fact that unilateral CCI has a
negligible effect on the unimpacted hemisphere (Elliott et al.,
2008; Mao and Yang, 2011). The two outermost meningeal
membranes (i.e., the dura-arachnoid mater (DAM)) were
modeled as a unique part, while the third and innermost layer
(the pia mater) was integrated into the brain part, in a similar
fashion as MacManus et al. (2017). The DAM geometry was
generated in 3-Matic by offsetting the cortical surface of the brain
outwards and subsequently wrapping and smoothing the brain
convolutions. Similar to Coats et al. (2012), an average gap of
1 mm was maintained between the surface of the brain and the
inner surface of the DAM to account for the subarachnoid space
in which the cerebrospinal fluid (CSF) flows.

The skull was generated by extending the DAM geometry
outwards. A circular hole (diameter � 23 mm) on the superior
part of the skull was created in 3-Matic to mimic the unilateral
craniotomy and to virtually expose the dura mater. Here, the
discrete rigid skull surface is acting as a geometrical boundary to
constrain unrealistic deformations of the DAM and the brain,
rather than being a strict anatomical representation of the porcine
cranial bones (Figure 2).

All the porcine geometrical parts were imported into ANSA
(BETA CAE Systems) for mesh generation, which was performed
using quality control criteria that included an aspect ratio <3,
skewness >0.7, Jacobian >0.7, minimum angle for triangles and
tetrahedrons >30°, and maximum angle for triangles and
tetrahedrons <120°. The meshes of the brain and DAM were
refined in the vicinity of the impact point of the probe. A
convergence analysis was carried out on the brain mesh to
ensure stability and sufficient resolution of the mesh while
minimizing the computational runtime. The optimal brain
mesh resulting from the convergence analysis findings counted
203,167 quadratic tetrahedral elements of type C3D10M from the
Abaqus/Explicit v.2019 (Dassault Systémes) library. This was
preferred over the regular second-order tetrahedrons of type
C3D10 due to its superior performance in minimizing
volumetric locking for nearly incompressible materials. The
skull mesh consists of 3,090 linear triangular discrete rigid
elements, while the DAM consists of 20,590 linear triangular
shell elements (type S3R) with thickness that varies between 0.413

FIGURE 2 | Finite element model of the porcine brain undergoing CCI. (A)Overview of the assembly of the model. The skull, the DAM, and the CSF are represented
with parallel sectioned views. The mesh of the discrete rigid parts (skull � yellow and probe � gray) is depicted in black, while the mesh of the deformable bodies (brain
hemisphere � pink, DAM � cyan), which is finer in the vicinity of the impact point, is colored in blue. The cavity filled by CSF is represented in light blue. (B) The zone
highlighted in red represents the elements of the brain (in the undeformed configuration) belonging to the region of interest (ROI), considered for the computation of
the 95th percentile of MPS, MPSR, MPSXSR, and MSS. (C) Maximum principal strain distribution on a parasagittal cross section of the brain when the probe reaches
maximum depth. The image is taken from one of the FE CCI simulations used to train the ANN. The input parameters were: a hemispherical probe (diameter � 15 mm),
velocity of indentation � 1.8 m/s, depth of indentation � 5.4 mm, angle of inclination � 3°, DAM-probe friction coefficient � 0.24, and thickness of the meninges �
0.655 mm. The highest MPS values are concentrated around the impact point, within the ROI.
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and 1.058 mm (see Input and Output Parameters of the FEModel)
to cover the range of values reported by Vanmol (2017) and
Walsh et al. (2018). Linear triangular discrete rigid elements were
used to mesh the probe, with the number of elements varying
between 498 and 5,324 depending on the diameter size.

Both the brain and the DAM were considered to be
homogeneous and isotropic materials, using neo-
Hookean–based quasi-linear viscoelastic models. The material
properties were retrieved from MacManus et al. (2017), who
characterized the mechanical behavior of the porcine brain and
the DAM under large deformation by means of dynamic
indentation in situ. Specifically, the viscoelastic parameters
were obtained by fitting the results of an inverse finite element
model of the indentation experiments with simulated loading
conditions representative for the CCI.

The presence of CSF was included by using the fluid-filled
cavity definition available in Abaqus to model liquid-filled
structures enclosed by surfaces. The density and bulk modulus
of water were used to approximate the CSF (Kleiven, 2007).
Table 2 provides a summary of all the material parameters used
in the FE model of the porcine brain.

The “general contact” definition was used to govern the
interactions between parts, with a penalty friction formulation
tomodel the interaction between the probe and the outer surface of
the DAM. The friction coefficient varied between 0.07 and 0.26 (see
Input and Output Parameters of the FE Model) or the range of
values reported by Rashid et al. (2012), who estimated the friction
between the porcine brain and metal platens with unconfined
compression tests. Here, we assumed that the porcine brain and
DAM have the same frictional behavior against metal. Only one
hemisphere was considered in the FE model; therefore, we
constrained the out-of-sagittal plane linear and rotational
motion of the medial side of the DAM to mimic the presence
and mechanical role of the falx (Walsh et al., 2021). In a similar
way, given the distance from the area of influence to the impacting
probe, we simplified the presence of the diencephalon, the
brainstem, and the cerebellum by constraining any translation
of the inferior part of the DAM. The simulated time was varied as a

function of the assigned probe’s displacement-time profile to
include 50 ms of dwell time after the probe reached the
maximum indentation depth. The simulations were run
using the explicit solver of Abaqus v. 2019, which
accounted for geometric nonlinearities throughout the
whole computation. Element mass scaling was introduced if
the stable time increment decreased below 1.2 × 10−6 s. We
verified that the total percent change in mass of the model
resulting from mass scaling was <4% for all simulations.

With the aim of collecting data to validate the assumptions made
in the FE model, we performed an additional test in vivo on a pig
(from an unrelated experiment) to measure the reaction force
exerted by the brain on the probe during a CCI, since De Kegel
et al. (2021) reported no quantitative assessment of the mechanical
response of the pigs’ brains to the impacts. To this extent, a dynamic
load cell (PCB 208B, load capacity � ±45 N, resolution � 0.0009 N)
was mounted on the CCI device using a custom-made nylon
support. The hemispherical probe was connected to the load cell
by means of a lightweight, aluminum threaded support. The pig
underwent the same testing protocol as described in De Kegel et al.
(2021), with the same velocity and depth of indentation of case III
(Table 1), that is, 1.8 m/s and 9.1 mm. During the impact, the force
in the direction of the axis of the probe was measured with a
sampling rate of 5,000 Hz. Subsequently, the CCIwas simulatedwith
the porcine brain FEmodel, and the force exerted by the brain on the
probe in the direction of its axis was computed. The computational
and experimental force-time signals were compared and their
correlation was quantified using the software CORA (Correlation
and Analysis, Version 3.6.1) (Gehre et al., 2009) to verify that the
brain impact mechanics was correctly modeled. The CORA software
combines two independent rating techniques (the cross-correlation
and the corridor method) to express the level of similarity between
the experimental and computational curves with a score between 0
and 1, with 1 meaning perfect correlation. The two ratings had equal
weight on the overall rating (G1 � G2 � 0.5). Regarding the cross-
correlation–based score, we set equal weights (� 1/3) to amplitude,
shape, and phase errors. A linear transition between ratings was
chosen (kV � kP � kG � 1).

TABLE 2 | Material properties used in the FE model of the porcine brain FE.

Part Density Material model Material parameters

Brain 1,060 kg/m3 Neo-Hookean–based quasi-linear viscoelastic μ � 6.97 kPa
ν � 0.49995MacManus et al. (2017)
g1 � 0.451
g2 � 0.301
τ1 � 0.021 s
τ2 � 0.199 s

Dura-arachnoid mater (DAM) 1,000 kg/m3 Neo-Hookean–based quasi-linear viscoelastic μ � 19.10 kPa
ν � 0.4MacManus et al. (2017)
g1 � 0.568
g2 � 0.240
τ1 � 0.034 s
τ2 � 0.336 s

Cerebrospinal fluid (CSF) 1,000 kg/m3 Homogeneous fluid–filled cavity K � 2.1 GPa

μ, shear modulus; ν, Poisson’s ratio; g1 and g2, first and second term of the relaxation function of the Prony series that describes the viscoelastic behavior; τ1 and τ2, first and second term
of the time constant of the Prony series that describes the viscoelastic behavior; K, bulk modulus.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org October 2021 | Volume 9 | Article 7141285

Menichetti et al. ML for CC-Metrics Uncertainty Quantification

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Input and Output Parameters of the FE
Model
Seven parameters of the FE model were considered for the
uncertainty and sensitivity analyses due to the relatively large
spread of values reported in the literature. The list included the
probe’s diameter and shape (hemispherical or cylindrical), the
velocity and the depth of indentation, the friction between the
DAM and the probe, the inclination angle between the axis of
the probe and the normal of the DAM surface, and the thickness of
the DAM. Each of these input parameters varied between a lower
and upper bound with specific statistical distributions (Table 3).
The lower and upper bounds for the probe geometrical and
kinematics parameters (i.e., diameter, shape, angle of
inclination, and velocity and depth of indentation) were chosen
to comprise the values reported in the literature for CCI tests on pig
brain (Madsen and Reske-Nielsen, 1987; Duhaime et al., 2000;
Alessandri et al., 2003; Manley et al., 2006; Meissner et al., 2011;
Sindelar et al., 2017; De Kegel et al., 2021). For the friction between
the probe and the DAM, the coefficients obtained experimentally by
Rashid et al. (2012) were used. Finally, the measures on the porcine
meninges performed byVanmol (2017) andWalsh et al. (2018) were
used to determine the lower and upper bound of theDAM thickness.

The FE porcine brain model was used to compute the
mechanical response of the brain to the CCI. We considered
four different tissue-level injury metrics: the logarithmic
maximum principal strain (MPS), the logarithmic maximum
principal strain rate (MPSR), the product of logarithmic
maximum principal strain and strain rate (MPSXSR), and the
logarithmic maximum shear strain (MSS). As estimators of CC,
we computed the 95th percentile of the peak MPS, MPSR,
MPSXSR, and MSS of the brain elements belonging to the
region of interest (ROI) in the brain that is directly affected by
the CCI, namely, where the primary focal traumatic brain injury
can arise (Figure 2). The elements were considered as a part of the
ROI if their centroid was within a 40 mm distance from the
impact point on the brain surface. We did not consider the 100th
percentile of the peaks in order to discard any unrealistically high
values due to computational artifacts (Panzer et al., 2012).

Machine Learning–Based Surrogate Model
To perform the uncertainty quantification in a computationally
efficient way, we developed a surrogate of the FE porcine brain
model. An artificial neural network (ANN) was employed as the
surrogate modeling technique, which was implemented in

TensorFlow 2.0.2 (Abadi et al., 2016). The ANN algorithm
was adapted from Bartsoen et al. (2021), who demonstrated
the superior accuracy performance of ANN with respect to
other probabilistic modeling techniques based on the response
surface method, such as 2nd order polynomial, Gaussian process
regression, or support vector regression (Laz and Browne, 2010).
To train and validate the ANN, we generated a total of n samples,
where each sample consisted of a set of seven input values (one
per input parameter) selected with the Sobol sequence among the
ranges indicated in Table 3, and four outputs (the 95th percentile
of MPS, MPSR, MPSXSR, and MSS) computed with the FE
porcine brain model. The amount of training and validation
samples were 0.9 n and 0.1 n, respectively.

The architecture of the network consisted of fully connected
layers (7:256:128:64:32:16:4) with the Softplus activation function
a(x) � ln(1 + exp(x)), where x is the input to a neuron. The
output layer had the ReLU activation function a(x) � x+ �
max(0, x) to exclude negative outputs. As our loss function,
we used the Huber loss function, as given below:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2
e2 if |e|≤ d

1
2
d2 + d(|e| − d) if |e|> d

, (1)

where e represents the residuals, that is, the difference between
the observed (y) and predicted values (ŷ): e � y − ŷ, while d is a
parameter set equal to 0.1. The Huber loss computed using Eq. 1
has a similar behavior as the mean squared error (MSE) for small
errors but the mean absolute error (MAE) for large errors so that
it is less affected by outliers. The network was trained using an
Adam optimizer with a learning rate � 0.001 that decays upon
convergence of the loss. To prevent overtraining, L2 kernel
regularization was applied. The ANN accuracy was further
improved with ensemble averaging, in which we considered a
weighted average of six networks trained on the same training
and validation data. The weights were optimized by minimization
of the validation MSE. The normalized mean absolute error
(nMAE), normalized root mean squared error (nRMSE), and
95% absolute error (95% AE) were evaluated. The nMAE
and nRMSE were computed after normalizing the output
range to [0;1], while the 95% AE gives the 95th percentile of
the AE. The optimal number of samples used to train and validate
the ANN was selected after carrying out a 5-fold cross-validation.

TABLE 3 | Range of values and statistical distribution of the input parameters of the porcine brain FE model considered for the uncertainty and sensitivity analyses. For the
DAM-probe friction and DAM thickness parameters normal distributions are used, since their values are measured experimentally. The parameters that are selected
upon designing the CCI experiments have either a discrete or uniform distribution.

Input parameter Lower bound Upper bound Statistical Distribution

Diameter probe 5 mm 20 mm Discrete
Shape of the tip of the probe 0 (�cylindrical) 1 (�hemispherical) Discrete
Velocity of indentation 0.4 m/s 4 m/s Uniform
Depth of indentation 1.1 mm 12.6 mm Uniform
Inclination of the probe −15° 15° Uniform
DAM-probe friction 0.07 0.26 Normal
Thickness DAM 0.413 mm 1.058 mm Normal
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The ANN performance was evaluated considering the nMAE,
nRMSE, and 95% AE on the validation and training samples for
each of the four outputs, considering a total of 10, 20, 40, and 80
samples. The minimum number of samples that yielded nMAE,
nRMSE, and 95% AE < 4% was 80 (training samples � 72,
validation samples � 8).

With the ML surrogate model, we achieved a considerable
increase in computational efficiency compared to a typical FE
model simulation. The average computational time to simulate a
CCI with the FE porcine brain model was approximately 2 h
when parallelizing the execution between 144 domains (Xeon
Gold 6140, CPUs at 2.3 GHz) using the high-performance
computing centrum (VSC—Flemish Supercomputer Center).
On the contrary, generating 80 FE samples took ∼160 h, while
the training of the ANN was completed in about 7 min.
Predicting the values of the CC injury estimators with the
trained ANN was immediate (<0.01s); therefore, the advantage
of utilizing a surrogate model for uncertainty and sensitivity
analyses is clear, especially when considering the large number of
simulations necessary for the sensitivity analysis (see Sensitivity
Analysis).

Sensitivity Analysis
Once the ANN was trained and tested, we utilized the surrogate
model as basis for the Monte Carlo simulations because of its very
low computational cost in generating a large number of samples
(Laz and Browne, 2010). Knowing the statistical distributions of the
input parameters (Table 3), we performed the uncertainty analysis
using the MCS with 10,000 samples. In each MCS, one parameter
was kept constant and equal to a value inside the bounds according
to its statistical distribution. In particular, the shape had two
possible levels (0 � cylindrical probe and 1 � hemispherical
probe), the diameter of the probe had four (5–10–15–20mm),
and all the other parameters had ten each (ten values equally
spaced between the lower and the upper bound, shown inTable 3).
Therefore, we repeated the MCS 56 times in order to assess the
effect of each individual input on the injury metrics.

To rank the importance of the influence of the input
uncertainty on the output distribution, we computed two
global indicators using the open source Python’s library
SALib. The first one is the δ moment-independent measure
(Borgonovo, 2007)

δi � 1
2
EXi[s(Xi)],

where δi is the moment-independent indicator of the sensitivity
of the output, Y, to the input parameter Xi, and EXi[s(Xi)]
represents the expected shift in the distribution of Y provoked
by Xi.

The second indicator considered here is the first-order
sensitivity index S1(Sobol, 2001),

S1i � Vi

V[Y],

where S1i is the first-order sensitivity index specific to the input
parameter Xi, which represents the expected reduction in the

variance of the output V[Y] in a hypothetical case in which the
uncertainty relative to the input parameter, Xi, would be
excluded.

One common mathematical property for both indicators is
that given an input parameter,Xi, for a fixed output, Y, the closer
δi or S1i are to 1, the more important the parameterXi is for Y. In
the extreme case, if δi or S1i � 1, then Y only depends on Xi;
conversely if δi or S1i � 0, then Xi has no influence on Y. The
seven δi’s and seven S1i’s were estimated after generating 10,000
sets of input parameters by means of Latin Hypercube sampling,
which were used in the ML surrogate model to predict the 95th
percentile of MPS, MPSR, MPSXSR, and MSS.

Performance Evaluation of the CC Injury
Metrics
The case-specific 95th percentile MPS, MPSR,MPSXSR, andMSS
were predicted by the trained ANN using the known
experimental parameters of each CCI test as input. For all the
CCI cases we used diameter of the probe � 10 mm, inclination of
the probe � 0°, and shape of the tip � 1 (hemispherical). We
assumed friction of the DAM-probe � 0.163 mm and thickness of
the DAM � 0.736 mm, that is, the mean values of the
corresponding normal distributions (Table 3). The velocity
and depth of indentation were chosen depending on the
values specific for each test (Table 1). In order to use binary
values to express the presence or absence of visible disruption of
the cortical layer (Table 1), we used the dummy variable “1”when
CC was confirmed and “0” when no injury was detected.

A Wilcoxon Rank-Sum test (significance level � 0.05) was
carried out to assess the effectiveness of each injury estimator in
distinguishing between CCI cases with cortical damage and
without cortical damage.

The injury risk curves that express the likelihood of sustaining
CC depending on the different FE-derived injury predictors were
obtained by performing univariate logistic regression, a technique
that has been broadly used to determine injury tolerances based
on experimental data and predict the outcome of TBI (Shreiber
et al., 1997; Takhounts et al., 2003; Kleiven, 2007; Steyerberg et al.,
2008; Cai et al., 2018; Anderson et al., 2020; Hajiaghamemar et al.,
2020). We selected a logistic regression classifying method due to
the binary nature (CC or no CC) of the outcome of the CCI data,
obtained by means of the post-injury MR scans and histology
assessments (De Kegel et al., 2021). In the logistic regression
model the probability p of sustaining CC as function of an injury
predictor X is described by the relationship

p(X) � 1
1 + exp( − b0 + b1 ·X),

where b0 and b1 are the regression coefficients.
The accuracy of the injury metric-specific prediction of CC

likelihood was evaluated using a leave-one-out cross-validation
(LOOCV). We selected a LOOCV framework because of its low
bias and the limited size of our dataset (14 samples) (Beleites et al.,
2005; Cai et al., 2018; Anderson et al., 2020). In order to perform
an objective comparison between the performances of the
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univariate logistic regression classifiers, we computed the
LOOCV accuracy, sensitivity, and specificity. We also reported
the AUC, that is, the area under the receiver operating
characteristic (ROC) curve, for both the training and the
testing datasets, similar to Cai et al. (2018) and Anderson
et al. (2020). In particular, the metric-specific AUC value for
the training dataset was calculated as the average of the AUCs of
14 independent injury predictions and each one obtained
considering 13 simulated CCI cases, conforming to the
LOOCV framework. The metric-specific AUC value for the
testing dataset was determined taking into account the 14
independent injury predictions. The implementation of the
LOOCV framework and the performance evaluation of the
injury estimators were carried out using Python’s machine
learning library scikit-learn.

RESULTS

To validate the FEmodel of the porcine brain undergoing CCI, we
calculated the CORA score by comparing the experimentally
measured and the simulated force-time curves of the probe. The
overall CORA rating was equal to 0.827 (the cross-correlation
method � 0.880 and the corridor method � 0.773), which
corresponds with the “good biofidelity” category. Therefore,
the FE model yielded a sufficiently accurate prediction of the
localized force-time response of the pig’s brain to CCI (Figure 3).

The 95th percentiles of the MPS, MPSR, MPSXSR, and MSS of
10,000 simulations were predicted using the ML-based surrogate of
the porcine brain’s FE model. The results of the MCS are shown in
Figure 4, which displays the effect (indicated by the slope of the curves
representing the median response) that each individual input
parameter has on the predicted injury metrics, as well as on their
variability. Interestingly, the angle of inclination, the DAM-probe
friction, and the thickness of the DAM have minimal or no influence

on the four injury metrics. The difference in shape of the probe’s tip
has little effect onMSS andMPS, while it produces more pronounced
discrepancies in terms of MPSR and MPSXSR. In particular, a
hemispherical probe yields both lower strain and strain rates. The
median of all four injury metrics increases quasi-linearly with the
diameter of the probe; however, their variability (i.e., the 95%
confidence interval bound) increases nonlinearly when considering
larger diameters. Although all injury metrics increase with the velocity
of indentation, the quasi-linear relationship observed with MPS and
MSS is not apparent for MPSR and MPSXSR where large variability
for higher speeds is visible. Large variability at higher values and
nonlinearity of themedian are also noticeable forMPSR andMPSXSR
as a function of the depth of indentation.MPS andMSS exhibit quasi-
linear and monotonically increasing relations with the depth of
indentation. The variability of MPS and MSS as a function of the
depth of indentation is the lowest of all, suggesting that the depth of
indentation has a prominent role in the definition of the brain
strain field.

The results of the sensitivity analysis with 10,000 samples are
displayed in Figure 5. Both sensitivity indicators show a very
similar trend in terms of ranking the importance of the input
parameters despite showing different absolute values. In
particular, the most important parameter for MPS and MSS is
the depth of indentation (MPS: δ � 0.414 ± 0.008, S1 � 0.683 ±
0.008; MSS: δ � 0.477 ± 0.007, S1 � 0.772 ± 0.004), while the
parameter with the biggest influence on MPSR and MPSXSR is
the velocity of impact (MPSR: δ � 0.372 ± 0.008, S1 � 0.546 ±
0.015; MPSXSR: δ � 0.341 ± 0.007, S1 � 0.453 ± 0.011). On
the contrary, the angle of inclination, the DAM-probe friction,
and the thickness of the DAM exhibited little or no influence on
any of the four injury metrics, which was demonstrated by both δ
(<0.05 for all injury metrics) and S1 (<0.005 for all injury
metrics). The diameter of the probe ranked as the third most
influential parameter on all injury metrics (MPS: δ 0.063 ± 0.003,
S1 � 0.036 ± 0.007; MPSR: δ � 0.167 ± 0.004, S1 � 0.148 ± 0.010;
MPSXSR: δ � 0.135 ± 0.008, S1 � 0.120 ± 0.011; MSS: δ � 0.060 ±
0.003, S1 � 0.031 ± 0.007). The shape of the probe exhibited
limited influence on the outcome of the simulations, with slightly
higher δ in case ofMPSR andMPSXSR (0.059 ± 0.005 and 0.061 ±
0.003, respectively) and slightly higher S1 when considering
MPSR (� 0.030 ± 0.005). The complete table with δ moment-
independent measures and first order sensitivity indices S1 of the
injury metrics as a function of the input variables is available in
the Supplementary Material.

The effectiveness of each scalar injury metric in separating
between cases with CC and without CC based on the magnitude
of the estimator was assessed via the Wilcoxon Rank-Sum test. The
statistical analysis (Figure 6) confirmed that the 95th percentiles of
MPS and MSS were significantly different between the simulated
cortical damage and no damage cases (p-value � 0.0234 in both
cases). Conversely, within the considered dataset, the 95th percentile
of MPSR and MPSXSR of the injury and no injury groups were not
significantly different (p-values � 0.110 and 0.083, respectively).

The LOOCV procedure was implemented to test the robustness
and compare the performance of the metric-specific univariate
logistic regressions. Within the LOOCV framework, the accuracy,
sensitivity, specificity, and AUC on the testing dataset scores were

FIGURE 3 | Results of the validation of the FE porcine brain model. The
reaction force exerted by the impacted brain on the probe during the CCI was
measured experimentally and compared with the force-time history simulated
with the FE model.
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equivalent for all the FE-based injury predictors (Table 4). However,
the AUC score calculated on the training datasets revealed that MPS
and MSS (both average AUC � 0.878) outperformed MPSR (0.767)
and MPSXSR (0.789). The ROC curves for both the testing and
training datasets are available in the Supplementary Material.

Figure 7 illustrates the injury risk curves representing the
probability of sustaining CC as a function of the 95th percentile
of MPS, MPSR, MPSXSR, and MSS predicted with the porcine
brain ML surrogate model and based on the in vivo CCI data.
We determined the metric-specific injury thresholds by
computing the value of the predictors that corresponds to a
50% probability of sustaining CC, estimated using the univariate
logistic regression curve of the whole dataset. The obtained
thresholds were MPS � 0.16, MPSR � 245 s−1, MPSXSR � 45 s−1,
and MSS � 0.22.

DISCUSSION

FE Porcine Brain Model
The FE model simulated the intracranial response of the porcine
brain undergoing CCI to explore the relationship between the
deformation and rate of deformation of the cerebral tissue and the
risk of sustaining CC. Besides the reduced simulation runtime
resulting from using a simplified geometry, the rationale behind
the development of a single brain hemisphere model was the focal
nature of CC induced by CCI tests, which are designed to damage
only the ipsilateral side of impact (Alessandri et al., 2003; Elliott
et al., 2008). Contrary to other porcine head FE models that cope
with loading conditions involving the kinematics of the whole
head (Coats et al., 2012; Yates and Untaroiu, 2016;
Hajiaghamemar and Margulies, 2021), the current model is

FIGURE 4 | Outcome of the MCS performed on the surrogate of the porcine brain FE model. The variability of the CC injury metrics (i.e., 95th percentile of MPS,
MPSR, MPSXSR, and MSS in the ROI) is shown as a function of the input parameters. The solid line represents the median while the shaded area delimits the 90%
confidence interval.

FIGURE 5 | Sensitivity indicators (with 95% confidence interval) of the injury metrics with respect to the input parameters (d_probe � diameter of the probe, v_ind �
velocity of indentation, d_ind � depth of indentation, theta � inclination of the probe, mu � DAM-probe friction, t_m � thickness DAM, and shape � shape of the tip of the
probe). (A) δ moment-independent measure; (B) S1 first-order sensitivity index.
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conceived to simulate localized impacts only, therefore the
geometrical simplification adopted is sufficient. The validation
carried out by comparing the impact forces supported the
suitability of the FE model and its boundary conditions.
However, no experimental measurement of the brain tissue
deformation was available for further validation, which,
therefore, represents a limitation. In vivo measurements of the
deformation of the brain tissue during CCI are practically very
challenging, given the very limited visibility of the cortex and
accessibility between the probe and the craniotomy burr hole.
Future validation efforts could consider measuring dynamic
cortical deformation in vivo by applying vacuum pulses on the

exposed parenchyma, as reported by Schreiber et al. (1997) and
Mao et al. (2006) using rat brains. The stability of the model was
ensured for all the simulations, where no excessive distortion of
the deformable parts (i.e., brain and DAM) was observed.

The assumptions of homogeneity and isotropy of both the
brain-pia mater and DAM complexes could represent a matter of
debate for the present FE model. Indeed, various studies have
reported that porcine gray and white matter might display
different stiffness, although these differences seem to depend
on the testing conditions (Prange andMargulies, 2002; Gefen and
Margulies, 2004; van Dommelen et al., 2010; Elkin et al., 2011;
Kaster et al., 2011; Li Z. et al., 2020). Moreover, integrating the pia
mater with the underlying brain tissue might underestimate the
protective role of the innermost meningeal layer, which exhibits a
higher elastic modulus than the brain (Li Y. et al., 2020; Walsh
et al., 2021). While it is generally agreed upon that gray matter
shows an isotropic behavior, it has been reported that white
matter exhibits a degree of anisotropy in regions with significant
axonal fiber alignment such as the corpus callosum (Prange and
Margulies, 2002; vanDommelen et al., 2010; Feng et al., 2017). On
the other hand, the homogeneity and isotropy of the mechanical
behavior of the cerebral dura mater, in spite of the presence of
collagen fibers, has been confirmed in different studies (De Kegel
et al., 2018; Pierrat et al., 2020). Nevertheless, there is no
constitutive law capable of capturing the mechanical behavior
of the cerebral and meningeal tissues under any arbitrary
loading condition, which necessitates that the selected material
models be calibrated under testing conditions similar to the
problem considered (de Rooij and Kuhl, 2016). Therefore, the
neo-Hookean quasi-linear viscoelastic models for the brain-pia
mater and DAM complexes obtained by MacManus et al. (2017)
were a reasonable choice, as they were calibrated with dynamic
indentations of the brain surface.

Several approaches have been adopted in the literature to model
the presence of CSF in FE head models, such as the use of linear
elastic solid elements for the CSF (Kleiven, 2007; Coats et al., 2012;
Trotta et al., 2020), or fluid-structure interaction (Zhou et al.,
2019). Other studies incorporated the cerebral vasculature in the
FE head models and found that it reduces the brain strains
resulting from blast exposures (Unnikrishnan et al., 2019) and
head collisions (Zhao and Ji, 2020b). Coats et al. (2012) explored
the possibility ofmodeling the brain-skull interface by replacing the
pia-arachnoid mater complex, CSF, and blood vasculature with
spring connector elements with assigned stiffness of cortical veins.
This suggests that the vascular structure is an important
constituent that is affected by nonimpact large head rotations.
These rotations, however, do not reflect the mechanical loading
scenario of a CCI. Therefore, we hypothesize that the fluid-filled
cavity approach used here is sufficient to model the presence of an
incompressiblematerial between the impactedDAMand the brain.
Future developments of the porcine brain FEmodel should explore
the load-bearing behavior of the structural interaction between the
CSF and the cortical vasculature during direct impacts.

Machine Learning Model
A surrogate of the porcine brain FE model was fitted using an
artificial neural network with the aim of performing uncertainty

FIGURE 6 | Estimated values of the injury metrics for the CCI injury
(orange) vs. no injury (blue) cases. Maximum principal strain (MPS) and
maximum shear strain (MSS) are different for cases with observed cortical
damage vs. no damage. No statistical difference is observed in terms of
maximum principal strain rate (MPSR) and maximum principal strain x strain
rate (MPSXSR) between injury and no injury cases. * � p-value < 0.05.
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and sensitivity analyses with reduced simulation runtime and
computing resources. The trained and tested ANN was able to
predict the 95th percentile MPS, MPSR, MPSXSR, andMSS of the
porcine brain undergoing CCI in <0.01s using a low-end laptop,
contrarily to the ∼2 h runtime required to simulate a single
impact with the “traditional” FE porcine brain model using a
high-performance computing platform. Considering the large
number of samples required by the MCS (56 times 10,000),
the computational time saved by performing the uncertainty
analysis on the ML surrogate model is evident.

We reached the desired accuracy for uncertainty
quantification by using only 80 samples in the training and

testing process for the ANN. Most machine learning–based
models would require more samples to be able to achieve
errors <4%; however, since only three out of the seven input
parameters were proved to be highly influential, this relatively low
number of training and validation samples is plausible.

The fully connected seven-layers ANN architecture used in
this study is relatively simple and only considers a one-
dimensional array as input. There exist more complex deep
learning–based surrogates of FE head models in the literature,
such as convolutional neural networks (CNN) (Wu et al., 2019;
Ghazi et al., 2021). Improving the outcomes from Wu et al.
(2019), Ghazi et al. (2021) combined the head impact rotational

FIGURE 7 | Injury risk curves representing the probability of sustaining CC as a function of the 95th percentile of MPS, MPSR, MPSXSR, and MSS predicted with
the porcine brain ML surrogate. The solid black line represents the logistic regression curve performed on the whole dataset. The light gray lines represent the logistic
regression curves of each training dataset of the leave-one-out cross-validation procedure. The green vertical dashed lines indicate the thresholds corresponding to the
50% chance of CC (MPS � 0.16, MPSR � 245 s−1, MPSXSR � 45 s−1, and MSS � 0.22), while the blue dots represent the experimental data (cortical damage � 1
and no damage � 0) collected by means of the MR and histology assessments post-CCI.

TABLE 4 | Summary of the performance scores of the four different injury predictors. The scores were obtained using the leave-one-out cross-validation framework. The
AUC-training values are presented as the average (standard deviation) of the testing datasets. The best and worst AUC-training measures are also reported.

Injury metric Accuracy Sensitivity Specificity AUC-testing AUC-training Best AUC-Training Worst AUC-Training

95th MPS 0.784 0.8 0.75 0.711 0.878 (0.032) 0.972 0.847
95th MPSR 0.784 0.8 0.75 0.711 0.767 (0.055) 0.944 0.708
95th MPSXSR 0.784 0.8 0.75 0.711 0.789 (0.049) 0.944 0.736
95th MSS 0.784 0.8 0.75 0.711 0.878 (0.032) 0.972 0.847
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velocity and acceleration temporal profiles into a two-
dimensional input to train a CNN architecture composed of
convolutional, pooling, flattening, and fully connected layers. The
CNN was trained to predict the MPS distribution across the
whole brain of the anisotropic Worcester Head Injury Model
(Zhao and Ji, 2020a). With a conceptually similar workflow, Zhan
et al. (2021) utilized features describing the characteristics of
rotational kinematics of football and mixed martial arts’ head
impacts as input of a five-layer deep neural network to predict the
MPS map of the brain elements of the KTH head model (Ho and
Kleiven, 2007).

The remarkable advantage of these approaches is the
preservation of the information about the nonlinear
impact–whole brain deformation relationship, which is
otherwise inevitably lost when considering discrete inputs and
single-value metrics outputs as in our study. Nevertheless, the
focal nature of the cortical damage induced by the CCI reduces
the relevance of predicting the brain mechanical response outside
the ROI that is directly affected by the impacting probe. The ANN
was, therefore, sufficient to achieve the goal of estimating the
effect of the experimental and modeling parameters on the
localized strain and strain rate of the impacted pig brain.
Future studies should investigate the use of more sophisticated
deep learning networks that include the nonlinear temporal
profile of input parameters such as depth and velocity of
indentation, which, due to the dynamic nature of the brain
tissue properties, might influence the predicted intracranial
mechanical response.

Sensitivity to the CCI Model Parameters
The uncertainty and sensitivity analyses demonstrated that
the selected input parameters have different degrees of
influence on the deformation and rate of deformation of
the porcine cerebral tissue undergoing CCI. Both sensitivity
indices, S1 and δ, highlighted the predominant effect of the
depth of indentation on strain-based injury metrics. The
crucial effect that increasing the depth of indentation has
in terms of both functional responses and tissue structural
injury pattern is well reported in the literature of CCI on
rodent (Goodman et al., 1994; Saatman et al., 2006; Elliott
et al., 2008; Mao et al., 2010a) and pig brains (Manley et al.,
2006; Baker et al., 2019). The evaluation of the uncertainty
propagation showed that by eliminating the uncertainty on
the depth of indentation in a CCI experiment, one could
dramatically reduce the variability of MPS and MSS. This
demonstrates that this input parameter should be carefully
selected and measured when performing a CCI experiment.
Interestingly, MPSR and MPSXSR seem to reach a plateau for
depths of indentation approaching 12 mm, which suggests
that it may not be crucial for the impactor to reach depths
larger than 12 mm in order to produce further damage. This is
in agreement with Manley et al. (2006) and Baker et al. (2019),
who both observed that CCI carried out on pig brain with a
depth of indentation greater or equal than 12 mm produces
largely extended areas with neuroparenchymal damage and
loss and intraparenchymal hematoma, which overshadows the
mere cortical contusion.

The other critical parameter is the velocity of impact, which
unsurprisingly ranked first in order of importance with the strain
rate injury metrics, MPSR and MPSXSR. This is a logical
consequence of the viscoelastic nature of the brain tissue. The
strain rate dependence introduced by the brain tissue viscoelastic
material model could also explain why large asymmetry in the
uncertainty distribution are observed for MPSR and MPSXSR,
especially for higher values of velocity and depth of indentation.
Indeed, it is known that brain tissue shows more viscous behavior
and its shear modulus exhibits a more rapid decay with increasing
strain rates (Qian et al., 2018).

The effect of the interaction between the depth and velocity of
indentation was not investigated in our study. However, CCI
experiments on pig brain by Baker et al. (2019) showed that the
interaction between these two parameters influence the cortical
lesion size and the observable functional deficit. The combined
effect of depth and velocity of indentation on brain tissue
deformation and deformation rate should be object of future
research.

The trends of the median of all four injury predictors
observable in Figure 4 reveal that the geometrical properties
of the probe influence the brain’s response to the CCI, although
less than the depth or the velocity of impact. Unsurprisingly, a
larger diameter of the probe results into larger strains and strain
rates. Moreover, hemispherical probes are associated with lower
MPS, MPSR, MPSXSR, and MSS than cylindrical flat tips, which
is explained by the higher concentration of stresses due to smaller
radii. This is confirmed by the CCI experiments on mice by
Pleasant et al. (2011), who observed a greater acute cortical
hemorrhage and neural loss with a flat probe when compared
to a hemispherical one.

The uncertainty of the angle of indentation, the friction
coefficient between the DAM and the probe, and the thickness
of the DAM show no meaningful effect on the propagation of the
uncertainties of all the injury metrics. This demonstrates that
committing an error in positioning the axis of the probe with an
angle relative to the surface of the brain parenchyma in the range
[−15°; 15°] is tolerable in terms of achieving the desired localized
cortical damage in a CCI experiment. A similar consideration
holds for the assessed ranges of the two modeling parameters,
namely the thickness of the DAM shell elements and the friction
between the DAM and the probe.

The choice of a neo-Hookean material model was dictated by
the similarity of the loading scenario between the material
calibration tests (MacManus et al., 2017) and the CCI
experiments considered here. Nevertheless, there exist other
more refined hyperelastic material model definitions (e.g.,
Mooney–Rivlin, Ogden) which might better capture the
asymmetry in the tension-compression response of the
tissues (de Rooij and Kuhl, 2016; Zhao et al., 2018; Budday
et al., 2019). Provided that these constitutive laws are calibrated
with experimental loading conditions that are similar to a CCI,
future studies should include the material model as an input
variable for the sensitivity analysis and assess the effect of the
uncertainty of the hyper-viscoelastic parameters on the injury
metrics. Another possible extension of this study should regard
the assessment of the effect of the location of the point of impact
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on the DAM surface on the brain’s mechanical response.
However, in order to assess the influence of the impact
location, the limitation of the current FE model in
considering a scaled average brain must be first overcome.
These analyses could be repeated using subject-specific FE
brain models with geometry obtained from high-resolution
images, which were not available for this study. This could
bring more insight, since these models could then capture the
accurate morphology of the superficial gyral pattern, as it can
alter the strain and the strain rate pattern (Ho and Kleiven,
2009). Finally, it is worth mentioning that the importance
ranking of the input parameters refers to the brain’s response
localized around the area that is directly affected by the CCI.
The influence of the parameters on the spatial distribution of the
whole brain strains and strain rates might differ; however, this
was outside of the scope of our study.

CC Tissue-Level Injury Metrics
The use of FE head models to investigate the mechanical tolerances
associated with specific traumatic brain injuries is regarded as a
promising area of brain biomechanics research with potential
applications in the engineering and optimization of protective
devices such as helmets, as well as in forensics. With the current
investigation, we assessed the injury prediction performance of four
strain and strain rate-based injury metrics for cerebral contusion
using in silico porcine brain models.

Given the very localized injury pattern resulting from CCI, the
use of strain and strain rate injury criteria has been preferred over
other metrics assessed in the literature, such as those based on
stress, intracranial pressure, or strain energy. Interestingly, the
uncertainty analysis highlights thatMPS exhibits, indeed, the least
variability in comparison with the other injury metrics (Figure 4).
Mao and Yang (2011) developed a FE model of the rat brain
undergoing a CCI and confirmed the predictive capability of
maximum principal strain and maximum shear strain as injury
thresholds, finding no correlation between CC and the
intracranial pressure. This can be ascribed to the fact that CCI
affects only a limited area in proximity of the brain surface, and it
is different than the coup-contrecoup contusions that result from
impacts where the global head kinematics are involved.

Among the injury metrics considered, only the strain-based
indicators were tested as being statistically significantly
effective in distinguishing between injury and no injury
cases. The LOOCV model evaluation confirmed the superior
robustness and performance of MPS and MSS compared to
MPSR and MPSXSR in terms of predicting CC. This suggests
that the mechanical deformation pattern of the brain
tissue—rather than its rate of deformation—shows potential
in predicting focal TBI. Despite the small size of the CC injury
dataset, the 50% injury risk thresholds are in line with the
values reported in the literature, even though from different
animal models. Our estimates of the MPS and MSS-based
thresholds (0.16 and 0.22, respectively) are close to the 0.265
MPS and 0.281 MSS reported by Mao and Yang (2011) who
performed CCI on rat brains. An engineering strain of 0.19 was
suggested by Viano and Lövsund (1999) for 50% risk of
contusion, after analyzing the results of CCI tests on ferrets.

They also determined the threshold for the product of strain
and strain rate as equal to 30.7 s−1, which is in the
neighborhood of the value estimated here (MPSXSR �
45 s−1). Nevertheless, the interpretation of the comparison
across species needs to be done with caution, given the
considerable anatomical and structural brain differences. To
the best of the authors’ knowledge, no other studies reported
CC injury thresholds obtained by analyzing data from CCI
experiments in vivo on pig brains.

An evident limitation of this study is the small size of the
experimental dataset, which yields broad confidence intervals for
the estimated CC injury thresholds, thus discouraging the use of
these values as ultimate CC criteria. It is nevertheless unrealistic to
presume the existence of a single injury metric capable of predicting
with absolute certainty the risk of CC resulting from any loading
scenario. Indeed, the use of injury metrics based on FE-derived
mechanical quantities hypothesizes a direct relationship between the
outcome of a TBI and the biomechanical response of brain tissue.
Even in a well-controlled testing scenario as a CCI, this inevitably
excludes all the complex pathophysiological mechanisms typical of
secondary injury responses, which can arise during the 48 h
considered by De Kegel et al. (2021) for the postimpact
contusion evaluation. These biological processes are not
pathognomonic to CC and depend on the genetic variability
between animals. It is also unknown how they influence the
targeted injury outcome, which complicates the establishment of
an injury threshold and therefore represents a shortcoming.
Nevertheless, a scan taken immediately following the impact
could be interpreted as falsely negative. Therefore, the only
objective way to determine the actual cerebral contusion damage
was a binary assessment of disruption vs. no disruption of the thin
cortical layers 48 h post-CCI.

Machine learning-based algorithms (e.g., deep neural networks,
support vector machine, and random forest classifiers) have been
regarded as promising tools to predict TBI in a more accurate and
effective way (Hernandez et al., 2015; Cai et al., 2018; Wu et al.,
2018;Wu et al., 2020). The advantage of these techniques is that the
injury classification is performed utilizing multiple features such as
elementwise brain strain. On the contrary, the FE-based scalar
metrics considered here via the predictor-specific LOOCV suffer
from information loss, since they basically reduce the complex
mechanical response of the brain to a single value. Provided that a
larger injury vs. no injury dataset is available, future studies should
consider the evaluation of machine learning feature-based CC
predictors, which can overcome the limitation of the use of
single value injury metrics.

CONCLUSION

We investigated the effect of common experimental and
computational variables on the mechanical response of the
porcine brain undergoing CCI. We successfully developed a
machine learning surrogate of the finite element porcine brain
model to perform the uncertainty and sensitivity analyses in a
computationally efficient way. We observed that the depth and
velocity of indentation should be chosen carefully when designing
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CCI experiments as they produce the largest influence on the brain
tissue’s deformation and rate of deformation. Four strain and strain
rate-based criteria have been evaluated as injury metrics to predict
cerebral contusion. The maximum principal strain and maximum
shear strain were found to be good candidates as tissue-level metrics
specific for cerebral contusion. We demonstrated that the proposed
blended in vivo-in silico methodology shows potential in predicting
CC, although the reliability depends on the size of the animal
experimental injury vs. no injury dataset. Accurate CC injury
classification methods and tolerances will find practical application
in the development of safer protective headgear and in forensics.
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