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Abstract

Advancing technologies have facilitated the ever-widening application of genetic

markers such as microsatellites into new systems and research questions in biol-

ogy. In light of the data and experience accumulated from several years of using

microsatellites, we present here a literature review that synthesizes the limita-

tions of microsatellites in population genetic studies. With a focus on popula-

tion structure, we review the widely used fixation (FST) statistics and Bayesian

clustering algorithms and find that the former can be confusing and problem-

atic for microsatellites and that the latter may be confounded by complex pop-

ulation models and lack power in certain cases. Clustering, multivariate

analyses, and diversity-based statistics are increasingly being applied to infer

population structure, but in some instances these methods lack formalization

with microsatellites. Migration-specific methods perform well only under nar-

row constraints. We also examine the use of microsatellites for inferring effec-

tive population size, changes in population size, and deeper demographic

history, and find that these methods are untested and/or highly context-depen-

dent. Overall, each method possesses important weaknesses for use with micro-

satellites, and there are significant constraints on inferences commonly made

using microsatellite markers in the areas of population structure, admixture,

and effective population size. To ameliorate and better understand these con-

straints, researchers are encouraged to analyze simulated datasets both prior to

and following data collection and analysis, the latter of which is formalized

within the approximate Bayesian computation framework. We also examine

trends in the literature and show that microsatellites continue to be widely

used, especially in non-human subject areas. This review assists with study

design and molecular marker selection, facilitates sound interpretation of

microsatellite data while fostering respect for their practical limitations, and

identifies lessons that could be applied toward emerging markers and high-

throughput technologies in population genetics.

Introduction

Technological improvements have greatly expanded the

realm of genetic markers in biological research, resulting

in the ability to more efficiently collect datasets of ever-

increasing size and, for example, address more questions

in the context of population genetics. Therefore, it is

becoming increasingly necessary to focus more attention

on understanding the practical limitations of various

analyses and applying increased caution when interpreting

results (Karl et al. 2012). Such issues without a focus on

marker type have been partly addressed in previous

reviews with respect to statistical methods (Marjoram and

Tavar�e 2006), programs (Excoffier and Heckel 2006), and

polyploid organisms (Dufresne et al. 2014; Meirmans and

Van Tienderen 2012; Wang and Scribner 2014) in popu-

lation genetics.

Also known as simple sequence repeats (SSRs) or short

tandem repeats (STRs), microsatellites are tandemly

repeating units of DNA 1 or 2–6 bp in length that are

widely distributed throughout the nuclear genomes of

eukaryotes (Bhargava and Fuentes 2010). Because they are
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highly polymorphic, microsatellites are desired for use as

genetic markers for purposes that include fingerprinting,

parentage identification, genetic mapping, conservation,

and population genetics (Buschiazzo and Gemmell 2006;

Chistiakov et al. 2006; Bhargava and Fuentes 2010; Guic-

houx et al. 2011). The recent history of expanding use of

microsatellites in research has been greatly assisted by the

availability of refined methods of marker development,

genotyping methods, and data scoring (Glenn and Sch-

able 2005; Selkoe and Toonen 2006; Gardner et al. 2011;

Guichoux et al. 2011; Kelly et al. 2011; Campagne et al.

2012; Hess et al. 2012).

Properties of microsatellites

While microsatellites are widely employed as markers in

population studies, some of the properties that make

microsatellites desirable as markers may also confound

population genetic inference. One of the most significant

problems associated with population genetic inferences

using microsatellites is their mechanism of mutation. In

general, inference and predictions on the forces influenc-

ing populations require the modeling of the mutational

process generating genetic diversity. Much of classical

population genetics theory is based on the infinite allele

model (IAM) for allozyme data or the infinite sites model

of DNA substitution mutation (Tajima 1996). In these

theoretical models, each mutation event results in a new,

unique allele, and mutation at a given locus is assumed

to occur only once. Nucleotide substitutions detected by

gene fragment sequencing, and more recently single-

nucleotide polymorphisms (SNPs), can be analyzed using

one of these models (Tajima 1996). In contrast to DNA

substitutions, microsatellites are believed to primarily

mutate by strand slippage during DNA replication, which

manifests as the gain or loss of repeat unit(s). In general,

the IAM is a poor descriptor of this process because new

alleles do not arise independently of the previous allele

(i.e., mutations have a history) (Goldstein et al. 1995;

Slatkin 1995; Bhargava and Fuentes 2010). The stepwise

mutation model (SMM), in which each mutational event

results in the gain or loss of a single repeat unit, is a

more appropriate theoretical description of the microsat-

ellite mutation process (Slatkin 1995). In practice, how-

ever, the mutation model best describing microsatellite

evolution varies among loci, and the behavior of a given

locus can be described as falling on a range bordered by

the IAM at one end and SMM at the other (Piry et al.

1999). Mutational processes of microsatellites have been

thoroughly reviewed, and some of the additional models

include the two-phase, generalized stepwise (GSMM), and

K-allele models (Di Rienzo et al. 1994; Bhargava and

Fuentes 2010; Kelkar et al. 2011).

Another difference between the IAM and SMM is that

in contrast to the IAM, homoplasy is allowed within the

SMM. Ignoring recombination, homoplasy occurs when

two individuals with different ancestries at a locus mutate

to the same allele and become identical only in state, and

not by descent. Homoplasy caused by mutation is

expected to occur relatively often for microsatellites com-

pared to other markers because of their allele size con-

straints and high mutation rates (Kimura and Crow 1964;

Estoup et al. 2002). Estoup et al. (2002) showed using

simulations that for reasonable mutation rates, a large

percentage of alleles are homoplasious under various con-

ditions of heterozygosity, population size, and divergence

time. Indeed, high rates of homoplasy have been empiri-

cally detected at various levels of incidence in numerous

organisms (Lia et al. 2007; Anmarkrud et al. 2008; Bark-

ley et al. 2009; Queloz et al. 2010). Moreover, because

microsatellites are almost exclusively genotyped by ampli-

con length variation, additional causes of homoplasy that

would otherwise be detectable by direct sequencing need

to be considered (Barthe et al. 2012). First, different

microsatellite alleles may be obscured due to insertions or

deletions within the flanking region. Homoplasy may also

go undetected among individuals with identical amplicon

lengths due to hidden variation in the form of point

mutations in the microsatellite itself or the flanking

region. Collectively, homoplasy is often cited as a signifi-

cant drawback in the use of microsatellites as genetic

markers (Rousset 1996; Estoup et al. 2002; Bhargava and

Fuentes 2010; Haasl and Payseur 2011).

There are additional problems with modeling muta-

tional processes. Selecting loci for their high levels of

polymorphism in the development phase creates an ascer-

tainment bias that can exacerbate the problems with

microsatellites that are associated with high mutation

rates (see discussions in Eriksson and Manica 2011;

Guillot and Foll 2009; Haasl and Payseur 2011; Li and

Kimmel 2013; Petit et al. 2005; V€ali et al. 2008). First, the

reliability of allele frequency estimation is likely to suffer

for highly polymorphic loci. The sample sizes typically

employed in population genetic studies (e.g., 30 individu-

als per population) may (Kalinowski 2005; Hale et al.

2012) or may not (Nei 1978; Ruzzante 1998; Fung and

Keenan 2014) be sufficient for accurate estimation of

allele frequencies. While a significant potential problem,

the uncertainty suggests that the question of sample size

might best be verified in empirical studies on a case-

by-case basis. Second, loci mutating at a high rate may

violate demographic model assumptions, such as muta-

tion–migration–drift equilibrium. Reported mutation

rates range from 10�6 to 10�2 and can vary across loci

depending on species, genomic context, repeat size, and

nucleotide composition (Ziegler et al. 2009; Bhargava and

4400 ª 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Challenges in Analysis of Microsatellite Data A. I. Putman & I. Carbone



Fuentes 2010; Grover and Sharma 2011). Moreover, there

is ample evidence that mutation rates at a single locus

may vary depending on allele length, sex, or taxonomic

group (Bhargava and Fuentes 2010; Kelkar et al. 2010;

Anmarkrud et al. 2011; Aandahl et al. 2012; Chapuis

et al. 2012). Alleles with a higher number of repeats often

mutate at a higher rate (Bhargava and Fuentes 2010), and

the relationship between length and rate has been

reported to be exponential instead of linear (Wierdl et al.

1997; Lai and Sun 2003; Whittaker et al. 2003; Kelkar

et al. 2008; Leclercq et al. 2010). Recently proposed mod-

els, such as the proportional slippage/point mutation

model, allow for heterogeneity in mutation rates within

loci (Calabrese et al. 2001). A logistic mutation model

was reported to best describe mutation at several human

Y-chromosomal microsatellites that show a directional

mutation bias (Jochens et al. 2011). However, in this

review, we did not identify any methods commonly used

to analyze microsatellite data that incorporate these

newer, more realistic models.

Microsatellites have an obvious lower bound of zero

repeats, and it is hypothesized that a minimum number

of repeats is required to facilitate mutation by DNA slip-

page (Bhargava and Fuentes 2010; but see Kelkar et al.

2010; Leclercq et al. 2010). In addition, microsatellites

appear to have an upper limit of allele size. A finite size

range can cause an inferential bias that must be

accounted for in a model, but the allele size limit of a

given microsatellite is difficult to empirically determine

(Nielsen and Palsbøll 1999). Typical microsatellite muta-

tion models assume a random walk, or that the gain or

loss of a repeat unit(s) is equally likely. However, muta-

tions at some loci have been reported to be biased toward

the gain or loss of repeats (Bhargava and Fuentes 2010).

Therefore, the fit of a mutation model, the performance

of methods when the model is violated, and the possibil-

ity of mutation rate varying across and within loci should

be considered and evaluated to improve the reliability of

inferences in population genetic studies.

Future outlook for microsatellites

Microsatellites have been the most frequently used genetic

marker in population genetics, but the selection of micro-

satellites over SNPs for a given system may be question-

able due to the aforementioned properties of

microsatellites, their potential to vary among loci, and

uncertainties related to allele frequency estimation. On a

per-locus basis, microsatellites retain advantages over

SNPs that include higher allelic richness, lower ascertain-

ment bias, and higher analytical power (Schopen et al.

2008; Payseur and Jing 2009; Sun et al. 2009; Guichoux

et al. 2011; Haasl and Payseur 2011). Evaluation of these

two markers for inferring heterozygosity-fitness correla-

tions have found microsatellites to be inferior to (V€ali

et al. 2008), similar to (Ozerov et al. 2013; Miller et al.

2014), or better than (Ljungqvist et al. 2010; Forstmeier

et al. 2012) SNPs. Inferences for which SNPs have been

reported to be superior to microsatellites include inbreed-

ing (Santure et al. 2010), hybrid detection (V€ali et al.

2010), and parentage or kinship analyses (Hauser et al.

2011; Ross et al. 2014). For population structure infer-

ence, several studies have shown that microsatellites per-

formed generally better than or similar to a low (10s) to

moderate (<300) number of SNPs (Herr�aeza et al. 2005;

Coates et al. 2009; Livingstone et al. 2010; Ciani et al.

2013; Granevitze et al. 2014; Ross et al. 2014), whereas

ascertainment from a larger pool improved the perfor-

mance of SNPs (Glover et al. 2010; G€arke et al. 2012;

Ozerov et al. 2013). However, many of the studies com-

paring microsatellites and SNPs have focused on breed or

stock identification in intensively studied systems such as

salmon (Oncorhynchus sp.) using modest but carefully

ascertained sets of loci and/or employing loci developed

prior to the genomic era. Using high-throughput methods

to develop both microsatellite and SNP markers may pro-

vide a fair and accurate representation of marker choice

for future population genetics studies of nonmodel spe-

cies.

In addition to their per-locus advantages, due to their

high rate of polymorphism microsatellites are often cited

as being very useful for studying recent evolutionary

events among subpopulations within an individual species

or among closely related species (Goldstein and Pollock

1997; Schl€otterer 2001; Tsitrone et al. 2001; Ljungqvist

et al. 2010; Karl et al. 2012). In empirical studies, micro-

satellites have performed equally (Morin et al. 2012) or

superior (Narum et al. 2008; Hess et al. 2011; Defaveri

et al. 2013) to SNPs for revealing fine-scale processes.

However, these studies evaluated only a modest number

of markers, and it is often stated that the sheer number

of SNP loci that can be obtained using high-throughput

sequencing is likely to overcome many of the weaknesses

of SNPs compared to microsatellites. Haasl and Payseur

(2011) thoroughly evaluated the utility of microsatellites

and SNPs for addressing several population genetics ques-

tions. They found that SNPs generally had greater power

to detect population structure compared to microsatel-

lites, as only a few SNP loci were needed to detect struc-

ture between populations with moderate divergence

times. However, as divergence time decreased (less than

two-tenths of effective population size), exponentially

more SNP loci were needed whereas increased require-

ments for microsatellites were modest (Haasl and Payseur

2011). Narum et al. (2008) observed a similar trend

under low differentiation (FST < 0.0004) in simulated
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data for a static number of loci. It is unknown how many

unlinked loci are needed to distinguish such recently

diverged populations (Haasl and Payseur 2011) and under

which ranges of recombination rate (Haasl and Payseur

2011) and genome size attaining these loci will be practi-

cal or even possible. These short evolutionary times may

translate to appreciable lengths of real time in years for

organisms with sufficiently large products of effective

population size and generation time (Haasl and Payseur

2011). Therefore, microsatellites may maintain strengths

in fields that are focused on short temporal or spatial

scales, for applications that require both good resolution

and cross-species range (Buschiazzo and Gemmell 2010;

Seeb et al. 2011; Dawson et al. 2013), for their reported

influence as functional elements (Haasl and Payseur 2013;

Sawaya et al. 2013) such as their importance in human

diseases (Pearson et al. 2005; Brouwer et al. 2009), in taxa

that are slowly evolving or highly clonal, or to study gen-

ome evolution (Stolle et al. 2013) or fast evolving geno-

mic regions such as those rich in transposable elements.

Preliminary simulation studies would ensure that micro-

satellites are appropriate for the questions at hand.

A commonly cited weakness of microsatellites is their

high development cost and relatively low throughput

when compared to SNPs, but the same technologies that

have widened the use of SNPs have also benefited micro-

satellites in the development phase (Arthofer et al. 2011;

Churbanov et al. 2012; Duran et al. 2013; Eschbach and

Sch€oning 2013; Fernandez-Silva et al. 2013; Wei et al.

2014). Amplicon sequencing or second-generation

sequencing of libraries enriched by target capture can

improve the throughput of the genotyping phase for even

a modest number of microsatellite loci (Jennings et al.

2011; Bornman et al. 2012; Grover et al. 2012; Highnam

et al. 2013; McCormack et al. 2013; Cao et al. 2014).

These protocols can be expanded to include other loci of

interest for complementary or separate inferences. In

addition to improvements in sample throughput, geno-

typing microsatellites by sequencing provides data that

strengthens population genetic inference with microsatel-

lites, by, for instance, unambiguously determining the

repeat copy number and detecting imperfect repeats that

could identify homoplasy (Barthe et al. 2012; Grover

et al. 2012). Microsatellites may be analyzed jointly with

adjacent SNPs to make standard inferences (Ramakrish-

nan and Mountain 2004; Payseur and Cutter 2006; Pay-

seur and Jing 2009; Sorenson and DaCosta 2011) or to

address heretofore intractable problems such as complex

nonequilibrium scenarios or estimation of mutation rates

(Payseur and Cutter 2006). Finally, due to continually

expanding read lengths of high-throughput methods,

microsatellite data may already or soon be available as a

by-product of methods obtaining genomewide SNPs.

Indeed, both nucleotide and microsatellite polymorphism

data will be available in abundance once complete ge-

nomes are available at population scales.

Given their advantages, the use of SNPs is widely

expected to dominate the field of population genetics in

the immediate future. To compare recent trends in the

use of microsatellites and SNPs in the literature, in Sep-

tember 2014 we downloaded 79,956 records from the

Web of Science database of articles published since 2004

having a topic of microsatellites and/or SNPs (see Data

Availability for search strings and scripts). In agreement

with predictions (Guichoux et al. 2011), in our dataset

citations of SNPs have as a whole eclipsed microsatellites,

increasing from a SNP:microsatellite article ratio of

approximately 1:1 in 2010 to 1.17:1 in 2014. These data

were examined further to determine whether these trends

were consistent among four groups of journals. The titles

of journals that have published at least 100 articles in this

dataset were identified as having either humans (n = 56)

or non-humans (n = 84) as the primary subject matter.

In addition, PLoS One was considered separately due to

its very broad subject area and high volume of published

articles. All remaining journals (n = 4403) constituted the

fourth group. Since 2010, SNPs have outnumbered mi-

crosatellites at yearly ratios ranging from approximately

1.6:1 to 3.1:1 in the human group and PLoS One, and

1.07:1–1.4:1 in the group of remaining journals (Table 1).

In the core group of non-human journals, however, arti-

cles citing microsatellites appreciably outnumber those

citing SNPs, although the SNP:microsatellite ratios have

increased each year from 0.22:1 in 2004 to 0.65:1 in 2014.

Because SNPs appear to be experiencing a lag in adoption

despite their known advantages and energetic efforts pro-

moting them (e.g., Allendorf et al. 2010; Helyar et al.

2011; Rowe et al. 2011; Seeb et al. 2011; Ferretti et al.

2013; Andrews and Luikart 2014), the use of microsatel-

lites in populations genetics still warrants attention in the

literature in the immediate future.

Specific information regarding the analysis of microsat-

ellite data includes an earlier review (Pearse and Crandall

2004), a basic outline of methods and programs (Kim

and Sappington 2013), and an online list of programs for

microsatellite data analysis (http://softlinks.amnh.org/mi-

crosatellites.html). While microsatellites continue to

become more accessible to researchers that may be inex-

perienced with their use (De Mita and Siol 2012; Karl

et al. 2012; Adamack and Gruber 2014) and possess prop-

erties that can significantly restrict their inference capabil-

ities, little consolidated information is available on

employing tools and interpreting results specifically for

analysis of microsatellite marker data in population

genetic studies. In light of this lack of information and

the unique properties of microsatellites, the objectives of
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this review are to (1) outline methods that can utilize

microsatellites to answer a range of population genetic

questions and (2) identify weaknesses in the performance

of these methods with microsatellites.

Population Structure

Genetic structure develops within a species when it

departs from panmixia and forms subpopulations

among which exchange via dispersal or mating is

impeded (Colonna et al. 2009; Waples and Gaggiotti

2006). Defining and identifying subpopulations is of

prime interest to numerous biological disciplines for

purposes that include conservation, association mapping,

study of adaptation, describing habitats and barriers

thereof, and detecting migration (Guillot 2008; Fogelq-

vist et al. 2010; Palsbøll et al. 2010; Haasl and Payseur

2011). However, there is no universal definition of what

constitutes or delimits groups of individuals within a

species (see Waples and Gaggiotti 2006 for a review and

discussion), and indeed, the definition may vary

depending on the organisms or questions being investi-

gated. Regardless of the precise definition, elucidating

the genetic structure of an organism is a common and

convenient way to infer population structure for most

taxa. A further discussion on spatially explicit inference

of population structure is found in Appendix S1. Spa-

tially explicit methods are recommended to be used in

all analyses even if investigating spatial patterns is not

an objective because spatial patterns can confound other

Table 1. Trends in number of articles having microsatellites (MS), single-nucleotide polymorphisms (SNP), or both as a topic in the Web of

Science database since 2004.

Year

Non-human1 Human2

MS SNP Both MS SNP Both

No. of articles with topic (% of total articles in group)

2004 1114 (5.2) 248 (1.2) 21 (0.1) 516 (2.8) 304 (1.7) 40 (0.2)

2005 1279 (5.8) 360 (1.6) 80 (0.4) 558 (2.8) 445 (2.3) 44 (0.2)

2006 1395 (5.8) 393 (1.6) 33 (0.1) 484 (2.6) 522 (2.8) 47 (0.3)

2007 1464 (5.8) 477 (1.9) 60 (0.2) 443 (2.4) 629 (3.4) 39 (0.2)

2008 1604 (6.3) 526 (2.1) 73 (0.3) 372 (2.0) 778 (4.1) 47 (0.2)

2009 1945 (7.2) 665 (2.5) 71 (0.3) 363 (1.9) 793 (4.2) 59 (0.3)

2010 1613 (5.8) 782 (2.8) 77 (0.3) 284 (1.4) 882 (4.5) 41 (0.2)

2011 1768 (6.0) 882 (3.0) 89 (0.3) 318 (1.6) 896 (4.6) 30 (0.2)

2012 1856 (6.1) 1055 (3.5) 119 (0.4) 280 (1.4) 792 (3.9) 23 (0.1)

2013 1609 (5.4) 1059 (3.5) 123 (0.4) 270 (1.3) 749 (3.7) 22 (0.1)

2014 975 (5.2) 684 (3.7) 99 (0.5) 213 (1.7) 362 (2.9) 21 (0.2)

PLoS One3 Other4

No. of articles with topic (% of total) No. of articles

2004 – – – 1309 807 37

2005 – – – 1359 951 24

2006 0 (0.0) 1 (0.7) 0 (0.0) 1578 1119 35

2007 12 (1.0) 27 (2.2) 2 (0.2) 1671 1465 57

2008 17 (0.6) 48 (1.8) 0 (0.0) 1873 1715 64

2009 41 (0.9) 81 (1.8) 8 (0.2) 1993 2047 66

2010 47 (0.7) 137 (2.0) 1 (0.0) 2168 2313 68

2011 117 (0.9) 259 (1.9) 13 (0.1) 2233 2580 71

2012 225 (1.0) 444 (1.9) 19 (0.1) 2229 2834 98

2013 277 (0.9) 530 (1.7) 29 (0.1) 2283 2777 77

2014 163 (0.9) 260 (1.5) 19 (0.1) 1241 1735 38

1A total of 84 journals having a non-human subject matter that have published at least 100 articles since 2004 with MS, SNP, or both as a topic.
2A total of 56 journals having a human-related keywords in their title (e.g., human, medicine, cancer, forensic, and pharma) that have published

at least 100 articles since 2004 with MS, SNP, or both as a topic.
3PLoS One is presented separately because of its very high article volume (exceeding all 84 non-human journals combined in 2013), its lack of

defined subject area, and publication of an appreciable number of population genetics studies.
4A total of 4403 journals that have published less than 100 articles since 2004 with MS, SNP, or both as a topic.
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population genetic inferences (Meirmans 2012). Com-

parison between nonspatial and spatially explicit meth-

ods, such as principal component analysis (PCA) and

spatial PCA (sPCA), may serve to rule out the presence

of spatial structure.

Exploratory methods

Clustering and ordination methods are relatively simple

yet powerful exploratory methods for analysis of popula-

tion structure (Appendix S2). The major assumptions,

concerns, and implications of these methods for use with

microsatellites are presented in Tables 2 and 3, respec-

tively. We find that despite the potential of ordination

methods and cluster analysis, their use with microsatel-

lites in population genetic studies has not been investi-

gated or formalized (Odong et al. 2011). The major

limitations of clustering and ordination with respect to

their use with microsatellites are as follows: (1) scaling

allele frequencies; (2) lack of formal methods to incorpo-

rate multiallelic markers into PCA; (3) the confounding

effect of linkage disequilibrium; and (4) lack of informa-

tion on the performance of clustering and cluster valida-

tion methods, and on interpreting results. Therefore,

careful verification through simulations is recommended

when using these approaches with microsatellites.

Because PCA formulates principal axes to maximize vari-

ance, scaling the data should be carefully considered to

account for bias induced by heterogeneous variances

among data points (Jombart et al. 2009). It has been pro-

posed that the variance be standardized by the square root

of the product of allele frequencies (Jombart et al. 2009)

or, specifically for microsatellites, by the standard deviation

after centering each allele on zero (Odong et al. 2013). The

latter scaling method was reported to greatly improve accu-

racy of downstream population assignment methods

(Odong et al. 2013). Scaling allele frequencies is highly rec-

ommended for any marker (Jombart et al. 2009), but to

our knowledge, only Odong et al. (2013) have proposed

and evaluated scaling a microsatellite dataset. Custom scal-

ing may require direct manipulation of allele frequency

matrices (Odong et al. 2013), which is an unfamiliar task

for many users and may be considered inappropriate if per-

formed after the data have been collected.

In addition to scaling, the multiallelic nature of

microsatellites has not been formally incorporated into

Table 2. Major assumptions of and questions relating to exploratory clustering methods and their implications in population genetic studies using

microsatellites.

Method1 Assumption or question References Related issues References

In general Qualitative (strict)

group membership

Xu and Wunsch (2005) Fuzzy methods allow partial group

membership

Xu and Wunsch (2005)

In general Distance measure is

appropriate for data

Felsenstein (2004) Microsatellite mutation model is

difficult to infer and could vary

among loci and be costly to

incorrectly specify

This paper, introduction

In general Is clustering method

appropriate for sample?

– Many clustering methods are

available but have not been

thoroughly tested with

microsatellites and/or complex

population models

Odong et al. (2011)

In general Do clustering results

accurately depict structure

in data or distance matrix?

– Many methods for cluster validation

exist, but are not easily available to

population geneticists, have not

been evaluated with microsatellites,

and are infrequently applied in

population genetic studies

Xu and Wunsch (2005),

Odong et al. (2011)

UPGMA Structure is hierarchical Kalinowski (2009, 2011) Cannot depict nonhierarchical

structure

Kalinowski (2009, 2011)

UPGMA Constant molecular clock Felsenstein (2004) Distorts results when rate of

evolution varies among samples

Felsenstein (2004)

NJ Relaxed molecular clock Felsenstein (2004) Allows rate of evolution to vary Felsenstein (2004)

NJ – – Ties are possible when clustering

tips. When individuals are closely

related, this can lead to falsely high

bootstrap values

Felsenstein (2004)

1UPGMA, unweighted pair group method with arithmetic mean; NJ, neighbor joining.
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ordination (Limpiti et al. 2011), and it is not always clear

how software packages handle multiallelic data. Each allele

is treated as a different marker in adegenet and in several

instances in which this problem is explicitly mentioned

(Limpiti et al. 2011; Liu and Zhao 2006; Odong et al. 2013;

Patterson et al. 2006). This artificial expansion of the data-

set creates sets of compositional measurements and thus

dependence among these alleles, because their allele fre-

quencies have a constant sum (Jombart et al. 2009). Dis-

tinct from scaling, transformation may be required to

correct for problems associated with compositional data

and/or problems due to nonlinear structure (Jombart et al.

2009). It was suggested in Patterson et al. (2006) to analyze

microsatellites directly as continuous variables, as is done

for most data in other fields, and perform PCA after nor-

malization. However, use of raw allele sizes or repeat num-

ber instead of allele frequencies could make this analysis

distance-like, and it is unclear whether it is even possible to

incorporate microsatellites into PCA.

To work around these obstacles, it may be necessary to

use the method performed by (Lalo€e et al. 2007) that uses

%PCA (de Crespin de Billy et al. 2000), which is designed

for compositional data, and multiple co-inertia analysis

(MCOA), which is among a class of ordination methods

that are powerful for their ability to associate different

types of data or results from different analysis methods

(Jombart et al. 2009). In this method, each locus is ana-

lyzed separately using %PCA, and then, MCOA is to

summarize signals of structure common among the

microsatellite loci and detect discordant signals (Lalo€e

et al. 2007). Although not highlighted, an example of this

approach is provided in the documentation for adegenet

(Jombart 2008). While MCOA requires data to be in the

form of allele frequencies per subpopulation because it

evaluates the congruence of structure already inferred, this

allows the flexibility to define different patterns of popu-

lation structure and to evaluate the support for these pat-

terns from each marker.

A widely cited benefit of population genetic analysis

with ordination methods is that they do not assume

gametic linkage equilibrium (Jombart et al. 2009). How-

ever, correlation of markers due to gametic linkage can

Table 3. Major assumptions of and questions relating to ordination analyses and their implications in population genetic studies using microsatel-

lites.

Method1 Assumption or question References Related issues References

In general How should results from

ordination analyses

be interpreted?

– Identifying biologically important structure

among results is an open question

Jombart et al. (2009)

In general Markers are independent

sources of ancestry information

Lawson et al. (2012),

Baran et al. (2013)

Correlation of markers due to gametic

linkage can distort ordination results and

impede interpretation

Patterson et al. (2006),

Lawson et al. (2012),

Baran et al. (2013)

In general No missing data – It may not be clear how missing values for

microsatellite loci should be replaced

This paper

In general Data are noncompositional,

relationships between

variables are linear

Jombart et al. (2009) Each allele at a microsatellite locus is

treated as a different marker, which

creates groups of compositional data

Patterson et al. (2006),

Jombart et al. (2008),

Odong et al. (2013)

Microsatellites not formally incorporated

into PCA. Analysis combining %PCA with

multiple co-inertia analysis may be required

Lalo€e et al. (2007)

Little information available on performing

transformations to correct for nonlinearity

and/or compositional microsatellite data

This paper

PCA Depicts allele frequency variance,

assumes homogeneous variances

among alleles

Jombart et al. (2009) Allele frequencies need to be scaled, but

the choice of scaling method for

microsatellites may not be obvious or

accessible

Jombart et al. (2009),

Odong et al. (2013)

PCA How do outliers influence

results from PCA?

– Outliers are likely to dominate the results

and hamper interpretation of other

population structure.

Serneels and Verdonck

(2008), Zhang et al.

(2009)

PCoA Depicts distance, assumes distance

measure is appropriate for data

Jombart et al. (2009) Microsatellite mutation model is difficult to

infer and is costly to incorrectly specify

This paper, introduction

DAPC Describes between-population

variation only

Jombart et al. (2010) Depends on assumptions of PCA and

chosen clustering method

Jombart et al. (2010)

1PCA, principal component analysis; PCoA, principal coordinate analysis; DAPC, discriminant analysis of principal components.
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alter results of population structure inference (Patterson

et al. 2006; Lawson et al. 2012; Baran et al. 2013). Lawson

et al. (2012) demonstrated that linkage disequilibrium

can obscure structure in a large SNP dataset, and devel-

oped a modified form of PCA incorporating linkage

information that is able to detect more fine-scale struc-

ture. The ad hoc method proposed by Patterson et al.

(2006) could be used in microsatellite datasets if linkage

is suspected or known by conducting analyses with one in

the pairs of linked loci removed.

Cluster validation methods are important for evaluating

the fit of the cluster output to the distance matrix, deter-

mining the number of clusters, and choosing which clus-

tering method best describes the data (Odong et al.

2011). Few methods (e.g., Kalinowski 2009) are available

to validate results by hierarchical clustering (reviewed and

evaluated by Odong et al. 2011). While the use of hierar-

chical clustering with microsatellites has received little

formal attention, the two most widely used methods (un-

weighted pair group method with arithmetic mean [UP-

GMA] and Ward) have been shown to perform well

(Odong et al. 2011). Given that rates of evolution may

vary among microsatellite loci, the choice between a clus-

tering method with a strict (UPGMA) or relaxed (neigh-

bor joining, NJ) molecular clock may have implications

when inferring phylogenies. In addition, Kalinowski

(2009) showed that NJ performed well at depicting rela-

tionships for both a bifurcating fragmentation and linear

stepping stone model, whereas UPGMA accurately

depicted only the fragmentation population model. Inter-

preting results from an ordination analysis in terms of

assigning individuals to clusters and identifying and

quantifying population differentiation is often not

straightforward (Reich et al. 2008). While performing

clustering on PCA results does not properly assign indivi-

duals to groups according to genetic distances between

subpopulations (Intarapanich et al. 2009), Odong et al.

(2013) showed that performing hierarchical clustering on

scaled PCA analysis of a microsatellite dataset significantly

improved assignment of accessions of coconut (Cocos

nucifera L.) to their original group. Discriminant analysis

of principal components describes between-subpopulation

variation only and is a powerful tool for population

genetic inference using microsatellites that can outper-

form the STRUCTURE program when inferring the num-

ber of subpopulations (K) (Jombart et al. 2010).

Descriptive statistics

Descriptive statistics as discussed in this review include

measures such as fixation statistics and diversity-based

statistics. Brief background on these statistics is given in

Appendix S3. In brief, several properties of these statistics

that are relevant to their use with microsatellites include

FST’s original derivation for biallelic data (Meirmans and

Hedrick 2011), the representation of SMM-based parame-

ters of evolutionary distance in addition to differentiation

(Holsinger and Weir 2009), the high sampling variance of

parameters that include allele size (Slatkin 1995; Gaggiotti

et al. 1999; Balloux and Goudet 2002), and the advanta-

ges of entropy-based methods (Sherwin et al. 2006; Sher-

win 2010; Andrew et al. 2012; Blum et al. 2012).

In contrast to clustering and ordination, the properties

and performance of descriptive statistics have been and

are under active investigation. While this research has

identified several well-known issues with respect to mi-

crosatellites, it has not always added clarity to how these

markers should be applied and interpreted for any marker

type. The major assumptions of descriptive statistics and

their implications with microsatellites are summarized in

Table 4. Here, we discuss the following main challenges

using descriptive statistics with microsatellites: (1) depres-

sion of FST at high mutation rates; (2) making compari-

sons when groups have large allele size differences; (3)

sensitivity of RST to deviations from the SMM; (4) choos-

ing the more accurate measure between FST or RST; (5)

homoplasy and null alleles; (6) confusion between param-

eters and estimators, and the identity of various statistics;

and (7) the confusing debate surrounding these statistics

regarding microsatellites in particular and population

genetics in general.

As a measure of fixation derived from population

genetic theory, FST (Wright 1943) not only describes the

current state of population structure, but it is influenced

by past evolutionary processes such as mutation (Holsinger

and Weir 2009; Meirmans and Hedrick 2011). Use of

fixation indices with microsatellites can be problematic

because they are depressed at high mutation rates (Bal-

loux et al. 2000; Hedrick 1999, 2005; Meirmans 2006; Jost

2008; Kronholm et al. 2010; Song et al. 2011; Whitlock

2011; Wang 2012). This is of particular concern when the

mutation rate is similar to or exceeds the rate of migra-

tion (Balloux and Lugon-Moulin 2002; Meirmans and

Hedrick 2011; Whitlock 2011), but not under nonequilib-

rium conditions (Leng and Zhang 2013). For example,

GST (Nei 1973) has been shown to approach zero in some

cases when differentiation between subpopulations is

complete (Carreras-Carbonell et al. 2006). F’ST and G’ST
are parameters standardized for within-subpopulation

diversity to account for cases when the parameters are

small despite subpopulations sharing few alleles (Hedrick

1999, 2005; Meirmans and Hedrick 2011). In addition,

due to their dependence on diversity, these statistics can-

not be used to reliably compare loci or subpopulations

with different levels of gene diversity (Charlesworth 1998;

Hedrick 1999; Jost 2008; Meirmans and Hedrick 2011;
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Jakobsson et al. 2013) unless methods such as rarefaction

are used (Eriksson and Manica 2011). Except for the

SMM-based parameter RST (Chakraborty and Nei 1982;

Slatkin 1995) (Appendix S3), unbiased estimators of het-

erozygosity should be used for estimating F-statistics, and

extra caution should be exercised when making compari-

sons of subpopulations with different gene diversity levels

(Beaumont and Nichols 1996; Leng and Zhang 2011;

Meirmans and Hedrick 2011).

Because longer microsatellite alleles mutate at a higher

rate, comparisons among subpopulations or species with

appreciable size differences between alleles may be biased.

Correlation of mean number of repeats with various

diversity measurements has been reported in humans

(Pemberton et al. 2009), select studies in Drosophila

melonagaster (Colson and Goldstein 1999; Bachtrog et al.

2000), and between conifers and angiosperms (Petit et al.

2005). Procedures such as standardization of diversity

measures to mean number of repeats are recommended

to avoid the significant diversity artifact created by micro-

satellite length differences (Petit et al. 2005). A natural

extension of this recommendation is to analyze all data

Table 4. Major assumptions of and questions relating to descriptive statistics and their implications in population genetic studies using microsatel-

lites.

Method Assumption or question References Related issues References

In general Diploid genome Dufresne et al. (2014) For haploids or especially polyploids,

options (in terms of both statistics

and packages) are fewer

Dufresne et al. (2014)

F-statistics Biallelic markers1 under

infinite allele model of

mutation. Often estimated

using heterozygosity

Holsinger and Weir (2009),

Meirmans and Hedrick (2011)

FST and relatives depressed under

high diversity, requiring adjusted

versions, especially problematic

when mutation rate exceeds

migration rate

Hedrick (2005), Jakobsson

et al. (2013)

Requires use of unbiased estimators

of heterozygosity. Cannot compare

subpopulations or loci with

different levels of gene diversity

Meirmans and Hedrick (2011)

F-statistics Infinite island model of

population structure

Meirmans and Hedrick (2011) Violation of migration assumptions

require FST to be estimated pairwise

or using alternatives (extension of

h, or F-model)

Weir and Hill (2002),

Gaggiotti and Foll (2010)

Correlation of allele frequencies

among populations can cause

overestimation using most methods

Fu et al. (2005)

RST, qST fire Stepwise mutation

model (SMM)

Chakraborty and Nei (1982),

Slatkin (1995), Rousset (1996)

Likely confounded by deviations

from SMM. Levels of diversity and

structure in the sample likely

influence relative performance of

FST and RST

Balloux et al. (2000), Balloux

and Goudet (2002), Balloux

and Lugon-Moulin (2002)

Parameters including allele size are

associated with high variance;

should be estimated using analysis

of molecular variance (AMOVA)

Michalakis and Excoffier

(1996), Balloux and

Goudet (2002)

D Depends only on

allelic differentiation

Jost (2008) Can be sensitive to markers with

high mutation rates

Leng and Zhang (2011, 2013)

In general Which statistics should

be employed?

– Recommended to report as many as

possible with microsatellites and

ensure clarity in distinguishing

parameters and estimators, such as

for RST, qST, or ΦST

Heller and Siegismund (2009)

In general How should F-statistics

be interpreted?

– For any parameter: Microsatellites

may substantially underestimate

population structure, and

interpretation has been described

as “dangerous.”

Balloux and Lugon-Moulin

(2002), Leng and

Zhang (2011)

GST and some implementations of h can be used for multiallelic markers.
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using the number of repeats instead of allele sizes, which

is incorporated into several microsatellite-specific distance

measurements, but it is unclear how this practice would

influence exploratory analyses such as PCA.

Although not influenced by mutation rate or within-

subpopulation gene diversity, RST is widely reported to be

quite sensitive to deviations from the stepwise mutation

model (Balloux et al. 2000; Holsinger and Weir 2009;

Meirmans and Hedrick 2011; Whitlock 2011), but not

under drift–mutation–migration equilibrium when muta-

tion follows the two-phase mutation model instead of the

SMM (Song et al. 2011). RST may perform better at

describing population structure than FST when diversity is

high (>70%) or when structure is strong because RST

ignores the contribution of the stepwise mutation process

to differentiation when inferring migration (Balloux and

Goudet 2002; Balloux and Lugon-Moulin 2002). How-

ever, even when mutation closely follows the SMM, due

to its high variance RST may be outperformed by FST
when diversity is low (<50%) or there is weak structure

(Balloux and Goudet 2002; Balloux and Lugon-Moulin

2002).

Despite the difficulty in directly determining the muta-

tion model of a given microsatellite, it is possible to

determine whether the mutation model or rate is con-

founding parameter estimation in population studies. The

allele size permutation test, available in the program SPA-

GeDi (Hardy and Vekemans 2002), estimates if stepwise

mutations have added to differentiation and, therefore, if

RST is more appropriate to infer population structure or

migration compared to a biased FST (Hardy et al. 2003).

In contrast, a nonsignificant test suggests that mutation is

unimportant relative to drift, and thus, that FST is prefer-

able over RST (Hardy et al. 2003). If the SMM can be

assumed, then the permutation test can also compare the

influence of mutation rates with migration rates or with

divergence times (Hardy et al. 2003). However, this test is

blind to other confounding influences, such as model vio-

lations for FST or variance for RST, and is recommended

to be applied only to loci with five or more alleles (Hardy

et al. 2003). As implemented in the program BOTTLE-

NECK (Piry et al. 1999), the heterozygosity-excess test for

detecting changes in population size (discussed in a later

section) can be used to infer if a microsatellite locus is

evolving according to the IAM, two-phase model, or

SMM, if it assumed the locus is at mutation–drift equilib-
rium (Cornuet and Luikart 1996). Comparison of GST

and the diversity-based parameter D (Jost 2008) (Appen-

dix S3) could also inform on mutation rates and diver-

gence times (Leng and Zhang 2013). Tests have been used

in empirical studies to detect violations of the SMM (Di

Rienzo et al. 1994; Nielsen and Palsbøll 1999), but to our

knowledge, these tests are not available in computer

programs. Entropy-based measures may also be used to

infer the mutation model of microsatellite loci. To do so,

Sherwin et al. (2006) first estimated Θ using both hetero-

zygosity and the entropy parameter SH (Shannon 1948a,

b), each assuming either the IAM or the SMM. The

model that has the smallest relative difference between

the fixation and entropy-based theta estimates is proposed

as evidence for that mutation model operating at that

locus (Sherwin et al. 2006).

Homoplasy caused by mutation may influence infer-

ences using microsatellites because it depresses gene diver-

sity and the level of allelic differentiation, which may lead

to underestimation of population differentiation (Estoup

et al. 2002; Sefc et al. 2007). Homoplasy is a particular

concern for analysis of populations with large effective

population sizes, or loci with high mutation rates or strict

allele size constraints (Nauta and Weissing 1996; Estoup

et al. 2002). The influence of homoplasy on differentia-

tion estimates is reduced when migration is high or when

subpopulations recently diverged (Rousset 1996; Estoup

et al. 2002). While homoplasy should be taken into

account in certain conditions, it is likely of minor con-

cern in most population genetic studies (Estoup et al.

2002).

In addition to homoplasy, mutations in the region

flanking a microsatellite can cause null alleles, or alleles

that fail to amplify. Null alleles may lead to an overesti-

mation of population differentiation because they reduce

gene diversity (Chapuis and Estoup 2007). The occur-

rence of null alleles, or homozygote excess, may be esti-

mated upon initial data analysis by one of several

methods (e.g., Chapuis and Estoup 2007; Chapuis et al.

2008; Van Oosterhout et al. 2004; Wang et al. 2012), but

their bias is only infrequently corrected for when deter-

mining population differentiation (Chapuis and Estoup

2007). While frequencies of null alleles up to 8% may

cause only minimal bias in estimation of some population

genetic parameters (Oddou-Muratorio et al. 2009),

correction may not sufficiently reduce bias for inferring

population structure and may actually exacerbate it

(Chapuis and Estoup 2007). Dazbrowski et al. (2014)

reported poor agreement among five methods of estimat-

ing null alleles in nonequilibrium conditions, although

biases of these methods with respect to both false nega-

tives and positives could be useful for null allele inference.

However, the method developed by Wang (2012), which

simultaneously estimates null alleles and corrected

inbreeding coefficients and heterozygosity, was not evalu-

ated. While it is important to consider null alleles in the

analysis of any microsatellite dataset, Dharmarajan et al.

(2013) proposed that sampling and locus-specific effects

could create artifacts in calculations of heterozygosity that

lead to an overestimation of null alleles.
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There is some confusion in the literature regarding the

identity and use of SMM-based parameters and estima-

tors, primarily over the relationship of RST and another

SMM-based parameter, qST (Rousset 1996) (Appendix

S3). Holsinger and Weir (2009) state that RST and ΦST

are specific to microsatellite and haplotype data, respec-

tively, but RST is a theoretical parameter and ΦST is an

estimator that can be applied to either haplotypes (Excof-

fier et al. 1992) or microsatellites (Michalakis and Excof-

fier 1996). In empirical studies, calculation of RST in the

Materials and Methods section is accompanied by concur-

rent citations of both Slatkin (1995) and Rousset (1996).

However, Michalakis and Excoffier (1996) clearly identify

the two parameters as distinct: “The equilibrium value of

the parameter (qST) estimated by ΦST for microsatellite

data has been determined by Rousset (personal communi-

cation), who also first derived the relationship between

RST and ΦST.” This distinction is also clearly conveyed by

Rousset (1996) in the section entitled “Estimation and

relationship to Slatkin’s RST.” Care should be used when

calculating and reporting these estimators of SMM-based

parameters.

Due to the considerable debate regarding their use in

population genetics (Appendix S3) and the context-

dependent of some aspects of their performance (e.g.,

mutation model), descriptive statistics should be applied

judiciously and validated through simulations. Microsatel-

lites may lead to substantial underestimates of population

structure when migration is low, regardless of the param-

eter used to estimate it (Balloux et al. 2000). Even exclud-

ing the problematic properties of microsatellites,

interpretation of D, FST, GST, and RST have all been

described as “dangerous” (Balloux and Lugon-Moulin

2002; Leng and Zhang 2011). All parameters, such as the

FST-estimator h (Weir and Cockerham 1984; Weir and

Hill 2002), GST, G’ST, RST, and D should be reported to

facilitate additional interpretation and meta-analysis (Hel-

ler and Siegismund 2009). However, due to their proper-

ties, indices such as FST, RST, and D can be useful for

complementary analyses (Balloux and Lugon-Moulin

2002; Segarra-Moragues and Catal�an 2008; Song et al.

2011; Whitlock 2011; Leng and Zhang 2013). The confi-

dence interval or standard error of parameter estimates

should be determined using bootstrapping or jackknifing

approaches to allow an assessment of the parameter’s reli-

ability (Gerlach et al. 2010; Meirmans and Hedrick 2011).

Model-based clustering

Parametric methods that implement population genetic

assumptions are powerful and popular tools for inference

of population genetic structure. They are particularly useful

for relating observable structure to genetic structure, and

for detecting cryptic structure, or structure that is only

apparent genetically (Pritchard et al. 2000). These methods

address central questions such as the detection of structure,

estimation of the number of subpopulations, and the

assignment of individuals to these subpopulations. Com-

monly used model-based methods for inferring population

structure include STRUCTURE (Pritchard et al. 2000) and

Bayesian analysis of population structure (BAPS) (Coran-

der et al. 2003). Details on the models and algorithms

employed in these programs are found in Appendix S4, and

an overview of methods for model-based estimation of the

number of subpopulations is given in Appendix S5. The

central assumptions of these methods and the respective

problems with their use with microsatellites are summa-

rized in Table 5. Because these methods are stochastic,

results from individual runs can vary and lead to irrepro-

ducible results in an appreciable number of cases (Gilbert

et al. 2012). Vigilance is required to ensure that an appro-

priate number of steps and replicate runs have been per-

formed to achieve the best possible accuracy and precision

(Gilbert et al. 2012). Scripting programs are available to aid

users at setting up the many required runs (Chhatre 2012;

Besnier and Glover 2013).

Here, our literature review highlights questions on the

power of model-based methods to make inferences in sit-

uations to which they are commonly applied. The major

problems of use of model-based methods with microsatel-

lites are as follows: (1) inference of weak structure; (2)

the confounding effect of incomplete lineage sorting; (3)

the need for a large number of loci (>50) to accurately

identify population structure, admixture, or hybrids; and

(4) null alleles. To ensure the study design allows the

objectives to be reliably addressed, researchers are strongly

encouraged to perform power analysis by analyzing simu-

lated datasets (Orozco-terWengel et al. 2011; V€ah€a and

Primmer 2006).

Weak structure

Inferring population structure when differentiation

between subpopulations is weak often is of interest to

researchers, but it is a difficult analytical problem. Latch

et al. (2006) evaluated BAPS v3.1 (“cluster groups of

individuals” option) and STRUCTURE v2.1 (Falush et al.

2003) under conditions of low population differentiation

using simulated loci similar to microsatellites and found

that even the earlier STRUCTURE models perform well

at low levels of genetic differentiation (0.02 < FST < 0.10),

but fails at lower values (Duchesne and Turgeon 2012).

When differentiation values were standardized for hetero-

zygosity, however, the performance of both BAPS and

STRUCTURE declined at standardized FST values as high

as 0.28, and a value of 0.39 was needed for individual
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assignment accuracy to reach 97% (Latch et al. 2006).

FLOCK has recently been extended to microsatellites and

was reported to be more accurate compared to STRUC-

TURE at low levels of differentiation (FST ≤ 0.05) (Duch-

esne and Turgeon 2012).

Nongenetic information such as phenotypes or sam-

pling group may be informative to population structure

inference, especially when genetic structure is weak. Both

STRUCTURE and BAPS possess methods to incorporate

this a priori information (Appendix S4). To provide an

objective evaluation of the association of user-defined

prior information with detected structure, Gayevskiy et al.

(2014) developed OBSTRUCT, which uses correlation

and the multivariate method canonical discriminant

analysis to postprocesses results from any method which

infers ancestry proportions, especially STRUCTURE,

BAPS, or InStruct. Although validated with several simu-

lated and empirical microsatellite datasets, Gayevskiy

et al. (2014) did not evaluate either of STRUCTURE’s

prior population models (Hubisz et al. 2009) nor incor-

porate them into OBSTRUCT’s workflow.

The high differentiation threshold found by Latch et al.

(2006) may be due to their use of only 10 loci in their

simulations (Colonna et al. 2009). In contrast, Colonna

et al. (2009) compared reconstructed family histories in

two Italian villages to data from a panel of 1122 microsat-

ellites. They found that 239 of these loci were sufficient

for STRUCTURE to accurately identify the population

structure for an extremely low value of FST = 0.008 (Col-

onna et al. 2009). Thus, the information content of a

dataset likely has a significant influence on the perfor-

mance of STRUCTURE.

Table 5. Major assumptions of and questions relating to model-based clustering and their implications in population genetic studies using micro-

satellites.

Method Assumption or question References Related issues References

In general Individual runs are stochastic

and may settle on local optima

Gilbert et al. (2012) Ensure that a sufficient number of

steps and runs have been

performed

Gilbert et al. (2012)

BAPS and

STRUCTURE

Hardy–Weinberg equilibrium

within populations

Pritchard et al. (2000),

Corander et al. (2004)

No inbreeding; if suspected, use

InStruct

Gao et al. (2007)

Individuals are not related by direct

descent; related individuals should

be removed prior to analysis

Anderson and Dunham

(2008), Rodr�ıguez-Ramilo

and Wang (2012)

BAPS Gametic linkage equilibrium

within populations. Tight

(BAPS) or loose (STRUCTURE)

linkage allowed for one

model only

Falush et al. (2003),

Corander and

Tang (2007)

Use of linkage model requires data

be haploid, or phased data from a

diploid or tetraploid

Corander and Tang (2007)

STRUCTURE Sufficient number of markers should

be unlinked. Phasing optional for

diploids, required for polyploids

Falush et al. (2003),

Kaeuffer et al. (2007)

BAPS and

STRUCTURE

Is the information content

of the dataset sufficiently high?

– Population structure: Incomplete

lineage sorting may confound

inference when using as many 50

microsatellite loci

Orozco-terWengel

et al. (2011)

Admixture: If few microsatellite loci

are used, the sample should include

a significant number of pure

individuals

Pritchard et al. (2000),

Vaughan et al. (2009)

STRUCTURE and

NewHybrids

Hybrid identification: reliable only for

many loci (>24–50), especially

when differentiation is low

V€ah€a and Primmer (2006),

Fitzpatrick (2012)

STRUCTURE Recessive allele model: null alleles

are due to polymorphism

Falush et al. (2007) Not appropriate for data that are

missing due to experimental error

Falush et al. (2007)

STRUCTURE Prior population1 and correlated

allele frequency models allow

detection of weak structure

Falush et al. (2003),

Hubisz et al. (2009)

Using standardized values,

performance of STRUCTURE and

BAPS declines at standardized FST
values of 0.28. 97% accuracy was

attained only at FST = 0.39

Latch et al. (2006)

BAPS Two models that incorporate

population information a priori

are available

Corander et al.

(2006, 2003)

BAPS, Bayesian analysis of population structure.
1The two prior population models, LOCPRIOR and USEPOPINFO, should be used for weak and strong structure, respectively.
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Dataset information content

Orozco-terWengel et al. (2011) used BAPS to analyze

numerous subsets of 137 microsatellites in Drosophila mela-

nogaster and found that different subsets yielded different

conclusions about population structure despite all receiving

high statistical support. Because similar results were also

obtained in cursory evaluations with STRUCTURE, Oro-

zco-terWengel et al. (2011) concluded that incomplete

lineage sorting could confound structure inference with the

number of microsatellite loci typically employed in popula-

tion genetic studies, particularly for weak population differ-

entiation and regardless of the algorithm employed.

Moreover, they found that statistically significant popula-

tion structure can still be detected with an insufficient

number of loci, and recommend simulations be used for a

power analysis of the number of loci needed for reasonably

accurate inferences (Orozco-terWengel et al. 2011).

FLOCK, for example, returns an “undecided” result when

the data are not informative enough for population struc-

ture inference (Duchesne and Turgeon 2012).

The problem of too few loci can be particularly trou-

blesome when inferring admixture. Vaughan et al. (2009)

examined an experimental cross of mice and found that

11 microsatellite loci were generally insufficient for cor-

rectly inferring admixture when individuals from the

founding subpopulations were not included in the analy-

sis. When a large proportion of individuals in the dataset

are admixed, Pritchard et al. (2000) observed that esti-

mates of ancestry coefficients may only be reliable for a

large number of loci. Plotting the distribution of ancestry

coefficients for each individual can help assess the confi-

dence of these estimates (Anderson and Dunham 2008).

The admixture models implemented in STRUCTURE are

designed for detecting admixture at any time point and

allow for the ancestral subpopulations to be unsampled.

However, very recent admixture events may be detected

from the sampling of hybrid individuals, and detecting

these events may be a central goal of studies when sub-

populations come into contact via dispersal or from shar-

ing a border (Anderson and Thompson 2002; V€ah€a and

Primmer 2006). When parental subpopulations are well

characterized and the sample is known to contain pure

and hybrid individuals, hybrid-specific detection methods

are likely to outperform model-based clustering methods

(Anderson and Thompson 2002; V€ah€a and Primmer

2006; Sanz et al. 2009).

One hybrid-specific method, NewHybrids, analyzes

genotype frequencies to assign individuals to genotype

frequency classes consisting of pure, backcrossed, or

hybrid (F1 or F2) (Anderson and Thompson 2002).

NewHybrids analyzes data using Bayesian methods similar

to STRUCTURE. V€ah€a and Primmer (2006) used

simulated data to show that STRUCTURE and NewHy-

brids perform similarly at hybrid identification, and the

advantage conferred by including reference information

was not large. STRUCTURE was shown to readily identify

hybrid individuals even when subpopulations are only

weakly differentiated, whereas NewHybrids performed

poorly compared to STRUCTURE at the lowest level of

differentiation (FST = 0.03) (V€ah€a and Primmer 2006).

However, similar to the related question of admixture, a

large number of microsatellite loci (≥24) were required

for accurate hybrid identification at low levels of differen-

tiation (V€ah€a and Primmer 2006). Although both meth-

ods performed similarly overall, only NewHybrids

efficiently distinguished among the genotype frequency

classes, but only for 48 loci and when differentiation was

high (FST = 0.21). Similarly, Fitzpatrick (2012) concluded

that at least 50 ancestry-informative loci are needed to

allow accurate identification of hybrids. Additionally, as

mentioned above for admixture, STRUCTURE can over-

estimate the amount of admixture and result in the mis-

classification of nonhybrid individuals as hybrid (Bohling

et al. 2013). Comprehensive reviews, evaluations, and

comparisons of these methods are available (Anderson

and Thompson 2002; Sanz et al. 2009; V€ali et al. 2010;

Verdu and Rosenberg 2011; Twyford and Ennos 2012;

Uwimana et al. 2012). Collectively, admixture results

should be interpreted with caution, especially when too

few loci are used or when an insufficient number of indi-

viduals from the ancestral parent subpopulations are

included or detected in the analysis (Pritchard et al.

2010). In addition, performing simulations is recom-

mended to assess the confidence level of inferences made

regarding hybridization in a population (V€ah€a and Prim-

mer 2006).

Population models

Although most model-based clustering methods were not

derived from a particular model of population structure,

the true model could have a confounding influence on

making accurate inferences (Choi and Hey 2011). For

instance, clear Hardy–Weinberg subpopulations are often

not distinguishable from the data (Kalinowski 2011; Sch-

wartz and McKelvey 2008) when trying to delimit upper

levels of hierarchical structure, which may confound

model-based clustering programs (Rodr�ıguez-Ramilo and

Wang 2012). Jombart et al. (2010) showed that STRUC-

TURE is highly effective at assigning individuals for both

the island and hierarchical models of population struc-

ture. However, STRUCTURE did not estimate the correct

number of clusters under the hierarchical model and

failed at both tasks for data simulated under two different

stepping stone models (Jombart et al. 2010). In contrast
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to Jombart et al. (2010), Kalinowski (2011) performed

coalescent simulations of microsatellites under a simple

hierarchical fragmentation model and showed that

STRUCTURE could not assign individuals to the correct

group of subpopulations. Kalinowski (2011) concluded

that results from STRUCTURE are not appropriate for

describing differentiation or relatedness among clusters

and that a simple neighbor-joining tree derived from an

unbiased distance measure is more effective at describing

these relationships. Unlike STRUCTURE, BAPS accounts

for clustering at multiple levels and is expected to per-

form well for datasets with hierarchical structure (Coran-

der et al. 2004), but the performance of BAPS under

various demographic models has not been extensively

evaluated to our knowledge. Results should therefore be

evaluated and carefully interpreted if the organism under

study is suspected to evolve under a complex population

model.

Isolation by distance is a type of population structure

in which genetic similarity is inversely related to geo-

graphical distance due to the organism’s limited dispersal

ability (Meirmans 2012; but see Puebla et al. 2012).

Because isolation by distance can be confused with hierar-

chical structure and vice versa depending on which model

is assumed in a given analysis, caution should be used

when drawing conclusions about the two models (Meir-

mans 2012). Procedures for making accurate inferences

when isolation by distance or hierarchical structure might

be present have been reviewed by Meirmans (2012). A

significant problem is that when isolation by distance is

present, model-based methods typically detect spurious

clusters (Schwartz and McKelvey 2008; Frantz et al. 2009;

Safner et al. 2011) and also erroneously identify the bor-

ders between subpopulations (Blair et al. 2012). Addi-

tional problems of estimating isolation by distance under

nonideal conditions such as unequal and changing popu-

lation sizes have been investigated by Bj€orklund et al.

(2010). To increase reliability in border identification,

Blair et al. (2012) recommend fixing K to the number of

subpopulations believed to flank the border.

Null alleles

The recessive allele model in STRUCTURE can be useful

for studies using microsatellites. Null alleles may bias

parametric population structure inference because their

presence increases the number of homozygous individuals

relative to Hardy–Weinberg equilibrium (Carlsson 2008).

However, Carlsson (2008) showed that the influence of

null alleles on accurately assigning individuals to subpop-

ulations is only slight. It was concluded that the influence

of null alleles is marginal compared to other factors such

as the number of loci and strength of population

differentiation (Carlsson 2008). Similarly, Dharmarajan

et al. (2013) reported that the degree of the Wahlund

effect may vary widely among loci and that excesses in

homozygosity that are observed at only a few loci are

often misinterpreted as being caused by null alleles. How-

ever, Dharmarajan et al. (2013) only used summary and

F-statistics in their analyses and not STRUCTURE. While

Carlsson (2008) evaluated the recessive allele model intro-

duced to STRUCTURE by Falush et al. (2007), it remains

unclear if methods to correct for null alleles prior to

analysis (e.g., Van Oosterhout et al. 2004; Chapuis and

Estoup 2007; Wang et al. 2012) are appropriate for

model-based population structure inference.

Migration

In population genetics, migration refers to the dispersal

of individuals to geographically separate subpopulations

and the subsequent persistence of these individuals within

the new subpopulation (Lowe and Allendorf 2010).

Migration is a common mechanism that erodes popula-

tion structure and reduces genetic differentiation between

subpopulations; lack of migration is a common mecha-

nism that increases differentiation. Indeed, Wright (1951)

posited that only one migrant per generation is sufficient

to break population structure (but see Lowe and Allen-

dorf 2010; Waples and Gaggiotti 2006 for discussion on

alternative interpretations). Due to the close relationship

between population structure and migration, some of the

methods used to infer the former are similar to or the

same as those used to infer the latter. Methods of migra-

tion inference have been reviewed (Manel et al. 2005;

Broquet and Petit 2009; Lowe and Allendorf 2010).

Briefly, methods that analyze migration are either indi-

rect, which infer migration from genetic signatures among

subpopulations, or direct, which identify migrant individ-

uals by their genotype (Broquet et al. 2009; Lowe and

Allendorf 2010). Indirect methods perform well when

migration is high and are usually meant to infer effective

migration, or migration that becomes integrated into the

local subpopulation (Broquet et al. 2009). In contrast,

direct methods perform well when migration is low (and

therefore population structure is strong) and usually infer

recent migration by identifying the actual migrant indi-

viduals (Waples and Gaggiotti 2006; Lowe and Allendorf

2010). Similar to population structure, there is active

debate on the use of descriptive statistics for inferring

migration (Appendix S6).

Individual-based clustering methods are direct methods

of migration inference that can detect recent migration to

a given subpopulation by identifying individual(s) that

belong to another, genetically distinct subpopulation.

These assignment methods have been thoroughly
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reviewed by Manel et al. (2005) and include many of the

model-based clustering methods discussed above for pop-

ulation structure. The accuracy and efficiency of these

methods for detecting migrants is likely closely related to

their ability to detect individuals that do not belong with

their subpopulation of origin or for which the subpopula-

tion of origin has little or no representation in the data-

set. These methods have been shown to perform well at

detecting individuals that have migrated, with TESS gen-

erally performing better than GENELAND, GENECLUST,

and STRUCTURE (Chen et al. 2007).

These assignment methods can perform well at identi-

fying migrant individuals, but they can be outperformed

by assignment-based techniques that also infer rates of

migration between subpopulations (Waples and Gaggiotti

2006). These methods aim to detect the percentage of

migrants in a subpopulation one to a few generations

after it occurred (Fraser et al. 2007; Kane and King 2009),

and their assumptions (Table 6) differ from the model-

based clustering methods above. Wilson and Rannala

(2003) developed BayesAss, an assignment method that

estimates migration rates and probabilities of ancestry of

migrant individuals (Wilson and Rannala 2003). BayesAss

detects disruptions to gametic linkage disequilibrium by

estimating inbreeding coefficients for each subpopulation

and does not depend on Hardy–Weinberg equilibrium

(Wilson and Rannala 2003). Like other direct methods,

BayesAss performs better at higher levels of differentiation

(Wilson and Rannala 2003). Following its limited valida-

tion using biallelic markers (Wilson and Rannala 2003),

Faubet et al. (2007) performed an extensive evaluation of

BayesAss using multiallelic markers and at various levels

of migration and population differentiation. BayesAss was

found to perform well at migration rates up to 0.1 when

model assumptions were met, but violation of assump-

tions led to a decline in performance when migration

rates were greater than 0.01 (Faubet et al. 2007). In addi-

tion, the individual migrant probabilities were found to

be less than reliable (Faubet et al. 2007). In another study

combining simulations with an experimental population

in vitro, Mardulyn et al. (2008) found that BayesAss con-

sistently overestimated migration rates. Faubet et al.

(2007) and Meirmans (2014) found using simulated data-

sets and an empirical literature review that the algorithm

in BayesAss has an unsatisfactory convergence behavior

and provide recommendations for alleviating this condi-

tion.

Piry et al. (2004) developed GENECLASS2, which uses

a Monte Carlo resampling algorithm to identify migrants

using genetic distance, allele frequencies, and Bayesian cri-

teria. In contrast to BayesAss, methods in GENECLASS

are derived for detection of migration rate and migrant

individuals in the first generation only (Paetkau et al.

2004). GENECLASS2 utilizes reference subpopulations to

assign unknowns to reduce identification of false migrants

and is designed to reduce bias caused by unequal sample

sizes (Piry et al. 2004). However, GENECLASS2 assumes

that the species under study is undergoing sexual repro-

duction (Piry et al. 2004). BIMr is a program recently

developed by Faubet and Gaggiotti (2008) that imple-

ments the F-model and therefore can estimate migration

rate and detect migrants at a lower level of population

differentiation compared to BayesAss or GENECLASS2.

In addition, BIMr can analyze the influence of environ-

mental variables on migration rate (Faubet and Gaggiotti

2008). In summary, while assignment-based methods that

estimate migration rate such as BayesAss, GENECLASS2,

and BIMr are effective, their application is specialized

based on sampling scheme requirements and narrow

assumptions of migration and differentiation (Piry et al.

2004; Faubet and Gaggiotti 2008; Broquet et al. 2009;

Meirmans 2014).

Population Size

The size of a subpopulation is a parameter central to

population genetics because trends of expansion or

declines in population size can be informative about an

organism’s demographic history and future trajectories.

Due to various factors that limit the reproductive contri-

bution of a given individual to the next generation

(Leberg 2005; Charlesworth 2009), the actual parameter

of interest commonly is effective population size (Ne), or

the “number of individuals in an ideal population that

would lose genetic variation at the same rate as the actual

population” (Crow and Kimura 1970; Leberg 2005). Ne

governs the rate that genetic drift acts on a subpopula-

tion, which is described in its relationship to the scaled

rate parameter Θ = xNel, where x is the inheritance sca-

lar and l is the mutation rate. In practice, therefore, Ne

is crucial in conservation and ecology because it provides

measurement and warning of the conservation status of a

given organism. It is not feasible to determine Ne by

observation (Vucetich and Waite 1998), but genetic data

can be used to estimate Ne. Methods for estimating Ne

vary depending on the timescale of interest, ranging from

current to ancient Ne, and use of parameters ranging

from heterozygosity to Θ, respectively. Estimators for

recent timescales are classified into inbreeding or variance

effective population sizes, which are based on a single

sample or temporal samples (spaced over generations),

respectively (Leberg 2005; Luikart et al. 2010). The back-

ground of Ne (Charlesworth 2009), the range of scales

and appropriate Ne estimation methods for each (Wang

2005), practical considerations for estimating Ne (Leberg

2005; Palstra and Ruzzante 2008; Luikart et al. 2010;
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Tallmon et al. 2010; Waples and Do 2010; Barker 2011;

Peel et al. 2013), and the biases of temporal estimation

(Hoehn et al. 2012; Ryman et al. 2014) have been thor-

oughly reviewed.

A BOTTLENECK, or a reduction in Ne, leads to an

excess of common microsatellite alleles compared to rare

alleles than would be expected under equilibrium (Cornu-

et and Luikart 1996). Instead of making point estimates

of Ne, several methods are available that infer past

changes in Ne. Cornuet and Luikart (1996) exploit the

differential influence of rare alleles on two estimates of

expected heterozygosity, based either on Hardy–Weinberg

or mutation–drift equilibrium, in the heterozygosity-

excess test for population bottlenecks. BOTTLENECK

(Piry et al. 1999) is the most widely used program for

performing heterozygosity-excess tests (Peery et al. 2012).

Garza and Williamson (2001) also utilize rare alleles as a

means to identify bottlenecks in their statistical test based

on M, the mean ratio of number of alleles to allele size

range, and the GSMM. MSVAR, developed by Beaumont

(1999) and Storz and Beaumont (2002), is a likelihood-

based method that infers population size changes based

on several model parameters using microsatellites follow-

ing the SMM. Major assumptions and problems of these

methods are summarized in Table 6.

The performance of the heterozygosity-excess/BOTTLE-

NECK, M-ratio, and MSVAR methods has been com-

pared in extensive evaluations (Williamson-Natesan 2005;

Girod et al. 2011; Peery et al. 2012). Among their simula-

tions, BOTTLENECK detected nearly 60% of simulated

population expansions but only less than 10% of simu-

lated declines (Girod et al. 2011). However, the heterozy-

gosity-excess method is more accurate for recent and

mild bottlenecks than the M-ratio test (Williamson-Nate-

san 2005). Although the M-ratio test identified over half

of the population contractions simulated by Girod et al.

(2011), the M-ratio test is generally less accurate when

contractions were recent or not severe (Williamson-Nate-

san 2005; Girod et al. 2011; Peery et al. 2012). MSVAR

outperformed BOTTLENECK and M-ratio by detecting

approximately 70% of simulated expansions and contrac-

tions, even under modest departures from the SMM

(Girod et al. 2011). Regarding MSVAR, Girod et al.

(2011) also note that parameter estimation was more

accurate under contractions compared to expansions and

discuss significant differences in methods between

Table 6. Major assumptions of and questions relating to inference of migration or population size, and their implications in population genetic

studies using microsatellites.

Method Assumption or question References Related issues References

Migration

BayesAss Gametic linkage equilibrium

within populations

Wilson and Rannala

(2003)

Detects shifts in gametic linkage

equilibrium to estimate recent

migration

Wilson and Rannala (2003)

BayesAss Low migration rate;

immigrants comprise less

than one-third of population

Faubet et al. (2007) When assumptions are violated,

inferences using microsatellites may

be accurate only for low migration

rates (<0.01) and high

differentiation (FST > 0.1)

Faubet et al. (2007)

BayesAss Migration and drift are

constant during past few

generations

Faubet et al. (2007)

GENECLASS2 Detection of first generation

migrants only. Assumes

sexual reproduction

Paetkau et al. (2004),

Piry et al. (2004)

– –

Population size

BOTTLENECK Infinite allele model, stepwise

mutation model, or two-

phase mutation model

Piry et al. (1999) Reports on sensitivity to mutation

model conflict

Cornuet and Luikart (1996),

Leblois et al. (2006), Peery

et al. (2012)

BOTTLENECK Infinite allele model, stepwise

mutation model, or two-

phase mutation model

Piry et al. (1999) Low power of test may limit their

utility

Peery et al. (2012)

M-ratio Generalized stepwise

mutation model

Garza and Williamson

(2001)

Can significantly overestimate

bottlenecks when mutation

parameters are improperly specified

Peery et al. (2012)

M-ratio Generalized stepwise

mutation model

Garza and Williamson

(2001)

Low power of test may limit their

utility

Peery et al. (2012)

MSVAR Stepwise mutation model Beaumont (1999) Reports on sensitivity to mutation

model conflict

Girod et al. (2011), Faurby

and Pertoldi (2012)
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different versions of MSVAR. The M-ratio test can signifi-

cantly overestimate bottlenecks when the multistep muta-

tion parameter is not properly specified (Peery et al.

2012). While the heterozygosity-excess test was reported

to be relatively insensitive to violations of the mutation

model (Peery et al. 2012), others have shown that tests

for declines with BOTTLENECK are confounded, as

observed by Girod et al. (2011), when microsatellite loci

closely follow the SMM versus the IAM or GSMM (Corn-

uet and Luikart 1996; Leblois et al. 2006). MSVAR has

been reported to be confounded by deviations from the

SMM (Faurby and Pertoldi 2012). Although the M-ratio

outperformed the heterozygote-excess test, Peery et al.

(2012) conclude that the low power of both tests to

detect population declines limits their utility and that

when declines are detected, inferring the timing of these

events is problematic. The practice of sampling more loci

or individuals to increase the power of these two tests is

under debate (Hoban et al. 2013b; Peery et al. 2013).

In addition to the program NeEstimator that allows Ne

inference by multiple approaches in an easily accessible

interface (Do et al. 2014), several new methods for esti-

mating Ne have recently become available. Due to their

analyses of family relationships, kinship-based analyses

contain information about Ne (Waples and Waples 2011).

Wang (2009) developed the sibship assignment (SA)

method to estimate Ne. Implemented in COLONY2, it is

robust to violations of some common assumptions, such

as random mating, and outperformed methods based on

heterozygosity-excess or temporal sampling (Wang 2009).

Most methods of Ne estimation assume discrete genera-

tions, and acknowledging and accounting for overlapping

generations is a significant issue for inference of Ne

(Wang 2009; Luikart et al. 2010). The estimator by par-

entage assignment (EPA) method, implemented in Age-

Structure, enables proper estimation of Ne for species

with overlapping generations if the age and sex of indi-

viduals are known (Wang et al. 2010). Other methods for

estimating Ne in datasets with overlapping generations are

available (Coombs et al. 2012; Jorde 2012). Tallmon et al.

(2008) used an approximate Bayesian computation (dis-

cussed below) approach in ONeSAMP that uses eight

summary statistics to infer Ne, but this method is restric-

tive with respect to missing data (Peel et al. 2013). Some

of these methods have not yet been formally evaluated,

but they have been compared in empirical studies (Barker

2011; Skrbin�sek et al. 2012). For historical or longer time-

scales, several estimators of Θ are available (Xu and Fu

2004; RoyChoudhury and Stephens 2007; Haasl and Pay-

seur 2010). Using a novel theoretical understanding of

expected allele frequencies for microsatellites, Haasl and

Payseur (2010) developed three new estimators of Θ spe-

cifically for microsatellites. While these new estimators

have lower error than previous Θ estimators, Haasl and

Payseur (2010) note that, like for Ne, no estimator

performed the best in all conditions. Moreover, when

comparing estimators, Haasl and Payseur (2010) found

that the outlier value was generally the most representa-

tive of the true parameter.

Investigating recent population size using microsatel-

lites is challenging. Results from different methods can

vary widely (Barker 2011), partially because they can be

focused on estimating Ne or changes in Ne during differ-

ent periods of time in the past (Leberg 2005; Wang 2005;

Charlesworth 2009; Luikart et al. 2010). For example, the

number of loci and samples typical of most studies is not

sufficient to distinguish moderate and large population

sizes (500 < Ne < 5000) (Luikart et al. 2010; Antao et al.

2011). In addition, most methods of Ne inference assume

simple population models, but factors such as migration,

asymmetrical migration, spatial structuring, and repro-

ductive variance can confound inference of Ne (Broquet

et al. 2010; Chikhi et al. 2010; Waples 2010; Waples and

England 2011; Hoban et al. 2013c; Paz-Vinas et al. 2013).

Another confounding factor is the proposal that microsat-

ellite mutation rate is proportional to the distance

between heterozygous allele pairs (Amos et al. 1996, 2008;

Amos 2011; Masters et al. 2011). Because it suggests a

link between Ne and mutation rate, this observation has

potentially significant implications for the inference of

demographic history using microsatellite loci (Amos et al.

2008; Amos 2010) and also nucleotide sequences (Amos

2013). Therefore, research methods should be carefully

crafted to address questions of interest and results inter-

preted with extreme caution (Barker 2011). In particular,

sampling size and scheme, and the number and informa-

tion content of microsatellites should be designed to

address the timescale and objectives (Luikart et al. 2010;

Tallmon et al. 2010; Waples and Do 2010; Antao et al.

2011; Peery et al. 2012; Hoban et al. 2013a).

Evolutionary History

In population genetics, investigation of the evolutionary

history of an organism can include inference on timescales

all the way back to the speciation event for that organism.

Compared with simpler methods for which multiple sce-

narios can give rise to similar patterns, historical inference

methods have the advantage of jointly estimating multiple

parameters to disentangle the competing influences of dif-

ferent evolutionary processes (Marko and Hart 2011). A

brief overview of some of these relevant methods is given in

Appendix S7. Microsatellites are often rejected for the pur-

poses of historical inference, but they can be used (Sun

et al. 2009; Bird 2012) if loci are well behaved or under-

stood. The mutation rate and model are often critical
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considerations due to the depth of inference possible with

these methods. Therefore, like other methods above, here

we discuss methods for ancestral inference mostly in the

context of the microsatellite mutation model.

Coalescent estimation

Historical inference using the coalescent is performed by

sampling genealogies back in time to the common ances-

tor of the sample under study (Appendix S7). The pro-

gram MIGRATE (Beerli and Felsenstein 1999) contains

support for a “ladder” model of microsatellite mutation,

which appears similar to the GSMM, and a Brownian

motion model, which is a simplified version of the ladder

model that facilitates faster computation (Kuhner 2006).

In addition to the SMM and the Brownian models, the

program LAMARC includes support for the K-allele

model and a combined K-allele/SMM model (Kuhner

2006). The isolation with migration (IM) programs con-

tain support for the SMM only (Hey et al. 2004), whereas

Bayesian Evolutionary Analysis by Sampling Trees

(BEAST) relaxes some of the common constraints with

microsatellites by integrating over a variety of microsatel-

lite mutation models (Wu and Drummond 2011). All

four of these methods allow mutation rate to vary among

loci or to be specified on a per-locus basis.

Difficulties related to long run times and achieving

convergence (Appendix S7) are amplified when analyzing

microsatellite data because computation is considerably

slower for the SMM compared to the Brownian motion

model (Kuhner 2006) or the IAM (Hey 2011). Indeed,

the SMM was added to the IM line of programs only for

the purpose of analyzing microsatellites in conjunction

with closely linked SNPs in their flanking regions (Hey

et al. 2004). The current implementation of analyzing

microsatellites with BEAST is likely to be slow for large

datasets (Wu and Drummond 2011). BEAST allows miss-

ing data, whereas IM does not.

Many studies employing IM programs use microsatel-

lites in conjunction with organelle or nuclear DNA

sequences. Even when these different markers are com-

bined, the lack of sufficient information can prevent con-

vergence (Limborg et al. 2012) or force parameters to be

removed from the model (Kyrkjeeide et al. 2012). Several

studies have analyzed datasets consisting of solely micro-

satellites using the IM line of programs (e.g., Buonaccorsi

et al. 2011; Charpentier et al. 2012; Kondo et al. 2012;

Portnoy and Gold 2012; Roy et al. 2012), but these data

were generally highly informative. Conversely, too many

loci can drastically slow down the algorithm (Hey and

Nielsen 2004) and require only subsets of loci to be used

(Buonaccorsi et al. 2011). To our knowledge, the use of

IM, LAMARC, or MIGRATE with solely microsatellite

data has not been formally investigated. However, the

sensitivity of IM programs to violations of various

assumptions for other mutation models has been studied

in detail (Strasburg and Rieseberg 2010, 2011; Sousa et al.

2011). The behavior of MIGRATE under select circum-

stances has also been discussed (Beerli 2004, 2006, 2007;

RoyChoudhury and Stephens 2007). Performance of these

methods with microsatellite data is likely to vary on a

case-by-case basis, and users are recommended to thor-

oughly ensure convergence of analyses and/or consult

with a colleague that has experience with these programs.

Approximate bayesian computation

As mentioned at several points in this review, performing

simulations is highly recommended to ensure that infer-

ences being drawn from the observed data are reflective

of the true population demography. Programs and meth-

ods for generating simulated data have been reviewed

(Epperson et al. 2010; Hoban et al. 2012). Simulations

and analysis of simple summary statistics have been for-

malized into the approximate Bayesian computation

(ABC) statistical framework (Appendix S7) (Beaumont

et al. 2002; Beaumont 2010). An infrequently addressed

topic with respect to microsatellites is mutation model.

The programs popABC (Lopes et al. 2009), abc (Csill�ery

et al. 2012), and ABCtoolbox (Wegmann et al. 2010) lack

flexibility to define microsatellite mutation models,

whereas DIYABC includes support for the GSMM to

allow for mutations of more than one repeat unit and for

defining size constraints (Cornuet et al. 2010). EggLib, a

comprehensive data handling and population genetic

analysis Python package that includes ABC capability,

contains options for the IAM, SMM, and a two-phase

model, and to weight loci for probability of mutation (De

Mita and Siol 2012). Support for additional models may

allow more closely fitting approximations, but may be an

unnecessary overparameterization at the expense of other

parameters of interest (Cornuet et al. 2006).

Conclusions

Microsatellites can be powerful tools for inferring popula-

tion patterns and processes in both human biology and

non-human systems and continue to be widely used in

the literature. However, the very properties that confer

advantages to microsatellites in this role also can con-

found inference using methods common to population

genetics. Due to the perceived convenience and power of

microsatellite markers, inferences may be gleaned that

exceed the capabilities of the methods or sample at hand.

We find that, in general, methods used to analyze micro-

satellite data have not been thoroughly evaluated under
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conditions near the edge of the theoretical envelope.

Moreover, several methods lack formal validation with

microsatellites and should be used with extreme caution.

This review lacks a comprehensive list of methods or pro-

grams and omits discussions on other difficult problems

with respect to microsatellites that include gametic link-

age disequilibrium and recombination (see Gompert and

Buerkle 2013 for a detailed review), network inference,

distance calculations, and selection (Haasl and Payseur

2013). However, here we have provided a synthesis of the

weaknesses of microsatellites that we hope researchers will

use to guard against exceeding the limitations of these

markers in population genetics. Researchers analyzing mi-

crosatellite datasets are encouraged to perform simula-

tions to assist study design and marker development (De

Mita and Siol 2012; Karl et al. 2012; Hoban et al. 2013a),

and as confirmation, that methods are performing as

expected (Pearse and Crandall 2004; Dufresne et al.

2014). For the first time users, simulations provide expe-

rience with computational and programming techniques

prior to analyzing the actual dataset. Integrating as many

methods as possible to answer relevant questions is a

powerful approach due to complementary or differential

interactions (Garrick et al. 2010).
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