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Using neural distance to predict 
reaction time for categorizing 
the animacy, shape, and abstract 
properties of objects
J. Brendan Ritchie    & Hans Op de Beeck

A large number of neuroimaging studies have shown that information about object category can 
be decoded from regions of the ventral visual pathway. One question is how this information might 
be functionally exploited in the brain. In an attempt to help answer this question, some studies 
have adopted a neural distance-to-bound approach, and shown that distance to a classifier decision 
boundary through neural activation space can be used to predict reaction times (RT) on animacy 
categorization tasks. However, these experiments have not controlled for possible visual confounds, 
such as shape, in their stimulus design. In the present study we sought to determine whether, when 
animacy and shape properties are orthogonal, neural distance in low- and high-level visual cortex would 
predict categorization RTs, and whether a combination of animacy and shape distance might predict 
RTs when categories crisscrossed the two stimulus dimensions, and so were not linearly separable. 
In line with previous results, we found that RTs correlated with neural distance, but only for animate 
stimuli, with similar, though weaker, asymmetric effects for the shape and crisscrossing tasks. Taken 
together, these results suggest there is potential to expand the neural distance-to-bound approach to 
other divisions beyond animacy and object category.

Using multivariate pattern analysis (MVPA) several neuroimaging studies have investigated object 
category-selectivity in regions of the ventral visual pathway1. At the same time, some findings have been inter-
preted as showing that apparent categorical effects in high-level regions of the ventral pathway may be accounted 
for by more low-level visual features of stimuli2–4. Only recently have studies begun to employ stimulus designs 
that tease apart the separate contribution of object category and other visual properties, such as shape, to the 
neural response in ventral pathway brain regions5–7. A virtue of the stimulus designs of these studies is that, by 
making category and shape orthogonal properties of object images, they help rule out the possibility that the 
categorical effects in later regions of the ventral pathway are accounted for by low-level visual features of stimuli8.

Besides possible visual confounds, another issue is that evidence of category-related information in a brain 
region does not guarantee that it is functionally exploited and therefore represented. A first step in trying to 
address this issue is to show that decodable information can be used to predict behavior9–11. One way of moving 
beyond this first step is to attempt to not just predict, but also partially explain, observer behavior using neural 
distance-to-bound analysis (NDBA), which involves correlating distance from a classifier decision boundary 
in activation space with observer categorization reaction times (RTs). Based on the predictions of classic psy-
chophysics12,13, if the neural activation space reflects the representation that determines observe categorization 
response, then RTs should negatively correlate with distance from the decision boundary14. Recent studies have 
used NDBA to predict observer RTs for animacy categorization tasks based on neural distances measured with 
human fMRI and MEG15–18.

To date, none of the studies employing NDBA have used stimulus designs that dissociate object category 
from other visual features of object images such as shape, or used NDBA to determine whether neural distance 
predicts observer performance when discriminating real-world shape. In the present study we therefore sought 
to determine whether, when animacy and shape properties of objects are orthogonal, neural distance would still 
predict observer RTs on both the animacy and shape categorization tasks, and whether the relationship between 
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neural distance and task might vary between low- and h-level visual cortex. In previous applications of NDBA, it 
has typically been assumed that representations of object categories reflect distinct, and linearly separable, areas 
of the activation space in a brain region. This raises the question of whether neural distance might predict RTs 
when categories are not obviously linearly separable in activation space. In our stimulus design object categories 
were linearly separable along the dimensions of animacy and shape. Thus, we also sought to determine whether a 
combination of animacy and shape distances might predict RTs when task categories crisscrossed the two stimu-
lus dimensions, and so were not linearly separable along these dimensions.

Materials and Methods
Participants.  15 adult volunteers (8 Female; mean age = 30; right-handed) participated in the experiment. 
All participants had normal or corrected vision, provided written informed consent, and were financially com-
pensated for their participation. The experiment was approved by the Medical Ethics Committee of UZ/KU 
Leuven and all methods were performed in accordance with the relevant guidelines and regulations.

Stimuli.  Stimuli were 32 natural images of objects, converted to greyscale with scene background removed 
(Fig. 1A). All images were cropped to 700 × 700 pixels and subtended ∼10° of visual angle in the scanner. Images 
were selected to include two clusters each of animate and inanimate objects, which were counterbalanced into 
two clusters of real-world shape: those with a high-aspect ratio, or “bar-like” shape, and those with a low-aspect 
ratio, or “blob-like”, shape (Fig. 1B). This resulted in 4 subordinate clusters of 8 images each: pets, insects, tools, 
and vegetables. Stimulus presentation and control for all experiments in the study was via PC computers running 
the Psychophysical Toolbox package19, along with custom code, in Matlab (The Mathworks).

Image analysis.  To assess whether low-level image properties predicted stimulus animacy or shape, we 
applied the GIST model, which provides a summary of local orientation and spatial frequency information in an 
image, to our stimuli20. Each image was segmented into a 4 × 4 grid, and Gabor filters with 8 different orientations 
and 4 spatial frequencies were applied independently to each grid block of the image. This procedure resulted 
in a 512 value descriptor vector (16 image blocks × 8 orientations × 4 spatial frequencies) for each image. We 
then applied a linear discriminant analysis (LDA) classifier to the descriptor vectors to carry out cross-decoding 
for the shape and animacy labels of the images. For example, a classifier trained to discriminate the animacy of 
(shape-matched) insects and tools images was tested on the (shape-matched) pets and vegetable images, and vice 
versa. This analysis allowed us to assess whether any information about animacy category or real-world shape 
generalized across stimulus clustering along the orthogonal dimension.

Categorization tasks.  Subjects performed three tasks in the scanner: an animacy task (is the object in 
the image “capable of self-movement”); a shape task (is it more “bar-like or blob-like”); and a contrived 
“indoor-outdoor” task, which crisscrossed the animacy and shape dimensions (Fig. 1B). For the indoor-outdoor 
task it was emphasized to participants that one feature of some of the objects is that they tend to be found or kept 
indoors. Specifically, the tool stimuli were kitchen and bathroom items, and the pets (e.g. guinea pigs) tend to 
be kept in cages indoors. In contrast, we highlighted that the vegetables in our images are typically grown out-
doors in the garden, and that the insects in our images are also found outside in trees or gardens. Thus, for the 
indoor-outdoor task, subjects were instructed to use a binary rule for categorizing the object images into groups 
that crisscrossed the animacy and shape divisions, but without overt reference to a nonlinear decision rule. All 

Figure 1.  Stimuli and categorization task design. (A) Representative natural images of the pets, insects, vegetables, 
and tools stimuli. The sources for 3/4 of the displayed images are as follows: guinea pig (https://commons.
wikimedia.org/wiki/File:AniarasKelpoKalle.jpg); slug (https://www.flickr.com/photos/brewbooks/2606728819); 
and wooden spoon (https://upload.wikimedia.org/wikipedia/commons/7/7b/Wooden_Spoon.jpg). These 3/4 
images are published in compliance with a CC BY-SA license (https://creativecommons.org/licenses/by-sa/3.0/). 
The full set of stimulus images used in the study can be found at: https://osf.io/3dpqe/. (B) the category groupings 
of the stimuli for the animacy, shape, and indoor-outdoor tasks.
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three tasks were explained to subjects prior to scanning. Dependent measures for these tasks were observer choice 
responses and reaction times.

Scanning procedure.  Scanning consisted of a single sessions of 9 functional scans, followed by an anatom-
ical scan. Using a rapid event-related design, each run consisted of a random sequence of trials including two 
repeats of each of the 32 stimuli and 11 fixation trials, for a total of 86 trials per run. Each stimulus trial began 
with the stimulus being presented for 1000 ms, followed by 2000 ms of fixation. The duration of each run was 
4 m 40 s. During scanning, subjects first performed either the animacy then shape, or shape then animacy task, 
followed by the indoor-outdoor task, for 3 runs per task. Responses were made using the middle and index finger 
of the right hand. Since stimulus durations were longer than is typical when collecting RT data, participants were 
instructed to respond while the stimulus was still on the screen. To control for possible motor confounds, the 
response-button mapping was counterbalanced between runs.

Imaging parameters.  Data acquisition was carried out using a 3T Philips scanner, with 32-channel coil, 
at the Department of Radiology of the KU Leuven university hospitals. Functional MRI volumes were acquired 
using a 2D T2*-weighted echo planar (EPI) sequence: TR = 2 s; TE = 30 ms; FA = 90 deg; FoV = 216; voxel 
size = 3 × 3 × 3 mm; matrix size = 72 × 72. Each volume consisted of 37 axial slices aligned to encompass as much 
of the cortex as possible, with no gap. The T1-weighter anatomical volumes were acquired with an MP-RAGE 
sequence, 1 × 1 × 1 mm resolution.

fMRI preprocessing and analysis.  Preprocessing and analysis of the MRI data was carried out using 
SPM12 (v. 6906). For each participant, fMRI data was slice-time corrected, motion corrected, coregistered to 
the individual anatomical scan, normalized to standard MNI space, and then smoothed using a Gaussian kernel, 
6 mm FWHM21. After preprocessing the BOLD signal for each stimulus, at each voxel, was modeled using a GLM. 
The predictors for the model consisted of the 32 stimulus conditions and 6 motion correction parameters (trans-
lation and rotation along the x, y, and z axes). The time course for each predictor was characterized as a boxcar 
function (1000 ms duration) convolved with the canonical hemodynamic response function, with onsets consist-
ing of the onset times for the two repeats of a stimulus condition from each run. The GLM analysis produced one 
parameter estimate for each voxel, for each stimulus predictor, for each run.

Decoding searchlight analysis.  To determine where information about category and shape might be 
located, we carried out a volume-based decoding searchlight analysis using LDA classifiers, as implemented in 
the CoSMoMVPA toolbox22. In this analysis, the total brain volume is portioned into distinct “neighborhoods”, 
each one centered on a single brain voxel and defined to include 100 adjacent voxels based on their 3D image 
coordinates. For each neighborhood, an LDA classifier was trained to discriminate pattern responses across the 
100 voxels to determine whether they carried information that discriminated between task conditions, such as 
whether a voxel pattern was produced by an animate or inanimate exemplar image23. The classifiers were trained 
using two different cross-validation procedures. First, we utilized standard leave-one-run-out cross-validation. 
Second, mirroring the image analysis, we performed a cross-decoding searchlight analysis6. To control for mul-
tiple comparisons, all p-values were FDR-adjusted. To isolate neural features for carrying out NDBA, we selected 
the 10% highest classifying voxels within the area that showed significant decoding (see below).

Neural distance-to-bound analysis.  NDBA can be motivated by considering how LDA classifiers assign 
category labels to test data based on a linear model constructed for the training data. This model projects training 
data points in the feature space onto a discriminant axis, which maximizes the between-class (while minimiz-
ing the within-class) variance, with a decision boundary being positioned orthogonal to the discriminant axis. 
Training data is then likewise projected onto the discriminant axis and labeled based on its position relative to the 
decision boundary. In typical applications, the only dependent measure of interest is the classifier accuracy, when 
averaged across cross-validation folds. However, when used to classifier pattern responses in neural activation 
space, the relative distance of activity patterns along the discriminant axis from the decision boundary may also 
contain information about how visual categories are represented in a brain region. NDBA exploits this potential 
source of information in order to predict observer categorization behavior.

The rationale for NDBA is as follows: according to distance-to-bound models of discrimination and catego-
rization, such as signal detection theory and its multidimensional extension12,13, evidence quality increases with 
distance from a decision boundary through psychological space (where dimensions may reflect mentally repre-
sented properties of stimulus such as size and orientation). Furthermore, RTs tend to decrease as the quality of 
evidence for a decision increases. Therefore, if differences in the latencies of RTs across stimuli are primarily the 
result of differences in the quality of the evidence they afford, then RTs for the stimuli should negatively correlate 
with the distance of stimulus representations from the decision boundary in the psychological space. NDBA 
applies the same reasoning to neural activation spaces in order to predict behavior14. If an activation space carries 
information that is relied on by an observer performing a categorization task, then one can use a linear classifier 
applied to the space to estimate a decision boundary, and then correlate the distances of the neural responses 
of stimuli from this boundary with observer RTs for the same stimulus conditions. Thus, following on previous 
work using NDBA, we correlated observer RTs with neural distances from a classifier decision boundary through 
activation space.

Besides RTs, we have also found that neural distances negatively correlate with observer accuracies on animacy 
tasks, and that the drift rate parameter of an evidence accumulation model, which jointly models both dependent 
variables, can produce a larger correlation with neural distance18. A simpler method for combining the strengths 
of both measures into a single value is via an efficiency score, which assumes a linear relationship between choice 
speed and accuracy. We opted to use the linearly integrated speed-accuracy score (LISAS), which respects this 
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linear relationship and constitutes a form of accuracy (i.e. proportion error) adjusted RT24. After computing this 
value for each stimulus for each subject, we group averaged the scores to generate a single behavioral vector to 
correlate with the individual subject neural distances. As a proxy for neural distances we used decision weights of 
an LDA classifier, averaged across cross-validation folds with a 4/5 train-test split. These values were calculated 
from regions identified by the 10% highest classifying voxels as determined by the searchlight analysis for ani-
macy and shape, since RT-distance effect size largely tracks decodability across spatial and temporal features16,17.

Since it has previously been observed that the RT-distance relationship for animacy tasks is primarily driven 
by animate stimuli we separately correlated the distances for each of the two categories for each of the three 
tasks17. Crucially, for the indoor-outdoor task, we separately scaled the neural distances from the animacy and 
shape classifier boundaries for the high classifying voxels to percentiles, so that both sets of distances would 
receive equal weight. These distances were then summed, following the rationale of city block distance metrics 
assuming shape and animacy are independently represented dimensions. These scaled and summed values were 
then correlated with the adjusted RTs. Thus the neural distances for the indoor-outdoor task reflected information 
about both animacy and shape, which were crisscrossed dimensions in our stimulus design.

While in previous work we have used rank-order correlations in the present study we linearly correlated the 
neural distance and adjusted RT vectors, since this allowed us to adopt a joint measure of reliability from psycho-
metrics that has been used in previous electrophysiological and neuroimaging studies in monkeys25,26. For this 
we computed the mean split-half correlations for both adjusted RTs and neural distances, and then applied the 
Spearman-Brown formula to estimate the reliability of the full data sets. The joint reliability is then the square 
root of the product of the two coefficients27. Since these values are positive, but the correlations between adjusted 
RTs and neural distances are predicted to be negative, the sign-value of the reliability estimates were inverted for 
visualization.

Results
Behavioral performance on categorization tasks.  Participants performed three categorization tasks 
for the natural image stimuli while lying in an fMRI scanner. For the animacy task participants were highly 
accurate in their choice responses (mean accuracy = 0.91 ± 0.09), and were less accurate for the shape task (mean 
accuracy = 0.85 ± 0.11), and especially the indoor-outdoor task (mean accuracy = 0.81 ± 0.14). For RTs partici-
pants were fastest at the shape task (median RTs = 818 ms, ±8 ms), than the animacy task (median RTs = 840 ms, 
±10 ms), and slowest for the indoor-outdoor task (median RTs = 896 ms, ±10 ms). This pattern of behavioral 
results is consistent with the fact that subjects reported the indoor-outdoor task to be the most difficult, which 
was to be anticipated based on the contrived nature of the category division applied to the stimulus images. 
Notably, the data of one participant, who was at chance for the indoor-outdoor task, was excluded from all further 
analysis.

In preparation for NDBA, accuracy and RT date were combined. Adjusting RTs using observer accuracy 
assumes a negative correlation between the two measures24. This was generally observed across tasks, albeit only 
significantly for the animacy (12/15 participants, mean r = −0.22 ± 0.25, t(14) = 03.33, p < 0.01) and shape tasks 
(10/15 participants, mean r = −0.18 ± 0.29, t(14) = −2.5, p < 0.05), but not the indoor-outdoor task (10/15 par-
ticipants, mean r = −0.11 ± 0.24, t(14) = −1.8, p = 0.09).

Decoding searchlight for object animacy and shape.  Decoding searchlight analysis was performed 
to isolate high classifying voxels for object animacy and shape (Fig. 2A). This revealed animacy-related infor-
mation in the lateral occipital cortex (LOC), and ventral temporal cortex (VTC), but crucially not early visual 
cortex (EVC). For shape information decodable information was found across the occipital lobe including EVC, 
as well as LOC and VTC. However, the highest 10% classifying voxels for these analyses did not overlap, and 
were primarily in LOC for animacy, and EVC for shape. Image analysis showed that a cross-decoding classi-
fier could readily distinguish between shape-types based on GIST descriptors (mean accuracy: 0.88; individ-
ual cross-validation fold accuracy: 0.82 and 0.94), but crucially, not animacy (mean accuracy = 0.38; individual 
cross-validation fold accuracy: 0.38 and 0.38), suggesting low-level properties of the images contained little 
category-identifying information. In contrast, cross-decoding searchlight analysis revealed significant decoding 
for both animacy and shape, with significant clusters that tended to overlap with the regions of peak decoding 
using standard cross-validation (Fig. 2B).

Neural distance predicts categorization behavior across tasks.  First, we correlated the adjusted RTs 
for the animacy task with neural distances from an animacy classifier boundary in LOC and EVC. In LOC there 
was a robust RT-distance correlation for the animate images (mean r = −0.58, t(14) = −13.02, p < 0.001), but 
only a borderline significant effect for the inanimate images (mean r = −0.12, t(14) = −2.08, p = 0.06). The differ-
ence between the mean correlations for the two categories was also highly significant (t(14) = −5.40, p < 0.001). 
Furthermore, the joint measures of reliability (grey bars in Fig. 3A) suggest that there is explainable variance for 
the inanimate stimuli, but it is not well-captured by neural distance. In EVC there was a small but significant 
RT-distance correlation (mean r = −0.13, t(14) = −2.58, p < 0.05) for the animate stimuli but not the inanimate 
stimuli (mean r = 0.08, t(14) = 1.10, p = 0.29), even though animacy could not be decoded from this region.

Second, we also calculated the correlations between adjusted RT neural distance for our shape task (Fig. 3B). 
There were significant negative correlations for both the blob-like (mean r = −0.32, t(14) = −4.50, p < 0.01) and 
bar-like stimuli (mean r = −0.17, t(14) = −3.03, p < 0.01) in EVC, where there was greatest shape decoding, with 
no significant difference between the effects. A significant negative correlation was also observed in LOC for the 
bar-like stimuli (mean r = −0.16, t(14) = −3.34, p < 0.01), but not for the blob-like category (mean r = −0.10, 
t(14) = −1.46, p = 0.17), even though the joint reliability for the blob-like images was similar for both ROIs. In 
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contrast, for the bar-like stimuli the correlation in LOC was close to the noise ceiling, which was much lower than 
in EVC.

Third, we carried out the same analysis for the crisscrossing indoor-outdoor task (Fig. 3C). Here we observed 
no effects in EVC for either the indoor (mean r = 0.10, t(14) = 1.84, p = 0.09) or outdoor (mean r = −0.02, 
t(14) = −0.21, p = 0.84) category stimuli. There was an effect for the indoor stimuli in LOC (mean r = −0.12, 
t(14) = −3.04, p < 0.01) but not the outdoor stimuli (mean r = 0.00, t(14) = −0.01, p = 0.99). With the exception 
of the one significant effect, the individual data points were highly variable with the mean correlation coefficients 
even trending in the wrong, positive direction. Overall, the joint reliability was also lower for the indoor-outdoor 
task than for the other two tasks.

Discussion
In the present study we sought to determine whether neural distance would predict observer RTs when stimuli 
are balanced along orthogonal object category and shape dimensions. To this end, we correlated neural distances 
from classifier decision boundaries for object animacy and shape in EVC and LOC with accuracy adjusted RTs 
from three categorization tasks: animacy, shape, and indoor-outdoor. In each case we observed, for at least one 
side of the category divisions, the predicted negative correlation between neural distance and adjusted RTs.

Stimulus animacy was highly decodable from LOC, consistent with previous findings28–30. Also, as 
cross-decoding was used to both investigate whether category information can be discriminated by image prop-
erties and to isolate category-specific information in the ventral pathway5,6,31, our results cannot be explained 
by the sorts of image properties captured by GIST2–4. When neural distances from this region were correlated 
with adjusted RTs we found a strong RT-distance effect for the animate, but not inanimate, exemplars. This same 
pattern of results has been observed in previous studies using NDBA to investigate the animacy division. In 
particular, Carlson et al.15 found a robust RT-distance effect in human VTC, which was driven entirely by the 
animate exemplars, and taking a searchlight approach to NDBA Grootswagers et al.17 found that neural distance 
for animate exemplars correlated with RTs in LOC and VTC, and largely tracked the areas of peak decoding. The 
same asymmetry has also been observed when applying NDBA to human MEG time-series data16,18. The fact that 
a weak RT-distance effect was also observed for animate images in ECV is also consistent with previous findings 
of Carlson et al.15, and suggests that the visual properties represented in the region influence how easily a stimu-
lus can be categorized even in situations in which these low-level properties by themselves are not sufficient for 
categorization.

Methodologically, the present study differed from previous studies using NDBA in three important respects. 
First, unlike in these previous studies, we controlled shape properties so that overall the animacy RT-distance 
effects cannot be easily explained by low-level properties8. For this reason, our results provide more compelling 
evidence that observers are recruiting category-related information encoded in high-level visual cortex when 
performing the animacy categorization task.

Second, previously we have found that observer choice accuracies also correlate with neural distance. When 
both accuracy and RT distributions are jointly modeled using evidence accumulation models, this provides a 
more complete description of the observer performance, and the drift rate parameters of these models can also be 

Figure 2.  Decoding searchlight results. Results of searchlight analysis using standard leave-one-run-out cross-
validation decoding (A), and cross-decoding (B), for both animacy and shape. Accuracy maps are projected 
onto the inflated cortical surface using CARET37, and thresholded at p < 0.005 (FDR-adjusted). Black lines 
on the surfaces indicate the location of the 10% of voxels with highest classifier accuracy when using standard 
cross-validation (primarily in LOC for animacy, and in EVC for shape).
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correlated with neural distance18. Efficiency scores provide a simpler method for combining both measures, and 
in the present study we used the recently proposed LISAS24. Future studies might systematically compare whether 
drift rates of evidence accumulation models, which require more intensive procedures for parameter estimation, 
in fact show superior effects to the analytically simple efficiency scores when carrying out NDBA.

Third, an important consideration in analyses that aim to characterize the structure of activation spaces of 
brain regions is to have an estimate of data reliability. For example, this is common practice when carrying out 
representational similarity analysis (RSA)32,33. In particular, cross-validated distances may provide the best tech-
nique for estimating the neural dissimilarity relationships at the heart of RSA, and data reliability can be used 
to estimate a noise ceiling for correlations between model and neural dissimilarity matrices. To date, previous 
studies using NDBA have not used the same quality controls in estimating neural distances from a decision 
boundary. In the present study we rectified this by cross-validating our estimates of neural distance and using a 
joint measure of both behavioral and neural reliability to provide un upper bound on effect sizes25,26. Notably, the 
same joint measure of reliability could be employed in RSA studies where linear correlation coefficients can be 
used to compare dissimilarity matrices of neural and behavioral data. The importance of including such reliability 
estimates in the current study is illustrated by the large variation in reliability even when analyses target the same 
brain area, as can be seen in Fig. 3. This variation shows, for example, that the relatively low correlation between 
RTs and neural distance for elongated shapes can mostly be predicted from a low reliability of the data that are 
correlated. In contrast, the low correlation for inanimate objects is much lower than what would be predicted 
based upon the reliability of the data.

It is also useful to compare our results to recent studies using stimulus designs that orthogonalized object cat-
egory and shape and observed information about both stimulus properties in the same brain regions. First, Kaiser 
et al.6 used cross-decoding searchlight to locate information about shape matched images of clothing (gloves and 
shirts) and body parts (hands and torsos). Cross-decoding revealed information about shape in EVC but not cat-
egory, with overlapping clusters for both in LOC. Second, Bracci and Op de Beeck7 used a more complex design of 
6 object categories and 9 shape types, and found information for both stimulus properties was present in multiple 
sub-regions of LOC and VTC. In contrast to these studies, we only observed an overlap in object category and 
shape information in LOC and VTC when carrying out a searchlight analysis with standard cross-validation. 
When using cross-decoding, information about shape was confined to EVC, while information about animacy 
was still found in LOC and to a lesser extent VTC; though a small RT-distance effect was still observed in LOC 
for the bar-like objects. In our stimulus design high and low-level shape are less conflated for the bar-like stimuli, 
which might account for why there is still a shape effect in LOC. More generally, an important difference between 
the present study and these previous findings is that low- and high-level shape were not differentiated in their 
stimulus designs.

The results for the indoor-outdoor task are difficult to interpret, but suggest that representations related to 
object category and shape might first be recruited, and the timing in the activation of these representations then 
impact performance on the indoor-outdoor task. It is also notable that both clusters for the indoor category, pets 
and tools, showed significant effects in LOC. This may be because pets may produce a more decodable animacy 
response than insects34, and there is evidence that sub-regions of LOC code specifically for tools35,36. Importantly, 
the size of the significant correlations in the indoor-outdoor task is much smaller than some of the correlations in 
the two other tasks, in absolute terms as well as relative to the reliability (explainable variance).

In summary, previous studies have used neural distance to predict observer behavior on visual categorization 
tasks for animacy. We built on these findings using a stimulus design that orthogonalized object category and 
shape, while also introducing a number of methological innovations to NDBA8. In line with previous results, we 
observed a robust effect for animacy in LOC driven by the animate stimuli, as well as a shape effect in EVC, and 

Figure 3.  Neural distance-to-bound results. Results of neural distance-to-bound analysis for each of the three 
categorization tasks: animacy (A); shape (B): and indoor-outdoor (C). Color coding of median bars reflects the 
stimulus groupings for each task from Fig. 1B. Neural distances are for EVC and LOC features, based on the 
highest classifying voxels from the searchlight analysis (Fig. 2A). Thick gray bars are the inverted joint reliability 
of the neural distances and accuracy adjusted RTs. *p, 0.05; **p < 0.01; ***p < 0.001.
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a smaller crisscross effect using a more contrived category structure that crisscrossed the two dimensions. Taken 
together these results suggest there is potential to expand the neural distance-to-bound approach to other divi-
sions beyond animacy and object category per se17.

Data Availability
Raw and processed neural and behavioral data are available on the Open Science Framework (https://osf.io/3d-
pqe/). Analysis files required to fully replicate all aspects of the study are available from the corresponding author 
on reasonable request.
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