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THEBIGGERPICTURE AFM plays a significant role in characterizing soft biological samples; e.g., proteins,
DNA, and live cells. Many such characterizations demand expert scanning of measurement samples (e.g.,
AFM force-distance curves) for statistical analysis. However, manual analyses are often time consuming,
laborious, qualitative, and affected by subjective human biases. Machine learning (ML) can alleviate
many such issues, leading to fast, automated, and bias-free analyses. However, because many scientific
problems, including ours, suffer from a lack of annotated data, ML approaches also need to be sample effi-
cient. This study demonstrates the efficacy of such an approach for AFM force curve characterization. In the
future, this research can be expanded to explore more complex AFM-based characterization tasks, leading
to bidirectional innovation in biophysics and ML. Efficient biophysical characterization can lead to acceler-
ated drug delivery studies that have a significant societal impact.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Deep learning (DL)-based analytics has the scope to transform the field of atomic force microscopy (AFM)
with regard to fast and bias-free measurement characterization. For example, AFM force-distance curves
can help estimate important parameters of binding kinetics, such as themost probable rupture force, binding
probability, association, and dissociation constants, as well as receptor density on live cells. Other than the
ideal single-rupture event in the force-distance curves, there can be no-rupture, double-rupture, or multiple-
rupture events. The current practice is to go through such datasetsmanually, which can be extremely tedious
work for the experimentalists. We address this issue by adopting a few-shot learning approach to build
sample-efficient DL models that demonstrate better performance than shallow ML models while matching
the performance of moderately trained humans. We also release our AFM force curve dataset and
annotations publicly as a benchmark for the research community.
INTRODUCTION

Deep learning (DL)-based analytics has been extremely useful

for many bioimaging and bio-image analytics problems. Howev-

er, DL or machine learning (ML) in general has rarely been

explored for atomic force microscopy (AFM) characterization

and standardization of biological samples.1 One example is

characterization of single-molecule interactions of ligand-recep-

tor pairs on live cells.

Single-molecule techniques, such as AFM,2–5 optical twee-

zers,6,7 and magnetic tweezers,8,9 have established themselves
This is an open access article under the CC BY-N
as powerful methods to examine the properties of individual or

single molecules at a time, yielding important information about

topographical features, binding parameters, and dissociation

kinetics.10,11 AFM3,5,12–18 has several advantages over other sin-

gle-molecule techniques, such as the ability to perform high-res-

olution imaging of conducting as well as non-conducting sam-

ples (biological samples like DNA, protein, and live cells) in

ambient air, liquids, or a vacuum without using any dye and

performing force measurements in the piconewton range.

Many ligand-receptor systems11,19–21 have been investigated

with AFM to shed light on the interaction forces,22–24 binding
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probability, dissociation and association rates, affinity, etc.

These ligands and receptors are attached to the AFM cantilever

tip and substrate, respectively, using flexible polymeric linkers.

Low ligand density is usually used on the cantilever tip to lower

multiple attachments among molecules. Typically, in AFM force

measurement studies, a ligand-functionalized cantilever is

initially brought close to live cells with complementary receptors

or a functionalized substrate so that the ligand can bind to the re-

ceptor. Upon cantilever retraction at constant speed, the main

observation is the minimum amount of force that is needed to

break the bond: unbinding or rupture force. The key measure-

ment in this regard is the force-distance curve, which tracks

the interaction forces corresponding to the distances between

the cantilever tip and the substrate.

Upon collection of a large number (e.g., 1,000) of AFM force-

distance curves (or simply force curves) from selected cell

samples, the data need to be analyzed to first identify different

types of rupture events, such single-, double-, multiple-, or

even no-rupture events. The current practice is to manually

go through the force curves and classify them into different

rupture types based on visual inspection. This process is not

only time consuming but also requires a significant level of

experience and expertise because data can be corrupted by

spurious noise, disturbances, and other artifacts. Here we pro-

pose a DL approach to classify the force curves automatically

to save significant expert time and effort. However, generating

a large, annotated dataset appropriate for training typical su-

pervised DL models can be extremely difficult and time

consuming. First of all, obtaining individual force curves is

time consuming. The problem is exacerbated by the tedious

annotation task, as discussed above. Use of simulated or syn-

thetic data to increase the amount of data may be a possible

solution that is explored in many applications.25 However, in

our case, the force curves, and specifically the noise in the

force curves, have complex characteristics depending on the

AFM instrumentation, cantilever properties, and soft biological

samples. This implies that a simulated dataset would have

limited usefulness unless the signal and noise characteristics

are accurately captured. Therefore, we would require an

extremely high-fidelity, physics-based simulator to accurately

represent the data, which, unfortunately, may be intractable.

Therefore, we explore sample-efficient DL approaches for

this task.

One such sample-efficient DL approach is semi-supervised

learning. This approach is best suited for when unlabeled data

are readily available and labeled data are difficult to gather.26–28

Semi-supervised learning aims to improve performance achiev-

able using the limited labeled data by also utilizing information

learnable from the unlabeled data. However, in our case, unla-

beled data are time consuming to gather and not available in

sufficient quantities. Another approach is weakly supervised

learning. Although semi-supervised learning is a type of weakly

supervised learning with incomplete supervision, there are

also two other types: inexact supervision and inaccurate

supervision.29 Inexact supervision considers the level of detail

in labels, especially for object classification. Although it is ideal

to have every object in an image labeled, it is sometimes more

practical to label an entire image as containing such objects. In

our case, the samples are relatively simple, but noise complicates
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focusing on individual rupture events rather than the entire force

curve. Inaccurate supervision simply refers to working with data

that may contain errors in the labels, which is an issue we face

in this study as well. We attempt to minimize inaccurate labels

in our data by downselecting samples that have been annotated

more than once with consistent labels. There has been a lot of

recent interest in self-supervised learning approaches that

generate pseudolabels or pretext tasks to use in a supervised

learning setting.30–32 Generating accurate pseudolabels for very

similar classes, such as in our case, can be very challenging.

Self-supervised pre-training only starts to become effective

when the dataset of unlabeled samples becomes significantly

large. In contrast, few-shot learning is able to be trained with

only a few labeled samples without the need for additional unla-

beled samples.31,33,34 By using a few-shot approach, we only

need to determine whether a sample is similar or dissimilar to

other samples rather than directly determining the class of a

sample. This helps to create a generalizable model while only

training with a few samples. Therefore, we adopt a few-shot

learning approach to build sample-efficient DL models for this

application. To the best of our knowledge, this is the first time a

few-shot DL framework is being proposed for AFM force curve

analysis.

The proposed framework will save a lot of time for future

researchers in related fields of experimental microscopy and

make the data screening process of large datasets of force

curves highly efficient for statistical analyses. We would like to

highlight the fact that our algorithm can be applied as a general-

ized approach for classifying rupture events and determining the

binding kinetics for any specific interaction (in DNA-protein inter-

actions, protein-protein interactions, or ligand-receptor interac-

tions) between functionalized AFM tip and functionalized

substrate. Annotated data obtained from AFM single-molecule

interaction experiments made available through this endeavor

would also serve as a useful benchmark for the research

community.

RESULTS

In this section, we first formulate the problem and then present

our solution approach, which is evaluated empirically using

AFM experimental data.

Problem formulation
The objective of this study is to automatically characterize (i.e.,

classify) the force-distance curves based on the types of

rupture events, as shown with examples in Figure 1. The

force-distance curve in Figure 1A shows how the force on the

AFM probe varies with the tip-sample separation distance.

The region where the bond is ruptured is of primary interest,

and it is manifested as an event of nonlinear nature (rupture/un-

binding event). The location offset as well as the nonlinear na-

ture of these type of events set it apart from the non-specific

adhesions.35,36 Rupture between the attached molecules on

the substrate and the tip is represented by these rupture/un-

binding events. In the example force-distance curve shown in

Figure 1A, location (a) shows where the bond is formed, (b)

shows where the bond experiences the maximum force, and

(c) shows where the bond breaks. Other than the ideal specific



Figure 1. Problem formulation: Classifying

the AFM force-distance curves from single-

molecule interaction experiments based on

the types of rupture events
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single-rupture event depicted in Figure 1A, there can be other

events in a large set of experiments, as shown in Figure 1B.

The ideal single-rupture event (unbinding/rupture of two single

molecules [attached to the cantilever tip and substrate]) is

shown in Figure 1B, and the maximum extension of the linkers

shown here is approximately twice the contour length of the

linkers involved. In this scenario, the applied force on the canti-

lever tip is the same as that on the molecular bond formed

because of protein-protein or ligand-receptor interaction. The

length of the stretched linker is the distance between the point

where the bond ruptures and the point where the AFM canti-

lever tip detaches from the substrate. In Figure 1B, ii and iii

show undesired non-specific adhesions because of rupture of

protein molecule-gold-coated substrate and rupture of protein

molecule-linker molecule, respectively. Reduction of these

type of events is necessary to build a statistically sound and

useful dataset.

Therefore, any rupture event located at a distance smaller

than the linker contour length must be excluded while esti-

mating the distribution of single-rupture forces. In Figure 1B,

iv and v show unbinding of multiple bonds/attachments

involving multiple protein molecules and extension of multiple

linkers associated with detected rupture forces much larger

than rupture force of a single protein bond. The density of pro-

tein molecules on the cantilever tip as well as the substrate

must be reduced to reduce the multiple attachments. Multiple

rounds of experiments are performed to gather multiple sets

of force curves under the same conditions using the same

cantilever to build up the distribution (i.e., a histogram) of

measured specific single-rupture forces. Such a distribution

can be used to estimate the probability of a given rupture force

interval as well as the most probable rupture force. Finally, Fig-

ure 1C shows force curves with different types of rupture

events; i.e., no-rupture, single-rupture, double-rupture, and

multiple-rupture events. Among these types, identifying sin-

gle-rupture events from a large number of experiments (i.e.,

force curves) is the most critical task, as described above. Dou-

ble-rupture events could also be useful; for example, to

estimate multiple attachment probability.11,24 Therefore, we

define the classification problem as a 3-class classification to

distinguish single- and double-rupture events, with the third
class corresponding to no-rupture or mul-

tiple-rupture (i.e., more than two ruptures)

events.

Few-shot learning framework for
force curve characterization
We propose a sample-efficient framework

that can learn to classify force curves with

complex features with fewer labels than

what is required by conventional DL tech-

niques. The training and testing process
of our algorithm is summarized in Figure 2. The crux of our

framework is training a convolutional neural network model us-

ing triplet loss, as described below.

Triplet convolutional neural network
There have been many variations of few-shot DL proposed over

the years, but the core of all of these variations is the two archi-

tectures: Siamese network and triplet network. The Siamese

network and triplet network are typically trained using contras-

tive loss and triplet loss, respectively. Although contrastive loss

compares two samples, triplet loss involves three (triplet) sam-

ples in one go. We explored using contrastive and triplet loss

and found that triplet loss consistently performed better. This

is expected because of the nature of the data, where there

can be significant variation within a class.37 For example, our

class 0 contains no rupture and multiple ruptures, and the

size and location of ruptures also vary significantly from sample

to sample. We are able to use this approach to predict the

class of a sample by measuring its similarity to the classes of

known samples. For example, if we compare an unknown

sample and determine that it is very similar to single-rupture

samples, then it is also likely to be a single-rupture sample.

Details about how the degree of similarity is computed are pro-

vided below.

Figure 2 provides anoverall illustration of the training and testing

process of the triplet convolutional neural network. In the training

process, a triplet convolutional neural network38 accepts three

distinct inputs: an anchor, a positive sample, and a negative sam-

ple. The anchor is the samplebeing examined, the positive sample

is a sample of the same class as the anchor, and the negative

sample is a sample of a different class from the anchor. All three

inputs are passed through convolutional neural networks with

shared parameters to get embeddings respective to each input.

The distance between the anchor and positive embeddings

ðDðx + ;anchorÞÞ, and the distance between the anchor and negative

embeddings ðDðx � ;anchorÞÞ are calculated using squared L2 norm.

The triplet loss, L is simply the difference between the two dis-

tances plus a margin ðmÞ:

L = max
�
0;Dðx + ;anchorÞ � Dðx � ;anchorÞ + m

�
:
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Figure 2. Schematic of our few-shot learning

algorithm using triplet loss for training

Training, shown in the top block, is done by entering

three samples from the train set into a triplet loss

architecture. Testing, shown in the bottom block, is

done by entering train-test sample pairs into the

model to compare embedding distances.
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The margin ðmÞ is a value that ensures the minimum distance

between similar and dissimilar pairs so that the similar sample is

closer to the anchor than the dissimilar sample. If the margin is

too small, then it becomes difficult to distinguish between the

classes.

When the model parameters are learned, we can move on to

the testing or inferencing phase, where class predictions can

bemade by comparing an unknown sample with known samples

and classifying it to the class with the shortest distances. From

the testing block in Figure 2, N test samples are paired with M

train samples. The train samples are the anchors with known la-

bels from the training process, and the test samples are the un-

known samples whose classes are being predicted. Similar to

the training process, these samples are passed through the

trained convolutional neural networks with shared parameters

to get the embeddings. The distances between the embeddings

of the unknown samples and every known sample is computed

using the squared L2 norm, which gives ðM3NÞ distances corre-
sponding to each train-test pair. The distances between the em-

beddings represent the degree of similarity; thus, a shorter dis-

tance between two embeddings also indicates that the

samples are more likely to belong to the same class. Therefore,

after sorting the pairs in ascending order of distance, the first k

class of the train (known class) samples are returned as the class

prediction of the test (unknown class) samples. For example,

assuming k = 1, the pair with the shortest distance is used to

predict the class of the unknown sample as the same class of

the known sample. For k > 1, a majority voting was performed

for the first k class to determine the final predicted class.
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In terms of model architecture, we per-

formed an extensive hyper-parameter

search involving 2D and 1D convolution

layers, varying the number of layers and

number of units in a layer, to name a few.

Additional details can be found in

Table S1. One of the best-performing

models (Figure 3) consists of a vector

input, 1D convolutional layer, 1D max-

pooling layer, another 1D convolutional

layer, another max-pooling layer, and four

fully connected layers, leading to a

10-dimension vector output. More details

about each of these layers is provided in

the few-shot parameter exploration sec-

tion (Table 2).

Empirical evaluation
We evaluate our proposed few-shot

learning framework using AFM experi-

mental data along with performance com-
parison with some shallow ML methods. We begin the discus-

sion with a description of the dataset.

AFM experimental data

As described earlier, we focus on classifying force curves into

three classes: single rupture, double rupture, and a third class

referring to no-rupture and multiple-rupture events. The experi-

mental data generation process is detailed in the experimental

procedures section. Although an entire force curve has scientific

relevance, the rupture event(s) show up in the flat portion of the

force curve at the bottom, as shown in Figure 1. Therefore, we

only take the lower third of a force curve and use it as input to

the ML model as a vector, which is done by removing 100 data

points from the start of the vector.

For empirical validation, we required a labeled and balanced

dataset of force curves. In general, with our experimental

specification, we observe a reasonable number of single-

rupture, no-rupture and multiple-rupture events. However, the

number of double-rupture events is usually low. Many force

curves suffer frommeasurement noise or spurious disturbances.

Therefore, annotating the force curves with high confidence be-

comes difficult, and the dataset usually suffers from significant

labeling noise that is often difficult to avoid. To construct a reli-

able (without labeling noise) dataset, we first remove samples

with a high level of noise and then go through multiple rounds

of expert annotation to identify force curves with consistent la-

bels. For the present study, we begin with a set of about 1,600

force curves and create a completely balanced 3-class dataset

of 216 force curves with highly reliable labels. Such significant

downselection demonstrates the difficulty of generating a large



Figure 3. 1D convolutional neural network (CNN) model architecture

for few-shot learning

Layer details can be found in Table 2.
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annotated dataset, justifying the need for sample-efficient

learning strategies. The downselection process is explained in

more detail in Section S3. The dataset is then divided into a

training set and test set. The training set contains 42 samples,

each with class labels of 0 (no rupture or multiple rupture), 1 (sin-

gle rupture), and 2 (double rupture). The test set contains 30

samples for each of the three classes.

Data pre-processing

Beforepassing thedata to themodel,wefirstapply someprocess-

ing to improve the clarity of the ruptures after trimming the data to

focus on the lower third of the curve. This section describes the

processing step by step, and the results of each processing step

are illustrated in Figure 4. First, the difference (between consecu-

tive data points on the curve) is computed to remove the overall

trend and emphasize the spikes in the data. The plot in the middle

of Figure 4 shows a large spike around 200 nm from the single

rupture,but theplot isvisibly noisyandcouldmake learningslightly

difficult for the few-shot model. To reduce the noise andmake the

actual ruptures more prominent, we apply a moving average filter

with a window size of 13. Last, the data are scaled to between

0 and 1, as shown in the last plot in Figure 4.

Few-shot parameter exploration

Although we initially explored using 2D convolution layers on im-

ages of the force curves, the model seemed to be unable to

isolate the rupture events in the images. This is likely due to

the rupture events occupying an extremely small portion of the
Figure 4. Visual overview of data pre-processing

The left plot shows the force curve after trimming 100 points to focus on the low

difference between the points. This removes the overall trend but amplifies the no

scaling.
image, even after the pre-processing steps to focus on the lower

third section. Hence, we switched to using 1D convolution layers

on the force curves represented as a vector of y values. From

here, we performed an extensive, although not exhaustive,

parameter search, as shown in Table 1.

Table 2 shows the details for the best set of hyper-parameters

of the few-shot model architecture shown in Figure 3. In addition

to the three-class classification problem, we also explored two

other problem formulations that are relevant for asking different

scientific questions, both with binary classification problems.We

found slight variations in the best architecture we obtained for

these different cases. The values without brackets represent

the details for the three class cases: no/multiple rupture, single

rupture, and double rupture. Values in parentheses, including

the dropout layer, represent the binary class casewith no rupture

versus any (at least one) rupture. Values in brackets, which do

not include the dropout layer, represent the binary class case

with single rupture versus rest. For the other parameters, we

found that a learning rate of 1e�2, learning rate gamma of 1,

and the stochastic gradient descent (SGD) optimizer were best

for all cases. A learning rate gamma less than 1 affects training

by lowering the learning rate every step, which, in our case, is

every epoch. Reducing the learning rate as training progresses

can help fine-tune weights. A batch size of 32 was best for the

3 class and single versus rest case, and a batch size of 16 was

best for the no versus any rupture case.

Few-shot DL performance and comparison with shallow

models

We present the results of our few-shot DL framework based on

the training and testing sets as discussed above.

We obtain an overall accuracy of 66.7% with 73.3%, 63.3%,

and 63.3% per class accuracy for classes 0, 1, and 2 respec-

tively. In addition to accuracy values, other metrics, such as

precision, recall, and F-1 score for our few-shot approach are

presented in Table 3. We compare the performance of few-

shot deep model with a few popular shallow learning

approaches, such as k-nearest neighbor (KNN), random forest

(RF), and support vector machine (SVM). Similar to our few-

shot approach, we performed an extensive hyperparameter

search for the shallow models to obtain the best performance

as well. Details of the shallow model hyper-parameters are

provided in the supplementary section (Table S1). From the per-

formance metrics listed in Table 3, it is evident that the few-shot
er portion of the curve. The center plot shows the force curve after taking a

ise. The right plot shows the curve after the three rounds of rolling means and
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Table 1. Parameters explored for the few-shot method

Parameter

Number of

FC layers

Number of

Conv layers

Conv channel

sizes

Conv kernel

sizes

Loss

function

Batch

size Optimizer

Learning

rate

Learning

rate

gamma

Values 2–4 0–3 8–64 3, 5, 8 contrastive, triplet 16–64 SGD, ADAM 1e�2, 3e�4 1, 0.977

FC, fully connected; Conv, convolution.
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model performs significantly better (�15% gain in accuracy)

compared with the shallow models with respect to most of the

performance metrics. The class accuracies for few-shot learning

models also show that the performance on each of the classes

were fairly balanced, whereas the shallow models have biased

predictions, resulting in high accuracy in one of the classes but

at the cost of having other class accuracies collapse almost

entirely.

To understand the dependency of the few-shot deep model

performance on training data size, we reduced the sample size

from 40 samples per class to 30, 20, and 10 samples per class

by randomly selecting subsets of the original training data. For

each case, we repeated the training process 3 times to estimate

the uncertainty in model performance. Figure 5A shows how

accuracy changes over different sizes of labeled training sets.

As expected, performance drops quite significantly for the few-

shot approach (becomes similar to that of the shallow models

with the smallest data size) with reduction in training data size.

The uncertainty in model performance increases at the same

time. On the other hand, the shallow approaches are relatively

stable in terms of performance with a change in the number of

labeled training samples. This suggests that there is a minimum

labeled data size necessary to start benefitting from the few-shot

DL approach compared with the shallow models. We performed

extensive parameter searches for the shallow models at each
Table 2. Few-shot model layer details

Layer Dimension

Input

features

Output

features

Kernel

size Stride

Input 399 – – – –

Conv1 395 1 16 (32) [32] 5 1

Max-Pool1 98 16 (32) [32] 16 (32) [32] 4 4

Conv2 94 16 (32) [32] 32 (64) [64] 5 1

Max-Pool2 23 32 (64) [64] 32 (64) [64] 4 4

FC1 – 736 (1,472)

[1,472]

512 – –

FC2 – 512 256 – –

(Dropout

p = 0.25)

– – – – –

FC3 – 256 128 – –

FC4 – 128 10 – –

Output 10 – – – –

1D convolution layers are notated as Convn, and fully connected layers

are notated as FCn. Differences for the no rupture versus any rupture

case are shown in parentheses, including a dropout layer with p = 0.25

between FC2 and FC3. Differences for the single rupture versus rest

case are shown in brackets.
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amount of training samples, whereas the best-performing few-

shot model, when using all 42 training samples per class, was re-

trained with the lower data amounts.

Finally, as discussed earlier, avoiding label noise in training

data is quite challenging for this application. Therefore, we

explore the change in few-shot model performance while

increasingly corrupting the training data with possibly erroneous

labels. We implemented this by using labels from a moderately

trained human annotator. For example, in the case of 10% noisy

labels, we replace 10% of the original training samples (with

highly reliable labels provided by an expert) with samples labeled

by the moderately trained human annotator. Similar to the previ-

ous experiments, we repeated the training process 3 times to

estimate the uncertainty in model performance. Figure 5B shows

how increasing the percentage of noisy labels affects the perfor-

mance of our few-shot approach aswell as the shallowmethods.

Performance of the few-shot model decreases as the percent-

age of noisy labels increases. The shallow methods are not

affected as much, but the uncertainty in performance grows in

some cases. However, even with 50% noisy labels, the perfor-

mance of the few-shot method remains similar to if not above

that of the shallow methods. We performed extensive parameter

searches for the shallow models at each percentage of noisy

data, whereas the best-performing few-shot model, when using

all 42 training samples per class, was retrained with the different

percentages of noisy data.

Anecdotal example analysis

We further investigated the wrongly classified samples anecdot-

ally to understand the less-than-ideal performance. Figure 6

shows one correctly classified example for each class of force

curves (in the diagonal green boxes). With a quick visual inspec-

tion, it can be verified that these examples are accurately classi-

fied. These curves are less noisy compared with the few repre-

sentative examples of wrongly classified force curve samples

shown here (in the off-diagonal red boxes). The ‘‘incorrectly’’

classified examples are not quite obvious upon careful visual

inspection. For example, consider the force curve that is pre-

dicted to be showing norupture or multiple-rupture (N/MR)

events, whereas the ground truth is that it is a double-rupture

event force curve. Visual inspection suggests that the force

curve is either relatively noisy or showing many rupture events.

Similarly, the ground truth N/MR but predicted single rupture

(SR) force curve shows one clear rupture event and possibly

many other rupture events or just observation noise. The other

force curve that is incorrectly classified as an SR curve (ground

truth DR) also shows only one clear rupture event. Therefore,

these are also non-obvious examples of incorrectly classified

force curves. The visual confusion suggests that many such

force curves could also have been annotated wrongly by the hu-

man expert(s). The anecdotal analysis indicates that the quality



Table 3. Overall accuracy, class accuracy, precision, recall, and F-1 score for our few-shot approach, SVM, RF, and KNN

Algorithm Overall accuracy (%)

Class accuracy (%)

Precision (%) Recall (%) F-1 score (%)N/MR SR DR

Few-shot (ours) 66.7 73.3 63.3 63.3 66.8 66.7 66.7

SVM 53.3 60.0 10.0 90.0 39.8 53.3 42.0

RF 46.7 43.3 0.0 96.7 32.7 46.7 36.2

KNN 53.3 56.7 80.0 23.3 57.4 53.3 51.3
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of the few-shot learner could be better than what the confusion

matrix in Figure 6 reflects (the number of test samples for each

category in the confusion matrix is noted in the correspond-

ing cell).

We performed t-distributed stochastic neighbor embedding

(t-SNE) and plotted (in 2D) the resulting dimension reduction,

as shown in Figure 7A. As expected, samples from different

classes are quite mixed up, suggesting the difficulty of

classifying or distinguishing the force curves to begin with. Per-

forming t-SNE analysis on the embedding obtained from our

few-shot approach shows improved separation in Figure 7B,

but it is still challenging to fully separate the classes. This t-

SNE visualization is consistent with the results in Figure 6,

where class 0 has the highest class accuracy and is more

clearly separated on the right in Figure S1B. Classes 1 and 2

have lower class accuracies and are more often misclassified

as each other rather than class 0, which is reflected in the over-

lap of the classes on the left in Figure S1B.

DISCUSSION

In this section, we discuss how the proposed ML framework can

support statistical analyses of force curves to characterize sin-

gle-molecule interactions. This also helps with contextualizing

the quantitative results presented above.

Rupture force is a stochastic variable because dissociation of

the complex bond is a thermally activated process. So, to obtain
Figure 5. Few-shot comparison with shallow models.

(A) Number of training samples per class, explored from 10–40 in steps of 10.

(B) Effect of increasing the percentage of noisy data (i.e., samples with possibl

repeated 3 times with different random seeds. Plotted uncertainty is ±1 SD.
a statistically sound analysis, experimentalists typically generate

multiple sets of a statistically significant number (e.g., 1,000) of

force curves on different locations of the cell and on multiple

cells. As mentioned earlier, a dataset of a large number of force

curves performed with, for example, a collagen-functionalized

cantilever on live cells (as done in this study) will contain sin-

gle-rupture events, double-rupture events, multiple-rupture

events, and no-rupture events. Among these events, identifying

single- and double-rupture events particularly help with

estimating important parameters of binding kinetics, such as

the most probable rupture force, association and dissociation

constants, as well as receptor density on live cells. Therefore,

the proposed ML framework can be used as an initial screening

tool to isolate single- and double-rupture events from the data-

set. Upon ML-based screening, although missed single- or dou-

ble-rupture events can be difficult to recover, a human expert still

has the opportunity to get rid of the falsely detected events dur-

ing further analysis. Therefore, the few-shot MLmodel presented

here can still be useful as an initial screening tool despite the

66.7% classification accuracy. In fact, this performance is

comparable with a moderately trained human annotator (an en-

gineering graduate student), who could also achieve only 65.6%

classification accuracy on the same test set.

Although the 3-class model can be used as a general pur-

pose screening tool for single- and double-rupture events, as

mentioned in Section 2.3.3, we also explored other models

with specific scientific objectives to check whether we could
y erroneous labels) on the few-shot and shallow methods. Experiments were
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Figure 6. Anecdotal examples from the test

set of correctly and incorrectly classified

force curve examples

Many of the incorrectly classified force curves are

demonstrated to be confusing even to the human

experts. We also show the confusion matrix for the

test set and the class specific accuracies. The

original data are shown in black, and the data after

pre-processing are shown in blue.
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obtain even better performance. For example, we attempted to

build a few-shot model only to separate single-rupture

events from the rest of the event types. With this problem

formulation, we were able to achieve an overall accuracy of

78.3% with a single rupture detection accuracy of 73.3% and

an accuracy of 83.3% for the rest. We also looked at another

problem formulation, where no-rupture events need to be

separated from events with at least one rupture. Such a tool

could be useful to calculate parameters such as binding

probability.

In this case, a few-shot deep model was able to achieve an

overall classification accuracy of 91.7%with per-class accuracy

of 93.3% and 90.0% for no-rupture class and the class with at

least one rupture, respectively. These results are summarized

in Table 4. Hence, it is evident that targeted few-shot modeling

may be performing better. However, multiple such models may

have to be trained for different purposes. We also performed

principal-component analysis (PCA) on the single rupture versus

rest and no rupture versus rest cases, which can be seen in

Figures S2 and S3, respectively. An additional exploration of per-

formance on a larger but low-confidence test set is included in

Section S4.

It is clear that our proposed ML framework can be used as a

screening tool for a large dataset of AFM force curves generated
Figure 7. Few-shot t-SNE visualization

(A) t-SNE separation on raw test data for the 3-class case.

(B) t-SNE separation on embedded test data for the 3-class case using our few-shot approach.
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to characterize single-molecule interac-

tions. Such a tool may save a lot of time

and effort of experts andmake the analysis

free of human subjectivity. Future work will

focus on developing other ML-based tools

for automated extraction of biophysical
properties from individual force curves and from distribution of

selected force curves.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by the lead contact, A.S. (anweshas@

iastate.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

All data and original code have been deposited at https://doi.org/10.5281/

zenodo.7301801 and are publicly available as of the date of publication.

Cell lines used for experiments

Overexpression of Discoidin domain receptors39–42 (DDRs) is associated with

multiple human diseases, such as fibrosis and cancer. To develop novel ther-

apeutic strategies that target DDRs, we studied interaction forces and bind-

ing kinetics between DDRs and their ligand, collagen, at the single-molecule

level on live cells using AFM-based single-molecule force spectroscopy ex-

periments. The cell lines used in this study are human benign prostatic hy-

perplasia (BPH1) cells and human pancreatic cancer (MiaPaCa-2) cells.

The sources of these cell lines are mentioned in our previous publication.24

These cell lines were maintained using RPMI medium and DMEM supple-

mented with 10% fetal bovine serum and 1% streptomycin/penicillin

mailto:anweshas@iastate.edu
mailto:anweshas@iastate.edu
https://doi.org/10.5281/zenodo.7301801
https://doi.org/10.5281/zenodo.7301801


Table 4. accuracy and class accuracy for our few-shot approach

on binary class scenarios

Classes Overall accuracy (%)

Class accuracy (%)

NR Any SR Rest

NR versus any 91.7 93.3 90.0 – –

SR versus rest 78.3 – – 73.3 83.3
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OPEN ACCESSArticle
antibiotics, respectively. BPH1 cells expressing endogenous DDR1 were em-

ployed to be transfected with scrambled short hairpin RNA (BPH1scr cell

line), or these cells were used to downregulate DDR1 expression via short

hairpin RNA (BPH1shDDR1 cells). Similarly, MiaPaCa-2 cells were used to

express wild-type DDR1b (MiaPaCa-2 DDR1b) or mutated DDR1b isoforms

(MiaPaCa-2 DDR1b R105A). These MiaPaCa-2 cells were also transfected

to express MiaPaCa-2-EV cells. Three different antibody conditions (DDR-

blocking antibody, integrin-blocking antibody, and no antibody) were also

used for the MiaPaCa-2 and BPH1 cell lines to perform force curve

measurements.

Functionalization of the cantilever tip with rat tail collagen I

In the first step, rat tail collagen type I (Advanced Biomatrix) was diluted in pH 5

solution at a 1:2 ratio. In the second step, succinimidyl 6-(3(2-pyridyldithio)

propionamido)hexanoate) (LC-SPDP; Thermo Fisher Scientific) diluted in

dimethyl sulfoxide (DMSO) solvent was mixed with collagen43–47 solution at

a 1:25 ratio. pH 5.2 solution of Cleland’s reagent or DTT (Thermo Fisher Scien-

tific) was added to the combined solution prepared in step 1 and 2. OBL-10

(Bruker AFMProbes) was incubated in the final solution for 2 h at room temper-

ature on a shaker. Then the cantilever was washed carefully and preserved in

13 PBS buffer at 4�C until the beginning of the experiment on the same day.

Force measurements on live cells

Live cells (the cell lines mentioned previously) were plated on 60-mm culture

plates, and the plates were placed on a Bruker BioScope catalyst AFM base

plate (containing an XY motorized stage and XY piezo scanner). After align-

ment of the laser on the cantilever tip and obtaining the maximum sum signal,

the AFM head was placed on top of the base plate. The cantilever was first ap-

proached manually and then using NanoScope software control toward the

live cell surface so that collagen on the cantilever tip and cell surface receptors

on the live cell surface can bind. Force measurements were achieved using

constant speed ramping of the cantilever with lower scanning forces of 700

pN, employing an approach and retraction speed of 2 m m/s and a lower

scan rate of 0.3 Hz on various locations of the same cell and different cells.

Multiple control experiments were performed, using a non-functionalized

cantilever or denatured collagen-functionalized cantilever. Multiple DDR-

and integrin-blocking antibodies were also used in the force measurements.

Scope of experimental validation

As described above, we used multiple cell lines under multiple experimental

conditions (determined by different antibodies) to demonstrate the generaliz-

ability of our approach across different types of samples. We used a general

experimental setup that is typical formeasurement of piconewton-scale forces

and binding kinetics for all protein-protein or ligand-receptor interaction at the

single-molecule level using AFM. We used the same cantilever for all experi-

ments in this study to avoid additional inconsistencies. Experimental system

variability (different instruments, devices, or setups) may result in different

data distributions, and we do not claim any generalizability in this context.

However, the proposed learning framework should still remain relevant. It

would be interesting to explore whether we would need different DL models

for different instruments or experimental setups. Even if this is the case, the

proposed few-shot learning paradigm will be helpful to learn models specific

to experimental devices and setups with minimal effort.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2022.100672.
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