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Abstract: Francisella tularensis (Ft) is a Gram-negative, facultative intracellular bacterium that is a
Tier 1 Select Agent of concern for biodefense for which there is no licensed vaccine. A subfamily
of 9 Francisella phagosomal transporter (fpt) genes belonging to the Major Facilitator Superfamily
of transporters was identified as critical to pathogenesis and potential targets for attenuation and
vaccine development. We evaluated the attenuation and protective capacity of LVS derivatives with
deletions of the fptA and fptF genes in the C57BL/6J mouse model of respiratory tularemia. LVS∆fptA
and LVS∆fptF were highly attenuated with LD50 values of >20 times that of LVS when administered
intranasally and conferred 100% protection against lethal challenge. Immune responses to the fpt
mutant strains in mouse lungs on day 6 post-infection were substantially modified compared to LVS
and were associated with reduced organ burdens and reduced pathology. The immune responses
to LVS∆fptA and LVS∆fptF were characterized by decreased levels of IL-10 and IL-1β in the BALF
versus LVS, and increased numbers of B cells, αβ and γδ T cells, NK cells, and DCs versus LVS.
These results support a fundamental requirement for FptA and FptF in the pathogenesis of Ft and
the modulation of the host immune response.

Keywords: Francisella tularensis; Live Vaccine Strain (LVS); live attenuated vaccine; MFS transporter;
attenuation; organ burdens; histopathology; cytokines; flow cytometry; C57BL/6J mice

1. Introduction

Francisella tularensis (Ft) is a Gram-negative, facultative intracellular, coccobacillus
responsible for the zoonosis tularemia [1]. Ft has a broad host range and persists in the
environment, causing an average of ~250 natural cases of human tularemia in the U.S. each
year [2]. While Ft can be contracted by various routes, most commonly through the bite
of an insect (ticks) and contact with infected animal products or carcasses, it can be easily
aerosolized, and inhalation of as few as 10 colony forming units of virulent Ft can cause
disease with up to a 60% mortality rate if untreated [3–9]. Ft has a history of weaponization,
and combined with the small inoculum, high mortality rate and ease of dissemination,
has been listed by the Centers for Disease Control and Prevention as a Tier 1 Select Agent
of concern for biodefense. Importantly, there is no licensed vaccine which could protect
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the population against either naturally occurring tularemia or tularemia resulting from a
bioterror attack.

Two subspecies of Ft, Ft subspecies tularensis (Type A) and Ft subspecies holarctica
(Type B), cause disease in humans [10]. Type A Ft is the most virulent, and thus, the
ultimate vaccine target. Historically, many approaches to vaccine development against
tularemia have been utilized, including killed whole cell formulations, subunit vaccines,
and live attenuated strains [11–16]. To date, the live attenuated approach has been the
most extensively studied. The “Live Vaccine Strain” (LVS) is a live attenuated derivative of
Type B Ft that was first attenuated by former U.S.S.R. scientists and then further attenuated
and developed by the U.S. Department of Defense [8,9,17,18]. LVS was tested extensively
in human volunteers where vaccination with LVS was shown to provide at least partial
protection against aerosol challenge with virulent Type A Ft, but protection was dependent
upon the route and dose of vaccination and the route and dose of challenge [6,7,19–21]. LVS
was given investigational new drug (IND) status and was used to reduce the incidence of
natural and laboratory-acquired tularemia, yet several shortcomings prevented its licensure
by the Food and Drug Administration (FDA) [22,23].

Recently, a new lot of LVS has been produced under current Good Manufacturing
Practices (cGMP) and has undergone testing in rabbits and humans where it was found
to be safe, well-tolerated, and immunogenic [13,22,24,25]. While LVS remains unlicensed
for general use, it provides proof-of-principle that a live attenuated vaccine approach can
confer protection against virulent Ft [26]. In studies to identify mutations in the genome
of LVS that are likely to be responsible for its attenuation, pseudogene-causing mutations
were identified in 11 genes, including genes involved in metabolic pathways [27]. Bacteria
that are deficient in metabolism or nutrient acquisition often make good live attenuated
vaccine candidates because they maintain their surface antigens and the ability to colonize
an appropriate niche but are unable to infect efficiently due to a reduction in growth
rate [27–29]. We similarly hypothesized that a live attenuated strain of Ft that expresses
critical antigens in their native conformations but contains targeted mutations in genes with
well understood roles could result in the generation of a highly attenuated, immunogenic,
safe, and efficacious vaccine.

LVS serves as an excellent model for the study of Ft pathogenesis in mice. Murine
infection with LVS recapitulates virulent human tularemia, including high mortality rates,
and the use of LVS allows accelerated study under BSL-2 conditions due to its attenuated
virulence in humans [14,30,31]. Furthermore, LVS has 99.2% sequence identity to the
virulent Type A SchuS4 strain [27] making it a useful tool to identify targeted mutations
that could be generated in the Type A background. Herein we utilize LVS as a model to
identify and characterize attenuated fpt mutants under BSL-2 conditions before advancing
promising candidates in the virulent Type A Ft strain under BSL-3 conditions.

Work with Legionella pneumophila, a distantly related intracellular bacterium, has im-
plicated the Major Facilitator Superfamily (MFS) of transporters as critical to intracellular
pathogenesis and, therefore, potential targets for attenuating mutations [32]. The MFS
is the largest transporter family known and is responsible for transporting biomolecules,
including sugars and amino acids, and nutrient scavenging [33]. Deletion of the MFS
subfamily phagosomal threonine transporter (Pht), PhtA, from Legionella rendered the bac-
terium unable to escape the phagosome and attenuated for virulence [32]. Bioinformatics
screens identified 33 MFS-like homologs in Ft, and of these, nine belong to an analogous
Pht subfamily named the Francisella phagosomal transporter (Fpt) subfamily [34]. Previ-
ously, we demonstrated that LVS mutants with deletions in three of these genes, fptB-an
isoleucine transporter [35], fptE-an asparagine transporter [36], and fptG (substrate un-
known), exhibited reduced intracellular replication within macrophages and hepatocytes,
and were attenuated for virulence in BALB/c mice [34]. Furthermore, immunization of
mice with these mutants conferred protection against lethal challenge with the parental
LVS strain [34]. One fpt mutation was introduced into the Type A SchuS4 strain to generate
SchuS4∆fptB, which displayed altered intracellular replication kinetics in macrophages and
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was highly attenuated in the C57BL/6J mouse model of tularemia, but disappointingly
only provided partial protection against virulent Type A Ft challenge [37]. Because this
candidate did not provide a high level of protection, our current study focuses on the
promising but previously uncharacterized FptA and FptF transporters, which may prove
to be better targets for attenuating mutations. In addition to furthering the advancement of
an efficacious vaccine against Ft, we utilized the LVS∆fptA and LVS∆fptF mutant strains to
understand the contributions of these Fpt transporters to the pathogenesis of Ft. We found
that both fpt genes are critical for the induction of a pathological inflammatory response
that facilitates pathogenesis and results in host death, and deletion of either gene results in
vaccine candidates that provide protection against lethal challenge.

2. Results
2.1. fpt Mutants Are Attenuated in the C57BL/6J Murine Model of Respiratory Tularemia
Compared to Parental LVS

LVS strains with a complete deletion of the fptA or fptF gene products were con-
structed utilizing suicide plasmids as previously published [34] to generate the LVS∆fptA
and LVS∆fptF mutant strains studied in this work. Previous in vitro studies demonstrated
that LVS∆fptA and LVS∆fptF were not deficient for extracellular growth in broth culture
or for intracellular replication in J774.1 macrophages, a BALB/c murine macrophage cell
line [34]. However, both strains were attenuated for virulence following intraperitoneal
(i.p.) injection in BALB/c mice; 100% of animals (n = 4 per group) survived infection with
3 × 103 or 6 × 103 CFU of LVS∆fptA or LVS∆fptF, respectively, compared to no survivors
following LVS infection with ~450 CFU (Supplementary Table S1). In this current work, we
have moved to the C57BL/6J murine model because this mouse strain has been demon-
strated to be the most stringent model for protection against lethal Ft and is prevalent in
the literature for evaluating immune responses to Ft [14,38]. Additionally, we have utilized
intranasal (i.n.) administration because this more closely mimics respiratory tularemia. In
this model, we reassessed the levels of attenuation of the FptA- and FptF-based mutant
strains. Groups of C57BL/6J mice were inoculated i.n. with similar doses of parental
LVS, LVS∆fptA, or LVS∆fptF, or mock-infected with PBS, and survival was monitored for
28 days or until mice met criteria for euthanasia. An i.n. dose of 350 colony forming units
(CFU) of LVS resulted in death of 100% of mice by day 10 post-infection (Figure 1A). In con-
trast, 100% or 91% of mice survived infection with similar doses of LVS∆fptA or LVS∆fptF,
respectively (Figure 1A). 100% of mock-infected mice survived with no associated weight
loss or other clinical signs of disease (Figure 1A,B). Whereas LVS-infected mice exhibited
lethargy and ruffling of fur and lost > 20% of their initial starting weight (which met eu-
thanasia criteria) by day 10 post-infection with this dose, the LVS∆fpt mutant-infected mice
inoculated with a similar dose only lost an average of ~10% of their initial starting weight,
exhibited little to no clinical signs, and recovered to mock-infected levels (Figure 1B). Ex-
tended dose studies were performed to determine LD50 values for each strain. Whereas
the LD50 value of LVS is <60 CFU, the LVS∆fptA and LVS∆fptF mutant strains were highly
attenuated with LD50 values of ~1400 CFU, and between ~2010 and 5167 CFU, respectively
(Table 1). These results demonstrate that the LVS∆fptA and LVS∆fptF mutant strains are
attenuated for virulence in this model compared to LVS, and highlights their potential as
vaccine candidates.
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Figure 1. Attenuation of fpt mutant strains in the murine model of respiratory tularemia. The survival rates (A) and
percentage of initial weight (B) of eight- to nine-week-old male and female C57BL/6J mice following infection with similar
doses of LVS or LVS∆fpt mutant strains were followed for 28 days post-infection. Groups of 6 mice were inoculated i.n. with
~350 CFU of either LVS, LVS∆fptA or LVS∆fptF, or PBS. % weights are graphed as means with SEM. Mice were euthanized
once they lost > 20% of initial starting weight.

Table 1. Attenuation and protective capacity of fpt mutant strains in the murine model of respiratory tularemia.

Strain Vaccination Dose
(i.n.) on Day 1 (CFU)

Survival
Post-Vaccination

on Day 28
LD50

Survival
Post-Challenge with
~500 CFU LVS (i.n.)

on Day 29 1

Vaccine Efficacy 2 Sterilizing
Immunity 3

PBS - 24/24 1/24 - -

LVS

60 1/6

<60 CFU

1/1 100% Yes
121 0/6 - - -
175 1/6 1/1 100% Yes
242 0/6 - - -
350 0/6 - - -
483 0/6 - - -
633 0/6 - - -

LVS∆fptA

~280 12/12

~1400 CFU

12/12 100% Yes
~560 10/12 10/10 100% -

~1120 5/11 4 5/5 100% -
~1680 7/11 5 7/7 100% Yes
3250 0/4 - - -

32,500 0/4 - - -

LVS∆fptF

~335 11/12

~2010–5167 CFU

11/11 100% Yes
~670 9/9 6 9/9 100% -

~1340 11/12 11/11 100% -
~2010 8/12 8/8 100% Yes
5167 0/4 - - -

51,667 0/4 - - -
1 Surviving mice were challenged i.n. with ~500 CFU of LVS on day 29 post-infection and followed for another 21 days post-challenge.
2 Vaccine efficacy was calculated using the following formula: (Attack rate unvaccinated − Attack rate vaccinated) ÷ (Attack rate
unvaccinated) × 100. 3 Sterilizing immunity was determined by lung burden enumeration 21 days post-challenge. 4 One mouse was
removed from analysis in the LVS∆fptA group receiving ~1120 CFU due to inefficient dose delivery. 5 One mouse for the intended LVS∆fptA
group receiving ~1680 CFU died in the animal facility for unknown reasons prior to inoculation. 6 Three mice were removed from analysis
in the LVS∆fptF group receiving ~670 CFU because these mice did not have adequate access to water and exhibited severe weight loss due
to dehydration.
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2.2. Inoculation with LVS∆fptA or LVS∆fptF Confers Protection against Lethal Challenge with
Parental LVS in the C57BL/6J Murine Model of Respiratory Tularemia

Given the high level of attenuation of the LVS∆fptA and LVS∆fptF mutant strains
(Table 1), we hypothesized that these mutant strains would confer protection against lethal
challenge with parental LVS. Surviving mice from the LD50 experiments were challenged
on day 29 post-infection with a lethal dose of LVS, ~500 CFU i.n., to determine vaccine
efficacy. At this challenge dose, there was a 95.8% mortality rate for the unimmunized
control group. Control mice exhibited clinical signs of disease, including lethargy and
ruffling of fur, and lost > 20% of their initial starting weight, requiring euthanasia, by day
10 post-challenge. In contrast, all immunized mice, regardless of the vaccinating strain and
the dose, were protected against lethal challenge with LVS with no clinical signs of disease
and little to no loss of weight. A subset of mouse lungs harvested at 21 days post-challenge
was tested for challenge strain clearance. No challenge organisms were cultured from the
lungs which supports sterilizing immunity conferred by these vaccine strains (Table 1).

2.3. fpt Mutants Have Reduced Bacterial Organ Burdens in the Lungs, Livers, and Spleens of
C57BL/6J Mice versus Mice Infected with Parental LVS

Next, the mechanisms of attenuation of LVS∆fptA and LVS∆fptF were investigated in
the mouse model by first evaluating their ability to colonize the host lung and disseminate
to systemic organs, which are characteristics of tularemia that we hypothesized may
be compromised in these mutant strains versus LVS. Groups of C57BL/6J mice were
inoculated i.n. with ~350 CFU of parental LVS, LVS∆fptA or LVS∆fptF, and organ burdens
were enumerated from the lungs (primary site of infection), livers, and spleens on days
1, 3, 6, 14 and 21 post-infection. A dose of ~350 CFU of LVS is 100% lethal but is a well-
tolerated dose of the fpt mutant strains; this target dose was maintained for all remaining
experiments. One day post-infection, the bacterial burdens in the lungs were similar
regardless of infecting strain (Figure 2A) which suggests that FptA and FptF are not
essential for initial colonization. By day 3 post-infection, the bacterial burdens in the lungs
increased significantly as all strains have begun replicating (Figure 2A), and bacteria were
present in the spleen (Figure 2B) and liver (Figure 2C) demonstrating that these strains are
capable of dissemination to systemic organs. However, by day 6 post-infection, the organ
burdens of both mutant strains in the lungs, livers, and spleens were markedly reduced
compared to LVS which continued to replicate to high numbers between days 3 and 6
post-infection (Figure 2A–C). Mice that were infected with LVS did not survive past day 10
post-infection, and therefore organ burden data only exists for the fpt mutant strains from
days 14 and 21 post-infection. Whereas the organ burdens of LVS-infected mice continued
to rise through day 6 post-infection, after which time these mice meet euthanasia criteria,
the organ burdens of fpt mutant-infected mice reached a peak organ burden at day 3 and
then steadily declined through 21 days post-infection when most of the bacteria were
cleared from mouse organs (Figure 2A–C). These results indicate that FptA and FptF are
required for the full virulence of Ft and dictate the outcome of a critical host-pathogen
interaction that occurs between days 3 and 6 post-infection.



Pathogens 2021, 10, 799 6 of 24Pathogens 2021, 10, x FOR PEER REVIEW 6 of 25 
 

  
(A)      (B) 

 
(C) 

Figure 2. Colonization and dissemination of fpt mutant strains in the murine model of respiratory tularemia. The bacterial 
organ burdens in the lungs (A), spleens (B) and livers (C) of eight-week-old male and female C57BL/6J mice following 
infection with LVS or LVSΔfpt mutant strains were enumerated. Groups of 4 mice per strain per time point were inoculated 
i.n. with ~350 CFU of either LVS, LVSΔfptA or LVSΔfptF and organs were harvested for bacterial enumeration on days 1, 
3, 6, 14, and 21 post-infection. Symbols indicate burdens in individual mice. *, p < 0.05 by a two-tailed t test. A lack of 
symbols at any of the designated time points of harvest indicates an absence of bacteria in these organs. The limit of 
detection was 102 CFU/gram of tissue. All fpt strains had statistically significant lower bacterial burdens than LVS in mouse 
lungs on day 6 (p < 0.05). 

2.4. Pathology Is Less Severe in the Lungs of C57BL/6J Mice Infected with fpt Mutants than in 
the Lungs of Mice Infected with Parental LVS 

The initial host response to respiratory tularemia is characterized by an acute lung 
infiltration of macrophages and neutrophils in an attempt to clear infection prior to 
dissemination [39,40,41,42]. This is followed by the development of necrotic foci in the 
lungs, liver, and spleen, which is one of the hallmark features of end-stage tularemia and 
indicative of extensive cell death and disseminated disease [43]. Due to the reduced 
bacterial organ burdens of the fpt mutants at day 6 post-infection in mouse lungs, livers, 
and spleens (Figure 2), we hypothesized that the fpt mutants may be attenuated due to a 
differential host response that is able to clear the fpt mutants with reduced resultant 
pathology. Accordingly, the pathological consequences of infection and the 
corresponding changes in the murine lung tissue in response to infection with the fpt 
mutants compared to parental LVS were assessed. To measure the extent of pulmonary 
involvement in the lungs after i.n. inoculation with LVS, LVSΔfptA, or LVSΔfptF, or mock 

✱

Figure 2. Colonization and dissemination of fpt mutant strains in the murine model of respiratory tularemia. The bacterial
organ burdens in the lungs (A), spleens (B) and livers (C) of eight-week-old male and female C57BL/6J mice following
infection with LVS or LVS∆fpt mutant strains were enumerated. Groups of 4 mice per strain per time point were inoculated
i.n. with ~350 CFU of either LVS, LVS∆fptA or LVS∆fptF and organs were harvested for bacterial enumeration on days 1, 3,
6, 14, and 21 post-infection. Symbols indicate burdens in individual mice. *, p < 0.05 by a two-tailed t test. A lack of symbols
at any of the designated time points of harvest indicates an absence of bacteria in these organs. The limit of detection was
102 CFU/gram of tissue. All fpt strains had statistically significant lower bacterial burdens than LVS in mouse lungs on
day 6 (p < 0.05).

2.4. Pathology Is Less Severe in the Lungs of C57BL/6J Mice Infected with fpt Mutants than in the
Lungs of Mice Infected with Parental LVS

The initial host response to respiratory tularemia is characterized by an acute lung
infiltration of macrophages and neutrophils in an attempt to clear infection prior to dis-
semination [39–42]. This is followed by the development of necrotic foci in the lungs, liver,
and spleen, which is one of the hallmark features of end-stage tularemia and indicative
of extensive cell death and disseminated disease [43]. Due to the reduced bacterial organ
burdens of the fpt mutants at day 6 post-infection in mouse lungs, livers, and spleens
(Figure 2), we hypothesized that the fpt mutants may be attenuated due to a differential
host response that is able to clear the fpt mutants with reduced resultant pathology. Ac-
cordingly, the pathological consequences of infection and the corresponding changes in
the murine lung tissue in response to infection with the fpt mutants compared to parental
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LVS were assessed. To measure the extent of pulmonary involvement in the lungs after
i.n. inoculation with LVS, LVS∆fptA, or LVS∆fptF, or mock infection with PBS, lungs were
harvested at day 6 post-infection (the time point at which there were statistically significant
differences in organ burdens in the lung between LVS and the fpt mutants, which was
maintained for the remainder of the studies). Hematoxylin and eosin (H&E) stained lung
tissues were prepared for analysis. The histopathologic parameters examined and the
scoring criteria are described in Supplementary Table S2. Representative images are shown
for the scored slides which highlight the more prominent acute inflammatory changes
and increased extent of tissue destruction in the LVS group, and to a lesser extent, the
LVS∆fptA group compared to the LVS∆fptF group (Figure 3). LVS caused significant dam-
age by all measures assessed; histopathology was characterized by extensive inflammation,
diffuse alveolar destruction, and the presence of neutrophils, macrophages, and lympho-
cytes (Table 2). Diffuse alveolar destruction due to inflammation caused by neutrophilic,
macrophagic, and lymphocytic infiltrates is evident in the LVS-infected lungs (Figure 3A,B).
In contrast, infection with LVS∆fptA or LVS∆fptF was characterized by reduced destruction
and pulmonary involvement (Table 2). Mice infected with LVS∆fptA had intermediate
histopathologic scores that were lower than LVS but higher than LVS∆fptF; compared to
LVS, there was reduced inflammation and alveolar destruction and reduced numbers of
neutrophils and lymphocytes (Table 2). Despite lower overall scores than LVS, LVS∆fptA
induced microscopic manifestations that included some parenchymal destruction due to
inflammation, interstitial inflammation in areas of preserved parenchyma, chronic inflam-
matory infiltrates, and fibrin deposits (Figure 3C,D). Infection with LVS∆fptF induced the
lowest histopathology scores in all measures assessed, especially in terms of inflammation,
alveolar destruction, fibrin deposition and neutrophilic infiltration (Table 2). Images of
lungs infected with LVS∆fptF show less prominent inflammatory manifestations that were
limited to interstitial lymphocytic inflammation with hyperplasia of type II pneumocytes,
and small foci of inflammation, but unlike the lungs infected with LVS or LVS∆fptA, lung
architecture has been preserved (Figure 3E,F). Mock infection did not generate any in-
flammation or destruction of the lung (Figure 3G,H; Table 2). In summation, mouse lungs
infected with the LVS∆fptF mutant showed the least pathology when compared to the
levels of tissue destruction caused by LVS, followed by LVS∆fptA. These histopathology
results are consistent with their respective levels of attenuation (Table 1) which confirms
that virulence is linked to the inflammatory response.
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Figure 3. Histopathologic changes in the lungs of mice infected with fpt mutant strains. Groups of 4 eight-week-old male
and female C57BL/6J mice were inoculated i.n. with ~350 CFU of either LVS (A,B); LVS∆fptA (C,D); LVS∆fptF (E,F); or PBS
(G,H). Representative photomicrographs of H&E-stained lung sections are shown. Rulers in (A,C,E,G) denote 1 mm, and
in (B,D,F,H) denote 200 µm. Prominent inflammatory changes were observed in LVS-infected lungs with diffuse alveolar
destruction (A, black asterisk) caused by inflammatory cell infiltrates (B) including neutrophils (black arrows), lymphocytes
and macrophages. LVS∆fptA induced similar microscopic manifestations (C) including parenchymal destruction (black
asterisk) and interstitial inflammation in areas of preserved parenchyma (C, right). (D) shows area of chronic inflammatory
infiltrate (D, right) as well as fibrin deposition (yellow arrow) after LVS∆fptA infection. (E,F) show the less prominent
inflammatory manifestations in LVS∆fptF-infected lungs which were mainly limited to small foci of inflammation (green
asterisks) with preserved overall architecture (E) as well as interstitial inflammation (mainly lymphocytic) with hyperplasia
of type II pneumocytes (F, green arrow). (G,H) show normal lung histology in mock-infected mice (negative control).
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Table 2. Scoring results of histpoathology analysis 1.

Strain LVS LVS∆fptA LVS∆fptF Mock-Infected

(1a) Global Extent of Inflammation 1.75 1.5 1.25 0.0

(1b) Surface Area of Alveolar Destruction 1.5 1.25 0.25 0.0

(1c) Interstitial Involvement 0.75 0.75 0.5 0.0

(1d) Foci of Inflammation 1.0 0.75 0.5 0.0

(2a) Neutrophils 1.0 0.5 0.0 0.0

(2b) Macrophages 0.75 0.75 0.5 0.0

(2c) Lymphocytes 1.0 0.75 0.75 0.0

(3a) Fibrin Deposition 0.75 0.75 0.0 0.0

(3b) Hyperplasia of Type II Pneumocytes 1.0 0.75 0.75 0.0

Cummulative Score 9.5 7.75 4.5 0.0
1 Mean scores are shown for groups of 4 eight-week-old male and female C57BL/6J mice inoculated i.n. with ~350 CFU of either LVS,
LVS∆fptA, LVS∆fptF, or PBS.

2.5. fpt Mutants Induce Altered Proinflammatory Cytokine Responses in the Bronchoalveolar
Lavage Fluid of C57BL/6J Mice Compared to Parental LVS

The pathology associated with LVS infection is partly due to the ability of LVS to cause
a cytokine storm, which is one of the hallmark features of tularemia [44–46]. Because of the
reduced lung pathology and inflammatory infiltrates associated with infection with the fpt
mutants (Figure 3, Table 2), we hypothesized that the fpt mutants induce modified cytokine
responses in the lungs versus parental LVS. Secreted cytokines (IFN-γ, TNF-α, IL-1β, IL-10,
IL-12p70, KC/GRO, IL-6, IL-5, IL-4, and IL-2) in the bronchoalveolar lavage fluid (BALF)
were quantified on day 6 post-infection following i.n. inoculation with LVS, LVS∆fptA, or
LVS∆fptF, or mock infection with PBS using a 10-plex electrochemiluminescent detection
method. Despite some variation between individual mice, BALF samples from LVS- and
fpt mutant-infected mice showed significantly elevated levels of IFN-γ, TNF-α, IL-1β,
IL-12p70, IL-10, IL-2, and KC/GRO compared to mock infection (Figure 4). Levels of
IL-4, IL-5, and IL-6 were not significantly elevated in any infection group versus mock
infection (Supplementary Figure S1). There were significant decreases in the levels of
secreted IL-1β and IL-10 in the fpt mutant-infected BALF samples versus LVS; both fpt
mutant strains induced significantly less IL-1β and IL-10 secretion in the lungs at day 6
post-infection versus LVS (Figure 4A,C). While not statistically significant, the median
levels of IL-2 and IL-12p70 were elevated in the BALF from the fpt mutant-infected mice
versus LVS (Figure 4B,D). Furthermore, the median level of KC/GRO was reduced in the
BALF from fpt mutant-infected mice versus LVS (Figure 4G). The levels of IFN-γ and TNF-α
were similar between fpt mutant-infected and LVS-infected BALF samples (Figure 4E,F).
Upon closer analysis of cytokine secretion in individual mice, the mice that produced high
levels of IFN-γ had comparably high levels of TNF-α, IL-1β, etc., and the mice that had
minimal levels of IFN-γ also had low levels of the other cytokines. The differences in
proinflammatory cytokines elicited by the fpt mutants versus LVS further support a role for
these Fpts in the virulence of Ft and the modulation of host immune responses to infection.
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Figure 4. Cytokine secretion in the bronchoalveolar lavage fluid (BALF) of mice infected with fpt mutant strains. Groups of
5 eight-week-old male and female C57BL/6J mice were inoculated i.n. with ~350 CFU of either LVS, LVS∆fptA, LVS∆fptF,
or PBS. BALF was harvested at day 6 post-infection for measurement of secreted cytokines using MSD. Symbols indicate
cytokine values in individual mice. Bars represent means with SEM from duplicate measurements from one experiment.
*, p < 0.05 by a two-tailed t test. All treatment samples were statistically significantly upregulated versus the mock-infected
control. One BALF sample from the LVS∆fptF group was excluded from analyses due to inefficient BALF harvest.

2.6. fpt Mutants Induce Altered Host Immune Responses in the Lungs of C57BL/6J Mice
Compared to Parental LVS

Given the modified cytokine profiles (Figure 4) and histopathological evidence (Figure 3,
Table 2) of an altered immune response to the fpt mutants, we next hypothesized that
early immune cell infiltration to the lungs of fpt mutant-infected mice may differ from
LVS-infected mice. To interrogate this, immune cell infiltration in the lungs of mice infected
with LVS, LVS∆fptA, or LVS∆fptF was evaluated using flow cytometry. Mouse lungs
were harvested at day 6 post-infection following i.n. inoculation with LVS, LVS∆fptA, or
LVS∆fptF, or mock infection with PBS. Single cell suspensions were processed for analysis
using the gating strategy shown in Supplementary Figure S2. Analysis revealed changes
in the overall cell numbers and composition in the LVS- and fpt mutant-infected lungs
compared to the mock-infected animals. As expected, there was a significant increase
in the number of live CD45.2+ immune cells in the LVS- and fpt mutant-infected versus
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mock-infected lungs (Figure 5A). This was mostly due to increased numbers of non-T
and non-B cells in the infected lungs (Figure 5D). There was an increase in the number of
T cells (Figure 5B) and B cells (Figure 5C) present in the lungs of LVS∆fptA-infected mice,
and to a lesser, non-statistically significant extent, in the lungs of LVS∆fptF-infected mice,
compared to LVS-infected lungs. Among the T cell subsets, LVS infection caused a decrease
in αβ T cells that was not observed with LVS∆fptA or LVS∆fptF infection (Figure 5E). The
numbers of γδ T cells and NKT-like cells were not different in LVS- versus mock-infected
lungs, but were increased in LVS∆fptA-infected lungs, and the numbers of γδ T cells in
the LVS∆fptF-infected lungs were intermediate between the numbers in LVS∆fptA- and
LVS-infected lungs (Figure 5F,G).
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Figure 5. The numbers of T cells, B cells and non-T/B cells change during infection of mice with fpt mutants. Groups
of 5 eight-week-old male and female C57BL/6J mice were inoculated i.n. with ~350 CFU of either LVS, LVS∆fptA, or
LVS∆fptF, or PBS. Lungs were harvested at day 6 post-infection and stained for flow cytometric analysis of responding
immune cell populations. Symbols indicate values from individual mice. Bars represent means with SEM. ****, p < 0.0001;
***, p = 0.001; **, p < 0.001; *, p < 0.05 by a one-way ANOVA with a Tukey’s post-test. The number of live immune cells (A)
was calculated by multiplying the frequency of live CD45.2+ cells (Supplementary Figure S3A) by total live cell number from
cell isolation. The numbers of T cells (B), B cells (C) and non-T/B cells (D) were calculated by multiplying the frequency of
the corresponding population of cells (Supplementary Figure S3B–D) by the number of live immune cells (A). The numbers
of αβ T cells (E), γδ T cells (F), and NKT-like cells (G) were calculated by multiplying the frequency of the corresponding
population of cells (Supplementary Figure S3E–G) by the total number of T cells (B).
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Among the non-B and non-T cell populations, the numbers of neutrophils (Figure 6B)
and non-B Class II+ cells (Figure 6C) were increased in LVS- and fpt mutant-infected versus
mock-infected lungs; however, while not significant, there was a gradient of neutrophil
influx where LVS induced the most neutrophils, followed by LVS∆fptA and LVS∆fptF,
which corresponds to the histopathology data (Figure 3, Table 2). The number of NK cells
was increased in the LVS∆fptA- and LVS∆fptF-infected lungs compared to both mock- and
LVS-infected lungs (Figure 6A). When the non-B Class II+ cell populations were subtyped,
LVS failed to induce DC infiltration in contrast to the LVS∆fptA and LVS∆fptF mutants
(Figure 6D). The numbers of CD11b+ macrophages (Figure 6E) and Class II+ neutrophils
(Figure 6F) were increased in the LVS- and fpt mutant-infected lungs versus mock-infected.
Additionally, the numbers of CD11b− macrophages were reduced in LVS-infected versus
fpt mutant-infected lungs (Figure 6G). Finally, when the CD11b− macrophages were
further characterized as alveolar macrophages based on the expression of CD68 and
CD11c, there were significantly fewer alveolar macrophages present in the LVS-infected
lungs versus mock; this decrease did not occur in LVS∆fptA- and LVS∆fptF-infected lungs
(Figure 6H). Whereas infection with all strains resulted in significant innate immune
responses, differential cell infiltration in response to the fpt mutants versus LVS reflects the
attenuation of these mutant strains and the induction of immune responses that promote
host survival, bacterial clearance, and eventual protection as opposed to the pathological
immune response to LVS that results in death of the infected animal.
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Figure 6. The numbers of subsets of non-T/B cells change during infection of mice with fpt mutants. Groups of
5 eight-week-old male and female C57BL/6J mice were inoculated i.n. with ~350 CFU of either LVS, LVS∆fptA, or LVS∆fptF,
or PBS. Lungs were harvested at day 6 post-infection and stained for flow cytometric analysis of responding immune cell
populations. Symbols indicate values from individual mice. Bars represent means with SEM. ****, p < 0.0001; ***, p = 0.001;
**, p < 0.001; *, p < 0.05 by a one-way ANOVA with a Tukey’s post-test. The numbers of NK cells (A), Neutrophils (B), and
non-B Class II+ cells (C) were calculated by multiplying the frequency of the corresponding population of cells (Supplemen-
tary Figure S4A–C) by the total number of non-T/B cells (Figure 5D). The numbers of DCs (D), CD11b+ macrophages (E),
Class II+ Neutrophils (F) and CD11b− macrophages (G) were calculated by multiplying the frequency of the corresponding
population of cells (Supplementary Figure S4D–G) by the total number of non-B Class II+ cells (C). The number of alveolar
macrophages (H) was calculated by dividing the frequency of alveolar macrophages (Supplementary Figure S4H) by the
total number of CD11b− macrophages (G).



Pathogens 2021, 10, 799 13 of 24

3. Discussion

The 2001 anthrax attacks in the U.S. emphasized the need for the development of
diagnostic, preventative, and therapeutic measures against Select Agents of concern for
use in biowarfare, including Ft. LVS was extensively studied in volunteers where it demon-
strated incomplete protection against aerosol challenge with the virulent Type A SchuS4
strain. While great effort has been placed on developing alternative vaccines, it is generally
accepted that any new vaccine candidate needs to outperform LVS in terms of safety,
immunogenicity, and protective efficacy against aerosolized Type A Ft [11,12,14,15,47–50].
Few LVS-based vaccines have shown protective efficacy against respiratory tularemia
caused by heterologous Type A challenge [51–53]. Even though there is evidence to suggest
that an effective live attenuated tularemia vaccine would likely need to be engineered in
the Type A strain, LVS still proves a useful tool to identify targeted mutations that could be
generated in the Type A background. The generation of live attenuated bacterial vaccines
with defined mutations in metabolic genes has proven to be a successful strategy for vaccine
development against Shigella and Salmonella Typhi, among others [54–59], and has been
utilized in the generation of vaccine candidates against Ft. Several distinct metabolic muta-
tions have been introduced into Ft to generate live attenuated, auxotrophic mutants with
varying degrees of attenuation and protective efficacies [60–68]. Other metabolic targets for
attenuation include MFS transporters such as Fpts [34,37]. In this study, we investigated
two MFS transporters, FptA and FptF, which have not yet been fully characterized, as
attenuating targets for vaccine development.

By all criteria tested, both LVS∆fptA and LVS∆fptF were attenuated for virulence
and the host responses to infection with these mutants were substantially modified. The
reported LD50 of LVS varies depending on route of infection, mouse strain, and method-
ology [69–71]. Using a protocol that incorporates a 50 µL dose volume and deep anesthe-
sia [72,73], the LD50 of LVS was determined to be < 60 CFU by the i.n. route in C57BL/6J
mice which highlights the extreme virulence of LVS in the mouse model and validates
LVS as a useful surrogate model to study the pathogenesis of virulent Type A Ft. The low
LD50 of LVS also emphasizes the attenuation levels of the LVS∆fptA and LVS∆fptF mutant
strains; the LD50 values of both fpt mutants in this model were > 20 times that of LVS. These
values supported the evaluation of their ability to confer protection against challenge, and
we found that a single inoculation of LVS∆fptA or LVS∆fptF, regardless of the vaccination
dose, provided 100% vaccine efficacy against a lethal challenge of ~500 CFU of LVS, which
is >8 times the LD50.

Infection with Ft via the respiratory route begins with bacterial entry into and repli-
cation within alveolar macrophages, neutrophils, dendritic cells, monocytes and alveolar
type II cells [40,74–76] for the first 48-hours followed by dissemination to the liver and
spleen [40–42], which is consistent with our results. The fpt mutant strains were able to
colonize the lungs and disseminate to the livers and spleens, initially replicating to the
same levels as LVS by day 3 post-infection. However, the fpt mutants failed to reach the
same peak organ burdens as LVS by day 6 post-infection at which time the numbers of
mutant bacteria declined. Furthermore, the fpt mutants were almost cleared by day 21
post-infection; clearance is an important consideration for live attenuated vaccine studies,
as a strain that is unable to be cleared would not be a viable vaccine candidate.

The host initially responds to Ft with an acute lung infiltration of macrophages and
neutrophils, which become infected shortly after exposure [39–42]. During severe respira-
tory tularemia, the alveolar spaces become filled with neutrophils, macrophages, necrotic
cellular debris, and bacteria [42], which may contribute to the resultant severe pneumo-
nia and pathology. However, this acute immune response is insufficient to clear Ft from
the lungs and prevent dissemination, and instead, contributes to pathogenesis; uncon-
trolled bacterial replication and neutrophil infiltration contribute to the extensive tissue
destruction and the unrestrained production of proinflammatory cytokines in what is
known as the cytokine storm, which is associated with significant pathology, extensive
organ damage, multiple organ failure, the development of severe sepsis, and eventual host
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death [38,39,45,71,77–83]. This response is consistent with our organ burden, histopathol-
ogy and flow cytometry data showing increasing organ burdens (or the failure to control
replication and dissemination) and extensive inflammation, diffuse alveolar destruction,
and the presence of neutrophils, macrophages, and lymphocytes in LVS-infected lungs
on day 6 post infection. However, fpt mutant-infected lungs showed reduced pathology
and altered host responses characterized by reduced inflammation, including reduced neu-
trophil infiltration, and reduced alveolar destruction. This evidence suggests that modified
host responses to the fpt mutant strains occurred that (1) controlled the bacterial burden as
demonstrated by the reduced organ burdens at day 6 post-infection, (2) induced minimal
tissue pathology and damage, which reduced the severity of disease, and (3) promoted the
survival of mice infected with fpt mutants.

The pathology associated with the cytokine storm during LVS infection is one of
the hallmark features of tularemia [44–46,84]. In good agreement with prior reports [85],
we observed that Ft induced high levels of the potent proinflammatory cytokines IFN-γ,
TNF-α, IL-1β, and KC/GRO. Mouse knockout models have demonstrated critical roles
for IFN-γ and TNF-α in the immune response against Ft as knockout mice succumb
to tularemia more rapidly than wildtype mice [86–93]. It is therefore speculated that
elevated IFN-γ and TNF-α are necessary but not sufficient for survival against Ft infection.
Encouragingly, we found that the fpt mutants induced similarly elevated levels of IFN-γ
and TNF-α in the BALF as LVS, which may contribute to the development of protective
immune responses in fpt mutant-infected mice that are not seen in the LVS-infected mice
that succumb by day 10 post-infection, which is not sufficient time for the development
of the adaptive response. KC/GRO is a marker of the severe sepsis associated with
tularemia [78] which was correspondingly elevated in the LVS-infected BALF. However,
the fpt mutants induced reduced levels of KC/GRO in the BALF versus LVS, suggesting
a reduction of severe sepsis in the fpt mutant-infected mice and providing an additional
measure of their attenuation. The role for IL-1β in the defense against Ft is not yet well
understood; however, IL-1β in the BALF of C57BL/6J mice i.n. infected with a lethal dose
of LVS is higher at day 3 post-infection than at day 6 post-infection [94]. Therefore, one
could speculate that early IL-1β secretion is insufficient to promote bacterial clearance
and host survival. Others have shown that hypersecretion of IL-1β in mice infected with
attenuated mutant strains of LVS was protective and associated with survival [95]; we
observed the opposite phenomenon wherein our fpt mutant strains induced significantly
less IL-1β than LVS, a difference that highlights the incomplete understanding of the role
of IL-1β in the response against LVS. Furthermore, LVS induced the production of the
anti-inflammatory cytokine IL-10 which has been shown to be produced by activated
lung DCs early in the course of respiratory tularemia [74,80,84] and by regulatory T cells
(Tregs) [96] which are present in the lungs as soon as one day post-infection [80]. It seems
confounding that a pathogen capable of producing a cytokine storm would also induce anti-
inflammatory mediators. However, the timeline of cytokine secretion is an important factor;
it has been speculated that Ft induces IL-10 early during the course of respiratory tularemia
to dampen or delay the initial pro-inflammatory cytokine response [84], which may explain
the subsequent reduction in IL-1β secretion, facilitating bacterial growth and survival [80].
We found that the fpt mutants failed to induce comparably elevated levels of IL-1β and
IL-10 as LVS. As IL-1β is released from immune cells upon pyroptosis, it is possible that
the reduced histopathology in the fpt mutant-infected lungs can be attributed to decreased
pyroptosis and IL-1β secretion compared to LVS. Additionally, the reduced levels of IL-10
in the fpt mutant-infected lungs may be indicative of the fpt mutants’ inability to invoke an
anti-inflammatory cytokine milieu, as observed during LVS infection, providing further
evidence that FptA and FptF are important factors required for the pathogenesis of Ft.
These differences in pro- and anti-inflammatory cytokines elicited in response to the fpt
mutants versus LVS underscore the balance between pathological inflammation (as seen in
LVS-infected mice) and protective inflammation (as seen in fpt mutant-infected mice) and
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support the contribution of the fptA and fptF gene products in the modulation of the host
inflammatory response by LVS.

In addition to reduced lung histopathology and altered cytokine responses in the
BALF of fpt mutant-infected mice, immune cell infiltration in lungs of fpt mutant-infected
mice was modified compared to LVS. LVS infection was characterized by an increase in
non-T and non-B cells, specifically neutrophils and non-B Class II+ cells (including CD11b+
macrophages and Class II+ neutrophils), with a concomitant decrease in T cells and alveolar
macrophages compared to mock-infected lungs. Others have reported similar innate
immune cell profiles in a murine model of respiratory tularemia [40]. Mature neutrophils
typically do not express Class II, but a novel phenomenon in which granulocytes (including
neutrophils) acquire antigen presenting capabilities that influence T cell responses has
been reported [97–99]. A significant proportion of the neutrophil population was Class II+
in the LVS- and fpt mutant-infected lungs and may represent the first evidence of this
phenomenon occurring during Ft infection. Generally, responses to the fpt mutant strains,
especially the LVS∆fptA mutant strain, and to a lesser extent, the LVS∆fptF mutant strain,
were characterized by increases in B cells, T cells, NK cells, DCs, and CD11b− macrophages
versus LVS. It has been shown that strong and early protection against sublethal doses of
LVS is dependent on B cells through limiting bacterial growth early after infection, and
this protective mechanism is dependent on IFN-γ [100]. Therefore, it is possible that the
increased presence of B cells in the fpt mutant-infected lungs on day 6 post-infection may
contribute to the observed reduction in organ burdens among these mice at this time point.
Furthermore, the increased presence of DCs in the fpt mutant-infected lungs may also
contribute to the reduction of fpt mutant organ burdens as DCs have been shown to help
limit early pathogen replication [101]. The increased levels of IL-10 in the LVS-infected
BALF may underlie the reduced levels of T cells in the LVS-infected lungs; IL-10 suppresses
T cell proliferation. Conversely, the reduced levels of IL-10 in the fpt mutant-infected
BALF versus LVS may explain the increased presence of T cells in the fpt mutant-infected
lungs. Further studies are needed to identify the source of IL-10 in the murine lung
during respiratory tularemia. There is evidence of NK regulation of T cell activity during
respiratory tularemia [102]. Additionally, it is thought that another role for NK cells in
respiratory tularemia is to lyse infected alveolar macrophages [102]. We speculate that the
severe lung pathology and reduced population of alveolar macrophages in the LVS-infected
lungs may be due in part to lysis of these macrophages, perhaps by NK cells, which have
become heavily infected with Ft. It has also been shown that γδ T cells can directly activate
NK cells [103], and therefore the increase in NK cells in the fpt mutant-infected lungs versus
LVS- and mock-infected lungs may be reflective of the increased presence of γδ T cells
in the fpt mutant-infected lungs. Taken together, B cells in fpt mutant-infected mice may
be receiving more T cell help as a result of increased antigen presentation by DCs and
higher NK cell activity in mutant-infected lungs. The differential host responses to the fpt
mutants reflect their levels of attenuation and may indicate a protective response, perhaps
due to less pathological inflammation. Additional studies at later time points are needed
to identify the implications of these early responses on the development of protective
immunity against subsequent challenge.

This highly sensitive murine model of respiratory tularemia allowed the dissection of
many parameters of the host pulmonary responses to LVS and to the fpt mutants following
i.n. inoculation. In agreement with the literature, LVS induced a highly pathogenic
immune response that contributes to the lethality of LVS in mice. The differences between
the histopathology, BALF cytokines, and the immune cell composition between LVS- and
fpt mutant-infected lungs allowed us to evaluate the contribution of FptA and FptF to
the pathogenesis of Ft. We speculate that the respective (yet unknown) substrates of the
FptA and FptF transporters are essential for Ft to reach a critical threshold of bacterial
burden in the host to facilitate full virulence and pathogenesis. Alternatively, the fpt
mutants may be impaired such that they are unable to induce the required virulence
gene profiles for pathogenesis and are instead cleared through a more protective and less
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pathological immune response by the host. Further studies involving the analysis of the
in vivo transcriptomic profiles of the fpt mutants versus LVS are needed to identify the
specific effects of deleting the fpt gene products on virulence gene expression. Ultimately,
the differential host responses to the fpt mutant strains versus to LVS support the essential
roles for FptA and FptF in the modulation of the host immune response such that LVS can
establish conditions to permit bacterial replication, spread, pathogenesis and eventual host
death. These data support the further interrogation of fptA and fptF genes in the virulent
Type A SchuS4 strain towards the ultimate goals of developing live attenuated tularemia
vaccines and understanding the contributions of Fpts in the pathogenesis of Ft.

4. Materials and Methods
4.1. Bacteria and Growth Conditions

Ft LVS, which was kindly provided by Dr. Karen Elkins (CBER/FDA, Rockville, MD, USA),
LVS∆fptA and LVS∆fptF strains [34] were preserved at −80 ◦C in Mueller-Hinton Broth
(MHB) (BD, Sparks, MD, USA) with 15% glycerol added. Complete MHB includes 1%
IsoVitaleX (BD, Sparks, MD, USA), 0.1% glucose (Sigma-Aldrich, St. Louis, MO, USA),
and 0.25% ferric pyrophosphate (Sigma-Aldrich, St. Louis, MO, USA) and was used for all
liquid cultures. Mueller-Hinton agar (MHA) (BD, Sparks, MD, USA) was used for solid
cultures and was augmented as defined above but also contained 10% defibrinated sheep
blood (Lampire Biological Laboratories, Pipersville, PA, USA). Growth on solid media was
performed at 37 ◦C, 5% CO2.

4.2. Mice

Wildtype C57BL/6J mice were purchased from The Jackson Laboratory (The Jackson
Laboratory, Bar Harbor, ME, USA) for use in i.n. attenuation, organ burden enumeration,
and protective capacity studies. For Supplementary Table S1; wildtype BALB/c mice were
purchased from Charles River Laboratories (Charles River Laboratories, Frederick, MD,
USA) for use in i.p. attenuation studies. Infected mice were housed in the University of
Maryland animal biohazard safety level 2 (ABSL-2) facility for the duration of the studies.
All animal experiments were conducted according to protocols approved by the UMB
Institutional Animal Care and Use Committee (IACUC).

4.3. Attenuation of fpt Mutant Strains in Mice

Six- to eight-week-old female BALB/c mice (Charles River Laboratories, Frederick,
MD, USA) were initially used to test the fpt mutant strains in vivo for attenuation. Groups
of 4 BALB/c mice per group were injected i.p. with either LVS or the fpt mutant, or mock-
infected with PBS. To reassess the attenuation levels of fpt mutants in a more stringent
model of protection against lethal Ft following vaccination, groups of 4 or 6 eight- to nine-
week-old male and female C57BL/6J mice per dosage concentration were anesthetized i.p.
with a cocktail of 90 mg/kg of ketamine and 9 mg/kg of xylazine and inoculated i.n. with
either LVS or the fpt mutant suspended in 50 µL of PBS, or mock-infected with PBS. Studies
utilizing dosage groups near the LD50 values were repeated to confirm the LD50 values.
Mice were monitored daily for survival and clinical signs of infection (weight loss, lethargy,
and ruffling of fur), and weights were monitored every other day for 28 days post-infection.
Mice were assigned health assessment scores based on general physical appearance (skin,
fur, etc.), ambulation, potential dehydration, response to stimuli, movement, evidence of
food consumption (feces in bedding), grooming and any clinical sign that may indicate
disease or illness (lethargy, hunched posture, head tucked into abdomen, rough hair,
visible tumors, etc.). Mouse health was scored based on the following criteria: condition
1 for normal activity, where mice are bright, alert, reactive, healthy, shiny, have normal
posture and lack dehydration; condition 2 for mice that are quiet, alert, reactive with early
stage piloerection, normal posture and mild dehydration; condition 3 for mice that are
quiet and not very reactive, and exhibit mild piloerection, dull coats, hunched posture,
difficult ambulation, moderate dehydration, and scruff remains tented (lifted) for 2–3 s;
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and condition 4 for mice that are non-reactive with severe piloerection, dull and dirty coats,
hunched and squinting, severely dehydrated, tented scruff that when lifted does not return,
severe weight loss (>20%) and respiratory distress. Mice reaching a clinical score of 4 or
losing >20% of their body weight were euthanized as required by the UMB IACUC.

4.4. Protective Capacity of fpt Mutant Strains in Mice

The surviving mice from the “Attenuation of fpt Mutant Strains in Mice” studies listed
above were utilized for challenge studies to determine protective capacity of the fpt mutant
strains. Twenty-eight days post-vaccination, the surviving mice were anesthetized and
inoculated i.n. with ~500 CFU of LVS suspended in 50 µL of PBS. After challenge, all
mice were monitored daily for clinical signs and weights were monitored every other day
as described above for 21 days post-challenge. Vaccine efficacy was calculated using the
following formula: (Attack rate unvaccinated − Attack rate vaccinated) ÷ (Attack rate
unvaccinated) × 100.

4.5. Quantification of Bacterial Organ Burdens in Mice

To determine the bacterial organ burdens of fpt mutant strains in vivo, groups of
4 eight-week-old male and female C57BL/6J mice per strain per time point were anes-
thetized and inoculated i.n. with ~350 CFU of either LVS or the fpt mutant suspended
in 50 µL of PBS. Mice were euthanized at the designated time points post-infection, and
organs were harvested to enumerate bacterial load. Organs were halved for use in quantifi-
cation of bacteria organ burdens and histopathology analysis. Lungs, livers, and spleens
from infected mice were homogenized using the BeadBug Microtube Homogenizer (Bench-
mark Scientific, Sayreville, NJ, USA) according to manufacturer’s protocol in PBS. The
bacterial load was enumerated by serial plating on MHA plates.

4.6. Histopathology Analysis of Infected Mouse Lungs

To assess the pathological consequences and changes in lung tissue in response to
infection with the fpt mutants, groups of 4 eight-week-old male and female C57BL/6J
mice were anesthetized and inoculated i.n. with ~350 CFU of either LVS or the fpt mutant
suspended in 50 µL of PBS. Mice were euthanized at day 6 post-infection and lungs were
harvested for histopathology analysis. Lungs were fixed in 10% Formalin, neutral buffered
(Sigma-Aldrich, St. Louis, MO, USA) for a minimum of 24 h. After fixation, the tissues were
processed and embedded in paraffin. Tissue blocks were sectioned at 5 µm and stained with
hematoxylin and eosin by the University of Maryland School of Medicine Histology Core
Laboratory. Stained tissues were examined on a Aperio ScanScope CS (Aperio, Vista, CA,
USA) and assessed by two pathologists. Both observers were blinded regarding the type
of infection and performed their scoring independently. The histopathologic parameters
examined and scoring criteria are described in Supplementary Table S2.

4.7. Quantification of Secreted Cytokines in Murine Bronchoalveolar Lavage Fluid

To measure the secreted cytokines in the BALF in response to infection with the fpt
mutants, LVS, or mock infection with PBS, groups of 5 eight-week-old male and female
C57BL/6J mice were anesthetized and inoculated i.n. with ~350 CFU of either LVS or the
fpt mutant suspended in 50 µL of PBS, or mock-infected with PBS. Mice were euthanized
on day 6 post-infection by i.p. anesthetic overdose (cocktail of 360 mg/kg of ketamine and
36 mg/kg of xylazine) followed by secondary exsanguination. Bronchoalveolar lavage
fluid was harvested in 1 mL of sterile PBS via an intratracheal catheter attached to a
1mL syringe, and BSA (Reagent Diluent Concentrate 2, R&D Systems, Minneapolis, MN,
USA) was added for a final concentration of 1%. BALFs were frozen at −80 ◦C until
cytokines were analyzed using the V-PLEX Proinflammatory Panel 1 Mouse Kit assay
based on an electrochemiluminescent (ECL) detection method (Meso Scale Diagnostics,
LLC, Rockville, MD, USA) according to the manufacturer’s recommendations. Data were
collected using the MESO QUICKPLEX SQ 120 instrument and analyzed with DISCOVERY
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WORKBENCH® V4.0 data analysis software (Meso Scale Diagnostics, LLC, Rockville,
MD, USA). Briefly, samples were thawed on the day of analysis and standards and BALF
samples (50 µL) were added to appropriate wells and incubated for two hours at room
temperature with shaking (700 rpm). The fluid was then removed, and the wells were
washed 3 times with wash buffer (0.05 % Tween-20 in PBS). Detection antibodies were
added to each well and incubated for 2 h at room temperature with shaking, followed by
washing 3 times. After washing, 150 µL of 2× reading buffer was added to each well. The
plate was analyzed on the MSD instrument immediately. For the purposes of statistical
analyses, any value that was below the lowest limit of detection (LLOD) for the assay was
replaced with half of LLOD of the assay.

4.8. Characterization of the Immune Response in Infected Mouse Lungs

To quantify the responding immune cell populations after infection with the fpt
mutants, LVS or mock infection with PBS, groups of 5 eight-week-old male and female
C57BL/6J mice were anesthetized and inoculated i.n. with ~350 CFU of either LVS or the
fpt mutant suspended in 50 µL of PBS, or mock-infected with PBS. Mice were euthanized
on day 6 post-infection by i.p. anesthetic overdose (cocktail of 360 mg/kg of ketamine and
36 mg/kg of xylazine) followed by secondary exsanguination. Pulmonary perfusion was
performed with sterile PBS prior to harvesting the lungs. Once harvested, the lungs were
immersed in cold cell staining buffer (BioLegend, San Diego, CA, USA) on ice until process-
ing. Lungs were minced using autoclaved scissors in 15 mL of digestion solution containing
0.525 mg/mL Collagenase D (Roche Diagnostics, Mannheim, Germany) and 0.06 mg/mL
DNase I (Roche Diagnostics, Mannheim, Germany) in RPMI 1640 + L-glutamine (Gibco,
Gaithersburg, MD, USA) supplemented with 1% Penicillin/Streptomycin (Gibco, Gaithers-
burg, MD, USA) and 10% heat inactivated/endotoxin free FBS (Gemini Bio, West Sacra-
mento, CA, USA), then filter sterilized using a 0.22 µm filter. Minced lungs were incubated
in the digestion solution at 37 ◦C for 90 min with shaking and filtered through a 70 µm
nylon mesh cell strainer (Corning, Glendale, AZ, USA). RPMI 1641 + L-glutamine was
used to wash the strainer. Cell suspensions were centrifuged at 1300 rpm, at 22 ◦C, for
10 min. Supernatants were carefully removed and washed once with room temperature
RPMI 1641 + L-glutamine. The cell pellets were each resuspended in 5 mL of 1.075 density
Percoll (Sigma-Aldrich, St. Louis, MO, USA) before 5 mL of 1.03 density Percoll was
carefully layered onto the cell suspensions and centrifuged at 1000 rpm, without brake, at
4 ◦C for 20 min. The interfaces containing the cells were washed twice in room temperature
RPMI 1641 + L-glutamine before being resuspended in 1 mL of cold cell staining buffer
and placed on ice. Small aliquots of cells were diluted in 0.04% Trypan Blue Solution
(Sigma-Aldrich, St. Louis, MO, USA) and cell counts were determined using the Countess
Automated Cell Counter (Invitrogen, Carlsbad, CA, USA). An aliquot of each sample
containing 1 × 106 cells in 100 µL was incubated in TruStain FcX Plus (BioLegend, San
Diego, CA, USA) according to the manufacturer’s protocol to block Fc receptors before
being stained with 50 µL of the following fluorochrome-conjugated antibody cocktail ac-
cording to the manufacturer’s protocol (BioLegend, San Diego, CA, USA): F4/80 (BV421,
CAT#123137), Viability (Zombie NIR CAT#423106), CD11b (BV570 CAT#101233), NK1.1
(BV605 CAT#108753), CD3 (BV711 CAT#100349), I-A/I-E also known as Class II (BV785
CAT#107645), Ly6C (FITC CAT#128005), TCRgd (PE CAT#118107), CD11c (PE/Dazzle594
CAT#117347), Ly6G (PerCP CAT#127653), CD68 (PE-Cy7 CAT#137015), CD45.2 (AF700
CAT#109821), TCRb (APC-Fire750 CAT#109245), B220 (APC-Fire810 CAT#103277), and
True-Stain Monocyte Blocker (CAT#156603). Cells were washed and resuspended in 200 µL
of eBioscience IC Fixation Buffer (Invitrogen, Carlsbad, CA, USA) and incubated on ice
for 20 min. Following fixation, cells were washed in 200 µL of cold cell staining buffer
and then resuspended in 200 µL of cold cell staining buffer and used for flow cytome-
try analysis. Cells were analyzed on an Aurora Spectral Cytometer (Cytek Biosciences,
Bethesda, MD, USA). All data were analyzed using FlowJo (FlowJo LLC, Ashland, OR,
USA). Complete gating strategy can be found in Supplementary Figure S2. Briefly, sam-
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ples were first gated on FSC-A and SSC-A to collect cells, then gated on Zombie NIR−
cells to identify live cell populations. To discriminate between immune cells and other
remaining lung cell populations, CD45.2+ cells were gated for further analysis. T cells
were defined as CD3+ B220− populations. T cells were further subtyped into gamma-delta
T cells (γδTCR+TCRβ−), alpha-beta T cells (NK1.1−, TCBβ+), and natural killer-like T
(NKT-like) cells (NK1.1+TCRβ+). B cells were defined as CD3− B220+ populations. Non-B
and non-T cells were defined as CD3− B220− populations. From the non-B and non-T cell
population, natural killer (NK) cells were gated as NK1.1+ I-A/I-E−. Neutrophils were
gated from non-B and T cell populations as Ly6G+ CD11b+ cells. Non-B Class II+ cells were
gated from non-B and non-T cell populations as I-A/I-E+ cells. From the non-B Class II+
cells, the following populations were defined: dendritic cells (F4/80−, CD11b−), CD11b−
macrophages (F4/80+, CD11b−), CD11b+ macrophages (F4/80+, CD11b+), and Class II+
neutrophils (F4/80−, CD11b+). The Class II+ neutrophil population was confirmed by
the expression of Ly6G as well as Ly6C. The CD11b− macrophages were further subtyped
into alveolar macrophages based on expression of CD68 and CD11c. Frequencies of cell
populations were calculated based on the gating strategy described above and absolute
number of each cell population was determined as follows: the number of immune cells
were calculated by multiplying the frequency of live CD45.2+ cells by total live cell number
from cell isolation. The number of T cells, B cells and non-T/B cells were calculated by
multiplying the frequency of the corresponding population of cells by the number of live
immune cells. The number of αβ T cells, γδ T cells, and NKT-like cells were calculated by
multiplying the frequency of the corresponding population of cells by the total number of
T cells. The number of NK cells, neutrophils, and non-B Class II+ cells were calculated by
multiplying the frequency of the corresponding population of cells by the total number
of non-T/B cells. The number of DCs, CD11b+ macrophages, Class II+ neutrophils and
CD11b− macrophages were calculated by multiplying the frequency of the corresponding
population of cells by the total number of non-B Class II+ cells. The number of alveolar
macrophages were calculated by dividing the frequency of alveolar macrophages by the
total number of CD11b− macrophages.

4.9. Statistical Analysis

A two-tailed t test was used to determine statistical significance in organ bacterial
burden experiments. Results were considered statistically significant at a p value of <0.05.
A two-tailed t test was used to determine statistical significance in cytokine secretion in
BALF samples. Results were considered statistically significant at a p value of <0.05. A
one-way ANOVA with a Tukey’s post-test was used to determine statistical significance in
the flow cytometric analyses. Results were considered statistically significant as follows:
****, p < 0.0001; ***, p = 0.001; **, p < 0.001; *, p < 0.05. Data analysis was performed using
GraphPad Prism 9.0 (GraphPad Software, Inc., San Diego, CA, USA).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pathogens10070799/s1, Table S1: Attenuation of fpt mutant strains in BALB/c mice, Table S2:
Scoring criteria for histpathology analysis, Figure S1: Cytokine secretion in the bronchoalveolar
lavage fluid (BALF) of mice infected with fpt mutant strains, Figure S2: Gating strategy for flow
cytometric analysis of infected lung samples, Figure S3: The frequencies of T cells, B cells and
non-T/B cells change during infection of mice with fpt mutants, Figure S4: The frequencies of subsets
of non-T/B cells change during infection of mice with fpt mutants.
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