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Abstract

Single cell RNA sequencing (scRNAseq) can be used to infer a temporal ordering of cellular

states. Current methods for the inference of cellular trajectories rely on unbiased dimension-

ality reduction techniques. However, such biologically agnostic ordering can prove difficult

for modeling complex developmental or differentiation processes. The cellular heterogeneity

of dynamic biological compartments can result in sparse sampling of key intermediate cell

states. To overcome these limitations, we develop a supervised machine learning frame-

work, called Pseudocell Tracer, which infers trajectories in pseudospace rather than in

pseudotime. The method uses a supervised encoder, trained with adjacent biological infor-

mation, to project scRNAseq data into a low-dimensional manifold that maps the transcrip-

tional states a cell can occupy. Then a generative adversarial network (GAN) is used to

simulate pesudocells at regular intervals along a virtual cell-state axis. We demonstrate the

utility of Pseudocell Tracer by modeling B cells undergoing immunoglobulin class switch

recombination (CSR) during a prototypic antigen-induced antibody response. Our results

revealed an ordering of key transcription factors regulating CSR to the IgG1 isotype, includ-

ing the concomitant expression of Nfkb1 and Stat6 prior to the upregulation of Bach2

expression. Furthermore, the expression dynamics of genes encoding cytokine receptors

suggest a poised IL-4 signaling state that preceeds CSR to the IgG1 isotype.
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Author summary

In the past decade advances in computing and single cell sequencing technologies have

ushered in a new era of discovery in biology and medicine. However, the analysis of single

cell data remains challenging, especially when analyzing heterogeneous cellular compart-

ments with complex dynamics. This scenario is especially pronounced in dynamic

immune responses of innate and adaptive immune cells. Existing computational tools typ-

ically analyze scRNAseq datasets without reference to any of the underlying biology of the

system that generates the data. We reason that use of prior knowledge of the system can

aid in the extraction of obscured information from scRNAseq datasets. We introduce a

framework, Pseudocell Tracer, which takes advantage of validated biological knowledge to

guide the inference of cellular trajectories. We apply and validate Pseudocell Tracer by

scRNAseq analysis of antigen-specific B cells undergoing immunoglobulin class switch

recombination during an antigen-induced humoral immune response. This framework is

potentially applicable to single cell data from many other fields with complex dynamics.

This is a PLOS Computational Biology Methods paper.

Introduction

Single-cell RNA sequencing (scRNAseq) has emerged as a dominant tool for analyzing the

transcriptional states of individual cells in diverse biological contexts [1,2]. Computational

analyses of scRNAseq datasets have enabled rigorous delineation of known cellular identities

as well as the discovery of novel cell types [3]. Such datasets have also been used to infer a tem-

poral ordering of dynamic cellular states or cellular trajectories [4]. For example, the field of

immunology has benefited significantly from the adoption of scRNAseq in order to character-

ize cellular states in the context of development and differentiation of distinct innate and adap-

tive lineages [5–7], including responses to various perturbations [8–10], as well as in immune

system diseases [11–13]. Despite tremendous progress, the inference of cellular trajectories

from scRNAseq datasets remains challenging when analyzing heterogeneous cellular compart-

ments with complex dynamics.

Current computational methods for cellular trajectory inference rely on two crucial steps.

In the first step, dimensionality reduction techniques [14], such as PCA [15], ICA [16], and

UMAP [17], are used to project and visualize single cells based on their gene expression pro-

files in low dimensional space (Fig 1A, left). While single cell transcriptional profiles have high

dimensionality due to the thousands of genes profiled, their intrinsic dimensionalities are typi-

cally much lower. Gene expression during a biological process can be directed by small combi-

nations of transcription factors that regulate large gene modules in a time-dependent manner.

Thus, unsupervised low dimensional projections can reveal salient temporal structure in large-

scale scRNAseq datasets, especially when a dominant transcriptional regulatory program

directs the biological process. In the second step of trajectory inference, pathfinding algo-

rithms, such as minimum spanning trees [15,16] or k-nearest neighbor graphs [17,18], are uti-

lized for inferring an ordering of the empirically observed cells in the low dimensional space

(Fig 1A, center). The cells ordered in the inferred trajectory are typically mapped to a virtual

temporal axis called “pseudotime”, which is bounded by two cells representing the start and
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end of the cellular trajectory. Gene expression abundances from the original high dimensional

profiles can then be plotted along a pseudotime coordinate to display their changes along the

inferred trajectory (Fig 1A, right).

Heterogeneous cellular compartments with complex temporal dynamics can present

unique hurdles to trajectory inference. We consider two scenarios that are common within

such complex systems and that limit the use of standard inference methods. In the first sce-

nario, cells utilizing concurrent transcriptional regulatory modules, such as those controlling

cell cycle, metabolism and differentiation, may not reveal the developmental trajectory of

interest along any particular axis using unsupervised dimensionality reduction techniques [19]

(Fig 1B, left). Dimensionality reduction works by minimizing (or maximizing) some global

statistical measure on the gene expression profiles, such as percent variance explained in each

orthogonal dimension of PCA. Thus, there is no guarantee that any single unsupervised

dimensionality reduction technique can uncover a specific temporal pattern of interest. In the

second scenario, all transitioning cellular states along a given trajectory may not be equally

populated, resulting in greater capture of some cell states and sparse capture of other states

(Fig 1B, right). This non-uniform sampling occurs when cells do not follow a constant rate of

development or differentiation during a time-dependent process. Consequently, this can result

in the lack of an observable continuum of cell states or temporal structure in low dimensional

space, hindering cell ordering. Thus, these scenarios illustrate some of the key hurdles to tra-

jectory inference for complex cellular compartments.

Existing computational tools for analyzing scRNAseq datasets typically do so without refer-

ence to any of the underlying biological guideposts of the system used to generate the data. We

hypothesized that by developing algorithms that take advantage of validated prior biological

Fig 1. Pseudocell Tracer, a framework for modeling cellular trajectories in complex systems. (A) An overview of pseudotime trajectory

inference. (B) Some scenarios that may obstruct pseudotime ordering. (C) Pseudocell Tracer. Given some prior knowledge about a model system,

we aim to predict expression trajectories by generating pesudocells at regular intervals along a virtual cell-state axis, even though such cells may be

sparsely captured in single cell profiling data.

https://doi.org/10.1371/journal.pcbi.1008094.g001
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knowledge, we could extract otherwise unresolvable trajectories from scRNAseq datasets, espe-

cially when analyzing heterogeneous cellular compartments with complex dynamics. To test

this hypothesis, we develop a supervised machine learning framework, called Pseudocell

Tracer, that enables modeling of cellular trajectories in complex dynamical systems. We

accomplish supervision by harnessing adjacent information about the underlying biological

process. In most biological systems, there is some prior validated knowledge about the under-

lying cellular states, directionality and dynamics of the process, which can be integrated into a

computational model. For example, cellular differentiation is often tracked by the level of

expression of one or more specific markers such as cell surface proteins or regulators i.e., tran-

scription factors. The expression level of such markers or regulators can reflect a “developmen-

tal clock” and therefore serve as an estimate of the progression between the progenitor and

terminal differentiation state in a complex biological process. We refer to this kind of prior

knowledge as adjacent biological information.

To implement Pseudocell Tracer we harnessed recent advances in deep generative model-

ing. Generative adversarial networks (GANs) can learn a latent space from which to simulate

gene expression profiles of cells that are indistinguishable from a distribution of real cells [20].

In particular, it has been previously proposed that the interpolation of cells in the latent space

may be a means for simulating pseudocells along some cellular trajectory [21]. Notably, GANs

cannot directly shape the latent space, for example, to reflect prior knowledge about a complex

cellular compartment. However, autoencoders can learn latent spaces for scRNAseq that sat-

isfy specific biological constraints [22]. The integration of such models along with the use of

adjacent biological information to supervise their training has not received significant atten-

tion. Pseudocell Tracer integrates such models and generates pseudocells along specific cellular

trajectories in a stepwise process. First, Pseudocell Tracer uses an encoder (Fig 1C, left) to map

out a low-dimensional manifold that describes the transcriptional states a cell can occupy,

while remaining faithful to adjacent biological information. Then, the framework uses a gener-

ator (Fig 1C, center) to simulate pesudocells at regular intervals in the latent space by using the

same adjacent biological information as a guide. Finally, these pseudocells are subjected to a

decoder (Fig 1C, right) to observe gene expression dynamics along the trajectory and provide

novel insights into the underlying regulatory mechanisms. In contrast to pseudotime inference

methods which seek to order empirically observed cell states, Pseudocell Tracer instead gener-

ates (pseudo) cells along a defined cell state-space interval. Thus, Pseudocell Tracer infers tra-

jectories in “pseudospace” rather than in “pseudotime”.

We apply Pseudocell Tracer to the process of somatic DNA recombination that B cells of

the immune system undergo upon antigen encounter. The process termed class switch recom-

bination (CSR) results in exchange of the constant region (M isotype) of the immunoglobulin

heavy chain protein (IgH) to one of several other isotypes thereby generating IgG, IgA and IgE

antibody expressing cells [23,24]. B cells that switch their IgM locus to one of the other Ig iso-

types, via DNA recombination, can be viewed as moving down distinct cellular trajectories

since different cytokine signals and transcription factors have been shown to promote specific

types of isotype switching. An understanding of the timing and expression of the various sig-

naling components and transcription factors associated with distinct CSR trajectories remains

to be thoroughly explored and has not been analyzed in vivo by single-cell transcriptional pro-

filing. Using an scRNAseq dataset generated in the context of a prototypic antigen-specific B

cell response we demonstrate that standard trajectory inference methods fail to assemble

appropriate CSR trajectories. Instead, Pseudocell Tracer trained with adjacent information in

the form of relative expression of isotype-specific transcripts enhances both dimensionality

reduction and trajectory inference. In so doing it reveals the relative timing and orchestration

of key cytokine receptors and transcription factors regulating a particular CSR trajectory.
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Results

Experimental system and the scRNAseq dataset

Mouse B cell responses to the model antigen 4-hydroxy-3-nitrophenylacetyl-keyhole limpet

hemocyanin (NP-KLH) have been used to reveal fundamental principles underlying antibody

isotype switching and affinity maturation [25,26]. To analyze the dynamic transcriptional

states of activated B cells we performed scRNAseq on NP-specific germinal center B cells at the

peak of the response (day 14) (Fig 2A). We reasoned that in B cells undergoing CSR, Ig tran-

scripts encoding the M isotype would diminish whereas those encoding the switched isotype

would increase.

We calculated the relative isotype expression within a B cell by dividing the log2(TPM + 1)

expression of each distinct isotype transcript (Ighm, Ighg1, Ighg2b, Ighg2c, Ighg3, Igha, Ighd,

and Ighe) with the cumulative expression of all isotypes. Hierarchical clustering of relative iso-

type expression revealed 7 clusters of B cells, of which 5 clusters were dominated by a single

isotype and reflected cells that had undergone CSR (Fig 2B). As expected for the immunization

Fig 2. Class switch recombination process. (A) Overview of experimental system. (B) Relative isotype expression for all cells. N = 7,065. All isotype

expressions sum to one for a given cell. (C) UMAP of RNA-seq data, colored by isotype. (D) Output from Moncole3 and Slingshot.

https://doi.org/10.1371/journal.pcbi.1008094.g002

PLOS COMPUTATIONAL BIOLOGY Inferring cellular trajectories from scRNA-seq using Pseudocell Tracer

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008094 May 3, 2021 5 / 16

https://doi.org/10.1371/journal.pcbi.1008094.g002
https://doi.org/10.1371/journal.pcbi.1008094


conditions noted above, IgM expressing B cells primarily switched their isotypes to IgG1,

IgG2b, or IgG3 (Stavnezer et al., 2008). Notably, the clustering based on relative isotype

expression values revealed a group of transitioning cells that were undergoing CSR from IgM

to other isotypes, including IgG1, IgG2b, and IgG3. Since the relative isotype expression is

expected to monotonically track the progression of CSR, we reasoned that it would represent

suitable information embedded within the dataset to enable deconvolution of the distinct CSR

cellular trajectories within the transitioning B cells.

We visualized the scRNAseq data using uniform manifold approximation and projection

(UMAP) and observed that it failed to distinguish cells on the basis of their isotype identities

(Fig 2C). We therefore evaluated the utility of existing computational pipelines, in particular,

Moncole3 [27] and Slingshot [15] for delineating CSR trajectories within our dataset. These

methods utilize a variety of dimensionality reduction techniques and temporal ordering meth-

ods. However, none of the methods recovered a coherent CSR trajectory that delineated a path

from, for example, IgM to IgG1 (Fig 2D). In the case of Monocle3, the low dimensional projec-

tion of single cell data by UMAP was neither able to distinguish stably switched cells by their

isotype nor cluster cells presumptively undergoing CSR. Similarly, the Slingshot representation

failed to distinguish cells on the basis of their CSR trajectories.

We hypothesized that the failure of these unsupervised dimensionality reduction tech-

niques to uncover the CSR trajectories was due to other dominant dynamic gene expression

programs in germinal center B cells, particularly involving the cell cycle. To evaluate this

hypothesis, we analyzed the expression patterns of cell cycle regulators, which revealed cluster-

ing of cells based on their cell cycle phase (S1 Fig). Taken together, while our directed analysis

of the scRNAseq dataset revealed a minor cluster of transitioning B cells that were undergoing

CSR to different isotypes, existing unsupervised methods were unable to reveal such cells as a

distinct cluster(s) and therefore temporally order their pertinent trajectories.

Overview of pseudocell tracer

The core of the Pseudocell Tracer framework (Fig 3A) is based on the following two compo-

nents that are used successively: (1) a supervised autoencoder to perform dimensionality

reduction and (2) a conditional generative adversarial network (CGAN) to generate hypotheti-

cal cell states or pseudocells. The main difference between an unsupervised and supervised

autoencoder is the additional information provided to facilitate learning a low dimensional

projection (Fig 3A, left). Both unsupervised and supervised autoencoders function to encode

high-dimensional data into a low-dimensional latent space. However, the supervised autoen-

coder aims to specifically learn an encoder that transforms the scRNAseq data into a latent

space that conforms to the adjacent information, relating to a specific biological context or

process. In the context of modeling CSR, the latent space is shaped by relative expression of

the different Ig constant region transcripts. Thus, individual B cells with similar relative isotype

expression profiles will have similar latent encodings. The architecture of the supervised auto-

encoder contains both an encoder and decoder (S2 Fig). The encoder functions to project

high-dimensional data into a low-dimensional latent space, which is shaped by the adjacent

biological information (Fig 3B, top), and the decoder functions to reverse the low dimensional

encoding of cells from the latent space (Fig 3B, bottom). When combined together, the

encoder performs dimensionality reduction, while the decoder generates from the latent space

a reconstruction as close as possible to the observed input data.

Visualization of the latent space for the scRNAseq data revealed specific clustering of cells

by their dominant isotype (Fig 3B, top). To characterize the robustness of the model on new or

held out data, we evaluated the supervised autoencoder using 10-fold cross-validation (Fig
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3C). For each partition, 90% of the data was used for training and 10% was set aside as a blind

test. For training, an additional 10% of the training set was used for early stopping (see Meth-

ods). Once training finished, the test set was then encoded and decoded. Scatterplots of the

held-out test predictions were generated for IgM and IgG isotypes, demonstrating high corre-

lation between predicted and observed gene expression (Fig 3C). Notably, other factors associ-

ated with CSR, such as Aicda and Bach2, demonstrated high correlation. Next, we sought to

evaluate how sensitive the model is to varying sample sizes. We examined correlation values

between predicted and observed expression of IgM and IgG isotypes using 500, 1000, and 5000

cells (S1 Table). Training with larger numbers of cells produced a better latent representation

of the single cell data and improved modelling of gene expression profiles. Taken together, the

supervised autoencoder successfully learned both an encoder for dimensionality reduction

informed by relative isotype expression and a decoder for mapping low dimensional encodings

back to full transcriptional expression profiles.

In the second step of our approach, we trained a CGAN to simulate pseudocells (S3 Fig).

Notably, the inference procedure for the generative model is performed in the latent space that

is learned by the autoencoder. The use of the low-dimensional latent space is necessitated by

the instability of GANs in high dimensional settings. Importantly, any CGAN simulation in

low dimensional space can be easily mapped to the input space using the decoder and generate

Fig 3. Pseudocell Tracer efficiently integrates adjacent biological information and accurately simulates gene expression profiles in pseudocells.

(A) Overview of neural network model combining a supervised autoencoder with a conditional GAN. (B) UMAP visualization of the input and output

used in the supervised autoencoder; encoder (top) and decoder (bottom). (C) Scatter plot between observed and predicted expression values on held out

cells. r denotes Pearson correlation between ground truth and predicted values. Isotype expression (left) and example CSR genes (right). (D) UMAP

visualization applied to cGAN prediction and subsequent output from decoder.

https://doi.org/10.1371/journal.pcbi.1008094.g003
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high dimensional full transcriptional profiles for individual cells. The main difference between

a GAN and a CGAN is the conditional information associated with the generator and discrim-

inator (Fig 3A, right). Both consist of two neural networks competing against each other such

that one network, called the generator, seeks to produce realistic output data from a random

input vector, and the other network, called the discriminator, is tasked with discriminating

between the real and generated data. Importantly, the CGAN conditions the inference of both

the generator and the discriminator on adjacent information. In the context of modeling CSR,

the generator aims to simulate realistic latent encodings of cells that are conditioned on rela-

tive isotype expression profiles, in the same manner as the autoencoder in the first step. Thus,

after fully training the CGAN, latent encodings for pesudocells can be simulated using the gen-

erator based on their relative isotype expression profiles. These latent encodings can then be

subjected to the decoder utilized in the previous step to generate high dimensional transcrip-

tional profiles of hypothetical cells that conform to the input data as well as the adjacent infor-

mation that represents a key biological prior(s).

To qualitatively evaluate the representation learned by the generator, relative isotype

expression and corresponding low-dimensional encodings from the scRNAseq data were used

to train the CGAN. The CGAN model was trained to equilibrium. Notably, only the discrimi-

nator directly observes low-dimensional encodings of the expression data while the generator

improves its simulations through interaction with the discriminator. Pseudocells were gener-

ated for the observed relative isotype expressions, subsequently decoded, and visualized (Fig

3D). Visualization of the CGAN latent space reproduced specific clustering of cells by their

dominant isotype (Fig 3B) and subsequent decoding reconstructed a complex and heteroge-

neous B cell landscape qualitatively similar to the real scRNAseq data. Thus through sequential

application of an autoencoder and a CGAN both conditioned with prior biological informa-

tion, Pseudocell Tracer provided a supervised framework for generation of hypothetical B cells

undergoing CSR.

Pseudocell tracing the CSR process

We define a B cell IgH isotype trajectory based on a cellular progression from the IgM to an

alternate IgH isotype. To demonstrate the utility of Pseudocell Tracer in inferring cellular tra-

jectories that can be overwhelmed in complex and heterogeneous cellular compartments, we

modeled the IgM to IgG1 class switch recombination process. First, we simulated a relative iso-

type expression profile with IgM at 100% and all other isotypes at 0%. For each cell-state incre-

ment along the IgG1 trajectory, we reduced the relative abundance of IgM by 1% and

increased the relative abundance of IgG1 by 1%. We continued generating relative isotype

expression profiles until IgG1 reached 100% and IgM reached 0% (Fig 4A). Overall, we simu-

lated 101 points along the IgG1 trajectory. We then generated 100 latent encodings for each

point using the previously trained CGAN in order to estimate a 95% confidence interval.

Finally, we used the previously trained decoder to convert each latent encoding to a full tran-

scriptional expression profile, resulting in 10,100 pseudocells which traced the progression

from IgM to the IgG1 state within the trajectory.

To determine if the pseudocell tracing of the IgG1 trajectory was consistent with known

experimental findings, we examined the transcriptional dynamics of Aicda gene expression in

relation to Ighm and Ighg1 transcripts. Aicda encodes the activation induced cytidine deami-

nase (AID) which is a direct mediator of the intrachromosomal IgH recombination events in

B cells that result in CSR. We plotted the various relative expression profiles (z-score trans-

formed) across the IgM to IgG1 pseudocell tracing (Fig 4A). As expected, we observed

decreased expression of Ighm and increased expression of Ighg1 transcripts as pseudocells
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progressed from an IgM cell state to an IgG1 cell state. The Aicda transcript profile revealed its

increased expression within the CSR trajectory preceeding the inflection point of IgM and

IgG1 transcripts. Despite a smaller number of IgG2 and IgG3 cells captured, similar relative

expression profiles for Ighg2, Ighg3 and Aicda were observed for other IgG trajectories (S4

Fig). The inferred expression profile of Aicda suggests a model where its initial levels in anti-

gen-induced GC B cells are likely sufficient for promoting CSR. The increased levels at later

timepoints in the CSR trajectory may function in promoting somatic hypermutation (SHM),

another key molecular process required for affinity maturation in germinal centers that is

directly mediated by AID (see Discussion).

To explore the regulatory underpinnings of IgG1 isotype switching, we assembled a com-

prehensive view of the gene expression dynamics across the IgG1 trajectory. We focused our

analysis on dynamically expressed genes by selecting the top 6,500 most variable genes. Heat-

map visualization of the relative expression profiles across the IgM to IgG1 pseudocell tracing

revealed 3 granular transcriptional phases associated with this CSR trajectory, designated

early, middle, and late (Fig 4B).

We characterized the dynamics of several key transcription factors that are implicated in

regulating CSR within the phases. Genes expressed within the early transcriptional phase

included Nfkb1 and Stat6 (Fig 4B and 4C). Nfkb1 knockout mice have lower serum IgG1 and

IgE antibodies [28]. Stat6 induces Ighg1 germline transcription, an event that is obligatory for

the intrachromosomal DNA recombination that leads to IgG1 switching [29]. Notably, we

observed an increase in Bach2 expression during the middle transcriptional phase (Fig 4D).

Bach2 is required for both CSR and SHM and regulates Aicda expression [30,31]. We next ana-

lyzed expression profiles of cytokine receptors, signaling by which is known to influence CSR.

External signaling from IL-4 is known to drive IgG1 switching [32]. We observed higher

expression of Il4ra, encoding an IL-4 receptor subunit (Fig 4F) within the early transcriptional

phase. In contrast, Ifngr1 transcript expression was low during the early phase consistent with

the findings that IFN-γ signaling inhibits IgG1 switching [33]. These results suggest a

Fig 4. Pseudocell Tracer models IgG1 class switching process. (A) Pseudocells generated along the IgM to IgG1 axis. Plot of relative expression of

Aicda, Ighm and Ighg1 along the IgM to IgG1 axis, where solid line indicates average expression and shading indicates 95% confidence interval. (B)

Associative clustering of genes during CSR. Regions of early (left), middle (center), and late (right) transcriptional dynamics are depicted. Plots of

relative expression for key genes with specific dynamics, including (C) Stat6, (D) Bach2, (E) Il4ra, and (F) Ifngr1.

https://doi.org/10.1371/journal.pcbi.1008094.g004
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regulatory model where such B cells are poised to receive IL-4 signaling and undergo IgG1

switching. In conclusion, pseudocell tracing inferred expression dynamics of Aicda, Il4ra,

Ifngr1, Stat6 and Bach2 in B cells undergoing CSR to the IgG1 isotype, that were consistent

with prior biological knowledge and also generated new hypotheses.

Discussion

We present a supervised machine learning framework, Pseudocell Tracer, for modeling cellu-

lar trajectories in complex systems. Inference of cellular trajectories from scRNAseq datasets

remains a challenging problem, particularly for heterogeneous cellular compartments with

complex dynamics. Existing methods for trajectory inference are strongly dependent on initial

low-dimensional projections of the datasets. Concurrent and inter-digitated transcriptional

programs, such as those regulating cell cycle and metabolism can obstruct unsupervised

dimensionality reduction and pseudotemporal ordering techniques. This problem can be

amplified by sparse sampling of key intermediate cellular states. To address these two chal-

lenges, we harness adjacent biological information in order to shape the latent space in a bio-

logically valid manner thereby revealing discrete cellular trajectories in a complex

developmental compartment that are otherwise obscured.

By formally utilizing adjacent biological information Pseudocell Tracer seeks to comple-

ment the existing tools for trajectory inference, which analyze scRNAseq datasets without ini-

tial reference to biological knowledge of the system. Pseudocell Tracer learns a generative

model encompassing all cells in a biologically meaningful latent space. As a result, the genera-

tive model provides a means to interpolate cells in the latent space and allows for the specific

delineation of pseudocells by conditioning on adjacent biological information. Importantly,

we demonstrate that even a relatively small dataset with a few hundred cells is sufficient for

learning and can be used to generate biologically plausible virtual cells. The surprising effec-

tiveness of GANs in simulating realistic subpopulations of cells from small datasets has been

independently demonstrated [20].

Pseudocell Tracer was used to analyze and infer gene expression dynamics along a particu-

lar CSR trajectory (IgG1), during a prototypic antigen-induced B cell response. In spite of

extensive genetic and molecular analysis of CSR, the gene expression dynamics of B cells

undergoing CSR in vivo have not been revealed. In fact, a recent report using extensive

scRNAseq profiling of human tonsillar B cells was still unable to reveal the developmental

modulation of genomic states underlying particular CSR trajectories using unsupervised

dimensionality reduction techniques [34]. We utilized a unique scRNAseq dataset generated

from antigen-specific B cells induced by NP-KLH immunization to infer the cellular trajecto-

ries of germinal center B cells undergoing CSR to IgG1, the dominant isotype manifested

under these conditions. Although recent work has indicated that CSR is primarily induced

before entry of antigen-specific B cells into germinal centers [35], we were able to detect it also

within the GC compartment.

Our results revealed an ordering of key transcription factors regulating CSR, including the

higher expression of Nfkb1 and Stat6 prior to the upregulation of Bach2 expression. The for-

mer transcription factors have known roles in regulating IgG1 CSR and the latter promotes

Aicda gene expression and therefore both CSR and SHM. An intriguing finding is the upregu-

lation of Aicda gene expression in the CSR trajectory after it has been initiated suggesting that

increased expression of AID maybe needed for efficient SHM which occurs in B cells within

the germinal centers. Finally, the expression pattern of genes encoding cytokine receptors

within the early transcriptional phase revealed a poised B cell state that maybe committed to

CSR to the IgG1 isotype.
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Ultimately, the hypotheses generated through Pseudocell Tracer will have to be experimen-

tally validated. While we demonstrate proof-of-concept in modeling CSR along a particular

isotype trajectory, we anticipate future studies analyzing other isotypes and facilitate assembly

of isotype-specific B cell trajectories in diverse lymphoid organs and tissues. In the current

work, we utilized an encoding that reflected potential CSR paths, however, Pseudocell Tracer

can encode other structured adjacent biological information as well, such as phylogenetic trees

constituted by somatically mutating antibody variable regions. In so doing, Pseudocell Tracer

could be used to guide the latent space and conditional generation of specific trajectories of B

cells undergoing SHM and affinity maturation.

The machine learning framework underlying Pseudocell Tracer provides for a flexible

means to explore new forms of adjacent biological information in extremely diverse contexts.

Ultimately, Pseudocell Tracer is a powerful framework for characterizing the transcriptional

states and trajectories of cells during their development and activation. These states and trajec-

tories, particularly rare ones, can be revealed by embedding them in valid biological priors.

For example, Pseudocell Tracer has the potential to merge multiple single cell profiling experi-

ments from different biological compartments, providing a novel way to bridge datasets by

using prior molecular information about their relatedness. Therefore, Pseudocell Tracer prom-

ises to be a robust engine for hypothesis generation for experimental biology by predicting

novel regulators and rare cell states underlying extremely diverse cellular trajectories.

Materials and methods

Ethics statement

All mice used for experiments were maintained under specific-pathogen-free conditions and

the immunization experiments were approved by the University of Pittsburgh Institutional

Animal Care and Use Committee under protocol no. 19115454.

Mice and immunization

C56BL/6J (Jax 000664) mice were obtained from the Jackson Laboratory. Mice were housed in

specific pathogen-free conditions and were used and maintained in accordance of University

of Pittsburgh Institutional Animal Care and Use Committee guidelines. Six to eight week old

mice were immunized intraperitoneally with 100 μg NP(23)-KLH (Biosearch Technologies)

mixed with 50% (v/v) Alum (Thermo Scientific) and 1 μg LPS (Sigma).

Sorting of NP-specific B cells and scRNAseq

Mouse spleens were collected on day 14 post-NP-KLH immunization. Splenocytes were washed

and prepared as single-cell suspensions in MACS buffer (pH 7.4; PBS without calcium and mag-

nesium plus 3% FBS and 2 mM EDTA). Cells were blocked with 25 μg/ml 2.4G2 (BD) for 15

minutes on ice and labeled with viability dye eFluor 780 (eF780), 0.04 μg/mL NP138-PE and 2 μg/

mL B220-APC (RA3-6B2) for 30 minutes at 4˚C. B cells were sorted as eF780–B220+NP+ using

FACSAria II (BD) with 70 μm nozzle at 4˚C. FACS sorted B220+NP+ B cells were mixed with

reverse transcription reagents and loaded onto the Chromium instrument (10x Genomics) and

libraries were prepared. Single cell libraries were sequenced using Illumina’s NovaSeq platform.

scRNAseq data preprocessing

Genes containing no counts across any samples were discarded. We calculated the relative iso-

type expression within a B cell by dividing the log2(TPM + 1) expression of each distinct iso-

type transcript with the cumulative expression of all isotypes. The relative isotype expression
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profiles were clustered using hierarchical clustering using the clustergram function in Matlab

with default settings.

Pseudotime trajectory

We apply two state-of-the-art pseudotime trajectory inference methods to our data: Mono-

cole3, and Slingshot. Monocle3 is a method to learn pseudotime through the use of dimension

reduction and graph learning. A minimum spanning tree is constructed and used to order the

cells to infer pseudotime trajectory. We implemented Monocle3 using the default settings with

UMAP dimension reduction and Louvain clustering. Slingshot is another single cell trajectory

inference method. In their method, they project the data into a latent space and perform clus-

tering. In our implementation of Slingshot, we use PCA for dimension reduction and Gaussian

mixture model (GMM) clustering with default parameters. The minimum spanning tree is

then constructed from the clusters.

Supervised autoencoder

In order to shape the latent space in a meaningful way, we utilize a supervised autoencoder to

help distinguish important differences in cell subtypes. Our work constructs a supervised auto-

encoder in two steps. The first step employs supervised encoding using the relative abundance

of the IgH genes of interest based on their relative expression. To do so, the normalized gene

counts are encoded into a latent layer using a neural network model, and this latent layer is

then used to predict the relative abundance of the different IgH genes. The encoder has an

input of size 6,617 and contains two fully connected layers between the input and the latent

layer of sizes 512 and 256 respectively, each using the rectified linear unit (ReLU) activation

function. The latent layer has a size of 64 nodes and uses the sigmoid activation function. In

addition, there is a fully connected layer of size 128 between the latent layer and the output.

The output layer contains 8 nodes and uses the softmax activation function in order to gener-

ate a relative distribution across the 8 IgH genes. The network is trained using the Adam opti-

mizer with a learning rate of 1x10−4 and the Kullback-Leibler divergence (KLD) loss function,

Lenc ¼
1

n

Xn

i

KLDðYijjŶ iÞ þ l
X

l

jWlj
2

Here, the first term represents the average KLD between the observed IgH proportions, Yi,

and the predicted IgH proportions, Ŷ i, across all n samples. The second term regularizes the

network using the weighted sum the L2-norms for the weights of each layer Wl, where l repre-

sents the layer. In our study, we found the best weight coefficient to be λ = 1x10−5. Further reg-

ularization is added by implementing dropout with a rate of 0.3 at every hidden layer. The

network is trained using early stopping, where 10% of the training data is held out as a valida-

tion set. The KLD term of the loss function was evaluated on the validation set each epoch and

training was terminated if there had not been a decrease in 100 epochs, whereafter the model

was reverted to the previously best state. The model is then trained for an additional 5 epochs

using the entire training data, including the validation set that was used for early stopping.

After the supervised encoder had been trained, the second step employed a decoder in

order to reconstruct the original normalized gene values from the latent space. This network

takes the latent space of size 64 as an input to predict the normalized gene expression for each

of gene as an output. The network contains two fully connected layers of sizes 256 and 512

respectively, each using the ReLU activation function. The output layer has a size of 6,617 and

uses the linear activation function. The network is trained using the Adam optimizer with a
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learning rate of 1x10−4 with the mean squared error (MSE) loss function,

Ldec ¼
1

n

Xn

i

ðXi � X̂ iÞ
2
þ l

X

l

jWlj
2

Here, the first term represents the average MSE between the observed normalized gene

expression, Xi, used to generate the latent space of some sample i, and the decoded normal-

ized gene expression X̂ i. The second term regularizes the network using the weighted sum

the L2-norms in the same way as seen in the supervised encoder. We again found the best

regularization parameter to be λ = 1x10−5. The decoder model was further regularized

using batch normalization at each of the hidden layers. Parameter choices are listed in S2

Table. The model was trained using the same early stopping approach from the supervised

encoder, however in this case we stop the training based on the MSE term of the loss

function.

Conditional generative adversarial network

In order to generate samples for unobserved pseudo-times, we utilize a CGAN architecture

[36]. A CGAN is composed of two networks: a generator and a discriminator. The generator

model learns to generate fake data that is as close to the distribution of the real data as possible.

At the same time, the discriminator model tries to predict if a piece of data is real or fake. Both

models are trained in an adversarial manner where the generator tries to maximize the log-

probability of labeling real and fake images correctly while the discriminator tries to minimize

it, resulting in a zero-sum minimax game. The models are trained using gradient descent until

Nash equilibrium is reached.

The generator in our model, G, takes in as an input a vector of 32 values sampled from

~U(−1,1) concatenated with the relative abundance of the 8 IgH genes in order to output a

vector representing the encoded latent representation of gene expression values. The net-

work contains two fully connected layers of sizes of 256 and 512 respectively, both using

the ReLU activation function. The output is size 64 with a linear activation function. The

discriminator, D, takes a vector of size 64 representing encoded gene expression as well as

the relative abundance of the 8 IgH genes and outputs a single value between 0 and 1 as the

probability of the data being real. The discriminator has a single layer of size 512 that uses

the ReLU activation function. To avoid problems of a vanishing gradient, we adjust the loss

function of the generator to create a non-saturating loss function [36]. The networks are

trained simultaneously using the Adam optimizer with a learning rate of 5x10−5 until con-

vergence (about 50,000 epochs). The loss function for the discriminator and generator are

shown below.

LD ¼
1

n

Xn

i

� log½DðziÞ� � log 1 � D GðriÞð Þ½ �

LG ¼
1

n

Xn

i

log½DðGðriÞÞ�

Here zi represents the latent space generated from the observed gene expression from

sample i using the and G(ri) represents the generated latent space using the relative IgH val-

ues from sample i. Latent spaces are taken from the autoencoder model trained on the

entire data set.
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Pseudocell generation

Once the CGAN model was trained to equilibrium, we generated 100 latent spaces for each rel-

ative isotype expression profile. For each of IgG1, IgG2b, and IgG3, we generated latent spaces

for each trajectory starting at 100% IgM, and for each subsequent relative isotype expression

profile, we reduced the relative abundance of IgM by 1% and increased the respective isotype

gene expression by 1%. We then decoded each latent space back to the normalized gene

expression values in order to obtain pseudo cells. Gene expression trajectories was plotted

using the average and 95% confidence interval along the trajectory. Concordance between the

nearest real cell to each pseudo cell was qualitatively evaluated for Ighm and Aicda (S5 Fig) to

evaluate model behavior.

Supporting information

S1 Fig. UMAP of RNA-seq data, colored by cell cycle genes.

(EPS)

S2 Fig. Detailed architecture of the supervised autoencoder.

(EPS)

S3 Fig. Detailed architecture of the conditional GAN.

(EPS)

S4 Fig. Plot of relative expression of Aicda, Ighm and Ighg2b (left) and Ighg3 (right).

(EPS)

S5 Fig. Predicted and observed target gene expression along IgM–IgG1 trajectory.

(EPS)

S1 Table. Sample size analysis.

(DOCX)

S2 Table. Hyperparameter table.

(DOCX)
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