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Abstract: The hollow trait is crucial for commercial quality of cucumber (Cucumis sativus L.) fruit,
and its molecular regulatory mechanism is poorly understood due to its environmental sensitivity. In
the previous research, we obtained the hollow and the non-hollow materials of ecotype cucumbers
of South China, which were not easily affected by the external environment through a systematic
breeding method. In this study, first, we proposed to use the percentage of the hollow area as the
criterion to compare the hollow characteristics between two materials, and to analyze the formation
mechanism of early hollow trait from the perspective of cytology. The results showed that the hollow
trait occurred in the early stage of fruit development, and formed with the opening of carpel ventral
zipped bi-cell layer, which formed rapidly from 2 to 4 days, and then slowed to a constant rate from
14 to 16 days. Meanwhile, the different genetic populations were constructed using these materials,
and fine mapping was performed by bulked segregant analysis (BSA) and kompetitive allele specific
PCR (KASP) method. The Csa1G630860 (CsALMT2), encoding protein ALMT2, was determined
as a candidate gene for regulating the hollow trait in fruit. Furthermore, the expression profile
of CsALMT2 was analyzed by qRT-PCR and fluorescence in situ hybridization. The expression of
CsALMT2 had obvious tissue specificity, and it was abundantly expressed in the ovule development
zone inside the fruit. In the hollow material of cucumber fruit, the expression of CsALMT2 was
significantly downregulated. The subcellular localization in tobacco leaves indicated that CsALMT2
was distributed on the plasma membrane. In conclusion, in this study, for the first time, we found the
regulatory gene of hollow trait in cucumber fruit, which laid the foundation for subsequent research
on the molecular mechanism of hollow trait formation in cucumber fruit, and made it possible to
apply this gene in cucumber breeding.

Keywords: cucumber; fruit hollow trait; ventricular development; hollow gene

1. Introduction

Cucumber (Cucumis sativus L., 2n = 2x = 14) is one of the vegetable crops with im-
portant agricultural, economic, and nutritional value in the world [1]. China is the largest
cucumber producer and consumer in the world [2]. According to the Food and Agriculture
Organization of the United Nations, the total production area of cucumber in the world
in 2020 was 2.26 million hectares, and in China, it was 1.28 million hectares, accounting
for about 56.6% of the world production. The total output of cucumber in the world was
91.25 million tons, while China was 72.83 million tons, accounting for 79.8% of the world
production (http://www.fao.org/faostat/zh/#data/QC; accessed on 8 March 2022). The
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biological basis of cucumber fruit development and morphogenesis has always been a hot
spot for research. Recent researches have mainly focused on fruit shape, fruit size, fruit
quality, pulp and ventricular development, and peel and spine development [3,4]. However,
pulp and ventricles are the major components of fruit, and there are more mature studies
on ventricular development and genetic mechanism in tomato (Solanum lycopersicum) than
in cucumber [5,6]. Due to defects during ventricular development, the hollow trait in fruit
affects the commercial value and reduces the acquisition rate, and the larger hollowness
reduces cucumber yield [7]. Therefore, there is an urgent need to solve the problem of fruit
hollowness in the production and marketing of cucumber.

The hollow trait exists in many plant fruits, such as tomato, Arabidopsis thaliana, melon
(C. melo L.), and cucumber, and is closely related to abnormal ventricular development
during the formation of ovary tissue [6,8,9]. The ventricular tissue of tomato usually derives
from the placenta, grows around the ovule, then the tissue expands and liquefies, and finally
fills with a gelatinous substance to form a whole fruit [10,11]. The QTLs fw2.2 and fw3.2
that control cell division in carpels and peels [12,13] and the fas that encodes a transcription
factor YABBY-like, which controls the size of tomato fruit by regulating the number of fruit
ventricles [14], have been successfully obtained so far. Recent research has shown that the
phenotype of all-flesh tomato was caused by structural variation composed of a 416-bp
deletion that occurred in the cis-regulatory region of the AFF gene. In this phenotype, after
the ovary tissue changed from gel-like material to solid tissue, the hollow trait of tomato
fruit was formed because the ventricle could not be filled [6]. Cucumber fruit is a pepo
that develops from the lower three carpels and receptacles of the ovary. On the basis of
cross-sectional observations, the pulp of the cucumber fruit could be divided into three
parts: exocarp, mesocarp and endocarp; it has also been observed that fruit hollowness
mainly occurred in the endocarp [7]. Each ventricle in the endocarp is composed of a
placenta, ventral carpel suture, ovule, and locule gel tissue [15]. Previous studies have
mainly focused on the multi-ventricular trait. CsCLV3 acts as a repressor, while CsWUS
functions as an activator for carpel number variation in cucumber. CsWUS can directly
bind to the promoter of CsCLV3 and activate CsCLV3 expression, while CsCLV3 indirectly
suppresses the activity of CsWUS. CsFUL1A has been shown to positively contribute to an
increase in carpel number by directly binding to the promoter of CsWUS and promoting its
expression. Auxin participates in carpel number regulation through interaction of CsARF14
and CsWUS [16,17].

The hollow trait of cucumber fruit was first discovered by Hook (1876) in the mature
fruit of Sikkim cucumber (C. sativus var. sikkimensis) [18]. The early field observations
found that the formation of hollowness in cucumber fruit was related to factors such as
variety, climate, and growth conditions [19]. Long-term water shortage in the soil, high soil
nitrogen content, and abrupt changes in temperature during the fructification period were
the major causes of hollow formation in cucumber fruit [20]. Recent research on hollow trait
of Sikkim cucumber mature fruit has shown that the allele of mfh3.1 in material ”WI7088D”
could reduce the hollow size of fruit, while the allele of mfh1.1 and mfh2.1 could increase the
hollow size of fruit [9]. The expression profile of CsGID1a has been reported to be closely
related to locule formation in cucumber fruit. Silencing of cucumber CsGID1a might lead to
abnormal development of carpels and ventricles and hollow trait in cucumber fruit, which
would seriously affect the formation and development of seeds; however, the phenotype of
hollow trait was significantly different from that of Sikkim cucumbers, which did not affect
seed development [21]. Therefore, the mechanism of hollow formation in cucumber fruit
deserves further exploration.

Due to the lack of experimental materials with low environmental impact and the
stable hollow trait of cucumber varieties, it is difficult to develop insight into the genetic
and regulatory mechanisms of the hollow trait in cucumber fruit. In this study, the cu-
cumber variety H7 with non-hollow fruit and cucumber variety H6 with hollow fruit
were selected as experimental materials, and fine mapping was carried out combining
phenotypic analysis, cytological observation, genetic analysis, MutMap, and kompetitive
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allele specific PCR (KASP); the expression characteristics and location of the gene control-
ling hollow trait in cucumber fruit were also analyzed. The results might be helpful to
understand the molecular mechanism of hollow formation in cucumber fruit, and provide
useful information for cucumber breeding.

2. Results
2.1. Phenotypic Characterization of H6 and H7

The hollow traits of 29 new varieties of open field cucumbers (12 North China ecotype
cucumber varieties and 17 South China ecotype cucumber varieties) were observed during
the implementation of the key R&D project of the 13th five-year plan. The results showed
that none of the North China ecotype cucumber varieties had hollow fruit, while 15 of the
17 South China ecotype cucumber varieties had varying degrees of fruit hollowness. The
proportion of varieties with hollow fruit accounted for 88.24% (Table S1).

Multigenerational breeding of ecotype cucumbers of South China was performed, and
the sister lines H6 (hollow fruit) and H7 (non-hollow fruit) with stable hollow/non-hollow
traits (Figure 1A) were obtained. In the commercial period, the fruit appearance of the
two lines was basically the same, but the internal fruit structure was obviously different.
The endocarp region of H6 had a large hollow, which did not affect seed development,
while the endocarp area of H7 had full structure. There were hollow cucumber fruits with
from three to five ventricles in the F2 generation, indicating that there was no inevitable
relationship between the hollow trait and the number of ventricles. From the autumn of
2018 to the spring of 2020 in Hunan, the hollow trait in H6 and H7 fruit was observed for
four times in the greenhouse. The ratio of hollowness in cucumber fruit was 100% in H6,
while it was 0% in H7. During fruit development, the change trends were the same in fruit
cross-sectional areas, but the cross-sectional area of H6 was slightly larger (Figure 1B). The
hollow area of the fruit cross section in H6 increased exponentially over time, indicating
that the hollow area size was related to fruit development, and the percentage of hollow
area increased rapidly in the first eight days, then leveled off, and remained constant from
14 to 16 days of development. The change trend may be related to fruit development from
the expansion stage to the mature stage (Figure 1C). In order to understand the changes of
hollow trait in the early developmental stages of H6 and H7, the morphological changes
from three days before flowering to six days after pollination were observed. There was no
hollow phenomenon at the flowering and preflowering stages, and a hollow-like vascular
bundle appeared at the end of ventral carpel suture after two days of pollination, and with
the development of fruit, the hollow gradually expanded (Figure S1).

2.2. Cytological Observations of H6 and H7

The carpels of H6 and H7 fruits at different stages of early development were observed
(Figure 1D). The ventral carpel sutures of H6 and H7 cucumbers on the day of flowering,
i.e., 0 DAA (day after anthesis), were a tightly zipped bi-cell layer. The carpel ventral
zipped bi-cell layer of H6 hollow material separated to form an early hollow phenomenon,
which could not be distinguished by the naked eye before 2 DAA. From 2 DAA, the cells
of H6 carpel expanded faster than those of H7, while the cell size of the carpel ventral
zipped bi-cell layer did not change significantly (Figure S2). As time increased, the carpel
ventral zipped bi-cell layer of H7 compressed, and became fuzzy and irregular, but did
not divide to produce hollowness. The carpel ventral zipped bi-cell layer in H6 gradually
separated into an irregular and smaller mono-cell layer. The hollow phenomenon was
observed with the naked eye at the beginning of 4 DAA. It was speculated that the hollow
phenomenon occurred at about 2 DAA of fruit development, and gradually formed with
ventricle development, which pulled apart the carpel ventral zipped bi-cell layer.
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Figure 1. Identification of cucumber H6 and H7 hollow traits: (A) Internal phenotypic characteristics
and hollow traits of H6 and H7 cucumber fruits, the fruits are at the maturity stage (Bars, 1 cm);
(B) changes in the cross-sectional area between H6 and H7 from 0 to 16 days of fruit development;
(C) changes of hollow area and percentage of hollow area in H6 from 0 to 16 days of fruit development;
(D) cell structure of cross sections of H6 and H7 fruits between 0 and 6 days. DAA, day after anthesis.

2.3. Genetic Analysis of Hollow Traits in Cucumber Fruit

In order to determine whether the hollow trait of cucumber fruit was controlled by
a single gene or multiple genes, we analyzed the frequency distribution of hollow area
percentage in the P1 (H6), P2 (H7), F1 (H6 × H7), and F2 (Figure 2A). The results showed
that the average hollow area percentage of parent P1 (H6) was mainly between 8.1% and
10.0%. The trait of non-hollow material parent P2 (H7) was stable, and the hollow area
percentage was 0%. The average hollow area percentage of F1 was distributed between
4.1% and 6.0%. The separated population F2 had a single peak with a left bias normal
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distribution, and the single peak distribution ranged from 0.1% to 2.0%, suggesting that
there might be a major gene which was affected by the environment (Tables S2 and S3).

Figure 2. Frequency distribution of the hollow area percentage of cucumber fruit (A) and phenotypic
identification (B) in F2. The numbers in brackets of the phenotypic identification picture represent
the hollow area percentage.

In 1965, the quantitative geneticist Falconer formally defined the threshold. The
definition of the threshold, as the point on the scale of liability above which all individuals
are affected and below which no one is affected, provides a fixed point for comparing
different incidences of different populations or groups [22]. Using this method combined
with phenotypic analysis in F2 (Figure 2B), it was found that with 2.0% as the threshold
of hollow area percentage, 247 plants in F2 were hollow and 98 plants did not display
hollowness. These findings were consistent with the 3:1 segregation ratio (χ2 = 2.134,
p > 0.05), suggesting that the hollow trait of cucumber fruit was regulated by a single
dominant gene in this population. Therefore, two pools were established to identify the
causal gene using bulked segregant analysis (BSA) [23].
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2.4. Whole Genome Resequencing Based on BSA Analysis

Four cucumber DNA pools (H6, H7, F2 hollow, and F2 non hollow) were used for
genome resequencing, and a total of 23.9 GB of sequence data were obtained. The GC
content of samples ranged from 38.91% to 39.59%, and the Q30 value of all samples
was greater than 90.29%, which indicated the output and quality of the sequencing data
could fully meet the analysis requirements (Table S4). The reads were compared to the
cucumber reference genome (ftp://www.icugi.org/pub/genome/cucumber/Chinese_
long/v2/; accessed on 29 January 2021) using the BWA software (Table S5), the Samtools
software was used to find the SNP sites in the whole genome, and 67,909 differential
SNPs were finally obtained. We selected the different and homozygous SNP sites in the
two parents, filtered out the SNP index deletion sites of the offspring, and found 3698
different SNPs, of which 2037 SNPs were identified on chromosome 1. There had been
genetic linkage of the differential SNPs related to the target trait and its surrounding
SNPs; we initially located the candidate region of the target gene between 24,747,234 and
28,340,789 bp on chromosome 1 (Figure 3A).

Figure 3. Fine mapping of the hollow gene in cucumber fruit based on genotypes and phenotypes of
recombinant individuals: (A) Single nucleotide polymorphism (SNP)-index distribution. Blue lines
indicate delta SNP-index, gray bars indicate the number of variations, the green arrow indicates the
region on chromosome 1 with a SNP index >0.5; (B) genotyping analysis using the KASP technique
in the F2 individuals. Gray bars are homozygous for the H7 allele and orange bars are homozygous
for the H6 allele. Purple represents exons and yellow represents 5′-UTR and 3′-UTR.

www.icugi.org/pub/genome/cucumber/Chinese_long/v2/
www.icugi.org/pub/genome/cucumber/Chinese_long/v2/
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2.5. Fine Mapping and Identification of the Causal Gene

We constructed the F2 population with H6 (hollow fruit) and H7 (non-hollow fruit) as
parents to verify whether the above regions were correct. Ten SNPs were mined based on
the larger region containing the above region on chromosome 1. These SNPs were used to
screen the recombinant individuals of the F2 generation population (345 recombinant indi-
viduals), and KASP was used for genotyping (Figure 3B). Firstly, the target gene was located
between two SNPs (SNP21,892,895 and SNP25,854,734) on chromosome 1. Subsequently, in
order to further narrow the candidate region of the target gene, we again designed 10 SNP
markers in the 21,892,895–25,854,734 bp region of chromosome 1 for KASP genotyping val-
idation. Finally, the target gene was located in the 25,185,078–25,203,154 bp region of chro-
mosome 1. The above region was contained in the region Chr1: 24,747,234–28,340,789 bp,
revealing the reliability of BSA analysis. The length of the region was 18,077 bp, and there
was only one annotation gene Csa1G630860 in the V2 version 9930 reference genome. The
gene Csa1G630860 encoded a type of widely studied transmembrane protein, aluminum-
activated malate transporter (ALMT), and we named it CsALMT2 for its homology to
AtALMT2 in Arabidopsis.

2.6. Sequence and Cis-Element Prediction of CsALMT2

The full-length of CsALMT2 genes in H6 and H7 were amplified and sequenced,
respectively. The sequence comparison showed that CsALMT2 had four SNPs in the
exon of H6 and H7, of which three were distributed on exon 1 and only one on exon 2.
The sequences of the remaining three exons in H6 and H7 were completely identical.
Further analysis revealed that only the transversion G82A (SNP28756924) on exon 1 of
the four SNPs resulted in the amino acid changing from alanine to threonine (A28T)
(Figure 4A). CsALMT2 consisted of 454 amino acids. The results of phylogenetic analysis
reflected that CsALMT2 clustered together with ALMT2 in other species, but was distant
from other members of the ALMT family. It was closest to CmALMT2 and BHALMT2
in the evolutionary tree (Figure 5). In the local multiple sequence alignment, there were
no amino acid changes from A to T in the same position of melon (C. melo), wax gourd
(Benincasa hispida), and the sequenced reference genome varieties (Gy14, PI183967, and
9930), suggesting that the amino acid changes at this position affected the protein func-
tion, and led to the hollow phenomenon of cucumber (Figure S3). The sequence domain
analysis of CsALMT2 protein found that the predicted protein domains consisted of four
categories, including four cytoplasmic domains, three non-cytoplasmic domains, six trans-
membrane (TM), and six TM helix. The change of A28T occurred in the cytoplasmic domain
(Figure S4). In addition, we also analyzed the promoter region of CsALMT2 and detected
the light response elements, MYB binding sites involved in drought induction, defense
and stress response elements, and a large number of hormone response elements (abscisic
acid response element, gibberellin response element, auxin response element, salicylic acid
response element, etc.) (Table S6). These results reflected that the expression of CsALMT2
was vulnerable to environmental changes.
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Figure 4. Gene structure and expression analysis of CsALMT2: (A) Gene structure of the predicted
CsALMT2. Purple represents exons, solid lines represent introns, and yellow represents 5′-UTR and
3′-UTR; (B) relative expression levels of CsALMT2 in H7 and H6 fruit at different growth stages.
Bars are means of three replicates ± SEM. Triple asterisk, p < 0.001; (C) relative expression levels of
CsALMT2 in H7 different tissues. Bars are means of three replicates ± SEM. Triple asterisk, p < 0.05.

Figure 5. Phylogenetic analysis of CsALMT2. ALMT2 protein in different species and phylogenetic
tree of other members of the ALMT family in Arabidopsis. The phylogenetic tree is generated using
the maximum likelihood method in Omicshare Tools online software, and the inferred phylogeny is
tested through the guided analysis of 1000 duplicate datasets. The number displayed at the tree fork
represents the frequency of occurrence in all boot iterations performed.
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2.7. Expression Characteristic Analysis of CsALMT2

We also investigated the expression profiles of CsALMT2 in H6 and H7 at different
stages (Figure 4B). The results showed that the expression level of CsALMT2 in H7 was
significantly higher than that in H6 at each stage. The expression level of CsALMT2 in non-
hollow material H7 was 14.7 times that of hollow material at 0 DAA, while the expression
level of CsALMT2 in non-hollow material H7 was 59.3 times that of hollow material at
8 DAA. Although the expression levels of CsALMT2 were very low in both materials at
40 DAA, the expression level of CsALMT2 in non-hollow material H7 was 69.7 times higher
than that of hollow material. In both H6 and H7, the expression levels of CsALMT2 were
significantly decreased over time. The expression level of CsALMT2 in non-hollow material
H7 at 0 DAA was 1.4 times that of 8 DAA, while the expression level of CsALMT2 in hollow
material H6 at 0 DAA was 5.5 times that of 8 DAA. The expression level of CsALMT2 in
non-hollow material H7 at 8 DAA was 25.3 times that of 40 DAA, while the expression level
of CsALMT2 in hollow material H6 at 8 DAA was 29.7 times that of 40 DAA. As compared
with H7, the expression level of CsALMT2 in H6 decreased more rapidly with time. In
order to understand the spatial expression characteristics of CsALMT2, we detected the
expression levels of CsALMT2 in fruits, roots, stems, leaves, flowers, sprouts, and tendrils of
H7 (Figure 4C). The results suggested that CsALMT2 exhibited a tissue specific expression,
and the expression levels in roots and fruits were much higher than that in other tissues.

2.8. Fluorescence In Situ Hybridization

Fluorescence in situ hybridization (FISH), an in situ hybridization technology using
fluorescence signal detection probe, has been the most important technology in plant
cytogenetics [24]. The FISH discovered that the number of red specific bright spots in
early fruit of H7 was significantly more than that of H6, mainly concentrated in the ovule
development area of the fruits (Figure 6A–D). The differences reflected the different hollow
traits in H7 and H6 fruits, and were also consistent with the expression characteristics of
CsALMT2. In addition, the majority of specific bright red spots were separated from the
bright blue spots representing nuclei, suggesting that CsALMT2 might function in the cell
membrane or cytoplasm.

Figure 6. Cont.
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Figure 6. Fluorescence in situ hybridization analysis and subcellular localization in CsALMT2:
(A,B) Images of H6 fruit at 0 d under a 1× and 30× fluorescence microscope, respectively;
(C,D) images of H7 fruit at 0 d under a 1× and 30× fluorescence microscope, respectively. Blue light
represents the nucleus, red light is the positive expression of fluorescein labeling. Yellow arrows
represent positive expression of CsALMT2. (E) subcellular localization of CsALMT2 in tobacco cells.

2.9. Subcellular Localization of CsALMT2-Encoding Protein

We used WoLF PSORT and CELLO online softwares to predict the subcellular lo-
calization of CsALMT2. The prediction results of WoLF PSORT showed that among the
14 nearest neighbors, seven were located in the plasma membrane, five were located in
the vacuole, and one was located in the endoplasmic reticulum and one was located in the
Golgi apparatus. The CELLO prediction results showed that CsALMT2 was located on the
plasma membrane with the reliability value of 4.256, which was much higher than that
located on other structures. In order to understand the specific localization of CsALMT2
protein in cells, first, we used pCambia1301-JC-GFP as the vector skeleton and inserted
the gene CsALMT2 into the vector. Subsequently, Agrobacterium tumefaciens carrying 35S:
CsALMT2 GFP vector was transiently transferred to tobacco, cultured under weak light
for two days, and then observed and photographed by a laser confocal microscope (Nikon
C2-ER). The results showed that the expression intensity of ALMT2-GFP was weaker than
that of the GFP control, but the GFP signals were distributed over the structures of cell
membrane and plasma membrane, and possibly coincided with the chloroplast (Figure 6E).

3. Discussion

The shape and internal structure of cucumber fruit are the decisive characteristics for
market orientation in commercial production, and from the perspective of crop breeding,
these characteristics also represent fruit quality and yield traits in horticulture [4]. Re-
search on the shape characteristics in cucumber fruit is relatively mature, but there has
been less research on the fruit internal structure. The problem of hollow trait, which is a
typical internal structure trait of cucumber fruit, originated from the production practice.
In the early years, the hollow defect of cucumber fruit resulted in production processing
losses of nearly 30% in Poland [20]. An investigation of 17 new South China ecotype
cucumber varieties found that more than 88% of the varieties had hollow fruit, which
suggested that the hollow trait of cucumber fruit was common in South China cucumbers
(Table S1). Because the period of hollow formation in cucumber fruit matches the pe-
riod of market fruit, the period for an investigation is relatively late, requires hard work,
and is time-consuming; it is difficult to detect the trait at an early stage of cucumber
growth. In addition, because it is difficult to distinguish the appearance of hollow fruits
from non-hollow fruits, consumers who buy hollow fruits stop purchasing due to quality
problems, which eventually leads to a more obvious drop in sales and prices. Although
the hollow trait causes serious harm to cucumber production, there is still no further re-
search on its genetic basis and molecular mechanism due to the lack of genetically stable
cucumber materials.
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Through systematic breeding and a multigenerational investigation of population
hollowness, we have bred cucumber materials H6 (hollow fruit) and H7 (non-hollow fruit)
with stable hollow traits. Based on this, in this study, we further improved the judgment
standard for hollow trait. Wang et al., in a study on the hollow trait of Sikkim cucumber,
introduced two standards, namely, immature fruit hollow size and mature fruit hollow size,
to measure the degree of hollowness in fruit [9]. In this study, the percentage of hollow
area was used as the measurement standard of hollow size, which reduced the error caused
by the later expansion of cucumber fruit, and also improved the accuracy of judgment and
advanced the hollow trait investigation time. From the results of the trait investigation,
hollow trait slightly increased the cross-sectional area of fruit (Figure 1B). The formation of
fruit hollowness occurred in the early stage of fruit development (Figure 1D and Figure S1),
and the hollowness formed rapidly from two to four days, and then gradually slowed down
to a constant rate by 14 to 16 days (Figure 1C). The result was consistent with a previous
study, that is, hollowness appeared in young cucumber fruits with a fruit diameter of
1.5 cm, which increased with fruit development [20]. In addition, it had been observed that
the ovary shape of cucurbit crops (cucumber, squash, zucchini, melon, etc.) was positively
correlated with the final fruit shape, which was mainly determined before flowering [4,25].
During the development of melon fruit, with an increase in fruit diameter, the ovary fruit
shape index was higher than that of mature fruit, and the final fruit shape reached a stable
level about 15 days after flowering [26]. The growth cycle of cucumber fruit is as follows:
the slow growth stage of fruit length and diameter growth within 0–4 days after flowering,
the rapid growth stage after 4 days, the arrest of growing after 16 days, and the mature
stage [27]. We speculate that the hollow trait, as an internal structural trait of fruit, may be
maintained for a period similar to external development.

The development of cucumber fruit is mainly due to changes in cell number and
volume [28–30]. Elkner (1982) previously proposed that the uneven enlargement of ad-
jacent cells in the carpel suture of cucumber fruit generated strong mechanical tension
between them, which could be responsible for the separation of carpel suture after cell
rupture [20]. This view was consistent with our slice observation, in which the carpel
cells of H6 expanded faster than those of H7 after two days of flowering, the separation of
ventral carpel suture bi-cell layer was similar to zipper, and it was easier to separate for the
ventral carpel suture bi-cell layer near the epicarp, though we tended to hypothesize that
the separation of the ventral carpel suture bi-cell layer was caused by the tension caused by
the development and atrophy of each locule.

Malic acid, as a central metabolite, has been shown to be associated with various
metabolic pathways in plants, and to play crucial roles in various functions, such as
participating in ATP production, fatty acid metabolism, acting as a temporary carbon pool,
and pH regulation [31]. The genes encoding ALMT have been identified in many plant
species, and the ALMT family has been proved to be central to physiological processes [32].
In this study, the South China ecotype cucumber fruit hollow material H6 and non-hollow
material H7 were used for fine mapping through BSA-seq and KASP genotyping, and
the Arabidopsis ALMT2 homologous gene CsALMT2 (Csa1G630860) was finally identified
as a candidate gene to regulate the hollow trait in fruit (Figure 3). Sequencing analysis
revealed that the transversion of G82A on exon 1 of the gene resulted in an amino acid
change from alanine to threonine (A28T) (Figure 4A). The phylogenetic analysis indicated
that CsALMT2 was most closely related to CmALMT2 and BhALMT2. The distance
between CsALMT2 and AtALMT2 was closer than that of other members of the Arabidopsis
ALMT family (Figure 5). It was predicted that CsALMT2 belongs to transmembrane
protein, and contained six transmembrane domains (Figure S4). The ALMT gene family
encodes anion transport proteins, and also regulates the transmembrane permeability
of organic acids in plants [33]. ALMT has multiple potential roles in plant metabolism,
including regulation of organic acids in fruits, movement of guard cells, and induction
of plant tolerance to aluminum stress [34]. It was initially found that TaALMT1 could
confer resistance to aluminum toxicity in plants [35,36], and the extracellular hydrophilic
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carboxyl-terminal domain could regulate the activity of TaALMT1 [37]. Later, it was
proven that BnALMT1 and BnALMT2 could also enhance the aluminum resistance in plant
cells [38]. AtALMT1 conferred aluminum tolerance in Arabidopsis [39,40]. AtALMT9 was a
malate-activated vacuole chloride channel required for stomatal opening in Arabidopsis [41],
meanwhile, AtALMT9 could also affect the content of malic acid in cells [31]. AtALMT12
has been reported to play an important regulatory role in controlling stomatal guard cells
in Arabidopsis [42]. Seventeen HbALMT genes have been identified from the genome of the
rubber tree, most of which responded to aluminum stress [43]. In maize, ZmALMT1 has
been shown to encode a plasma membrane transporter, which could mediate the outflow
and inflow of selective anions [44], while ZmALMT2 released malic acid in roots, and also
played an important role in the transport of organic acids in xylem [45]. The barley gene
HvALMT1 has been shown to encode anion channels in guard cells and some root tissues,
which promoted stomatal closure by affecting malic acid release in guard cells [46]. The rye
gene ScALMT1 has been shown to confer aluminum tolerance to plants [47]. GmALMT1 in
soybean was reported to be involved in regulating malic acid exudation, which improved
the adaptability to acidic soil in plants [48]. Previous studies in tomato have found that
SlALMT3 participated in the crosstalk regulation mechanism between aluminum and
jasmonic acid in the process of inhibiting root growth. SlWRKY may participate in this
crosstalk reaction as an upstream regulator of SlALMT3 [49]. SlALMT4 and SlALMT5 has
been shown to be involved in malic acid transport. SlALMT9 could regulate the secretion of
malic acid in tomato and promoted the accumulation of malic acid in fruit [50,51]. Although
the functional importance of the ALMT gene has been fully confirmed in many species,
ALMTs have been reported to be involved in different biological processes of the plant life
cycle, and to exert multiple functions in different species. ALMT has rarely been reported in
Cucurbitaceae until now, the latest research on WmALMT-3 in watermelon pulp found that
it may be involved in the regulation of malic acid and that it accumulates in vacuoles during
watermelon fruit development [52]. According to the results of ALMTs in the reference, we
predict that CsALMT2 may affect the hollow trait by regulating the distribution of organic
acids in cucumber; however, the relevant experimental data and evidence still need to
be accumulated.

The expression level of CsALMT2 in H7 was significantly higher than that in H6
at each stage, and the tissue expression levels varied in tissues (Figure 4). The results
of the FISH showed that CsALMT2 was widely distributed in the ovule development
area (Figure 6A–D). The HvALMT1 has been shown to play a variety of roles in seed
development and grain germination [46], and overexpression of SlALMT5 could increase
the content of malic acid in mature tomato seeds [50]. We speculated that CsALMT2 might
affect the hollow trait in cucumber fruit, and also the content of malic acid in fruit and seeds.
In addition, the CsALMT2 was predicted to localize to the plasma membrane by WoLF
PSORT and CELLO. This study also proved that CsALMT2 was located in cell membrane
and plasma membrane by subcellular localization of tobacco transient analysis, which was
in accordance with previous predictions (Figure 6E). The ALMT proteins are mostly located
in cell membrane, vacuolar membrane, and plasma membrane [32]. ALMT is located in
plasma membrane in wheat, Arabidopsis, maize, and rape seed [35,39,44]. The latest study
predicted that 24 EjALMT proteins in loquat were also located in the plasma membrane [34].
At present, the mechanism of how ALMT participates in the regulation of cucumber fruit
development is still unclear and needs further research, which would help to analyze the
mechanism of hollow trait formation.

4. Materials and Methods
4.1. Plant Materials and Crossing
4.1.1. Plant Materials

All cucumber materials in this study were provided by the cucumber research group
of the Hunan Vegetable Research Institute. Cucumber varieties ♀j and TS-1 were selected
as parents for hybridization. The ♀j variety was the South China ecotype cucumber, with
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non-hollow fruit, gynoecious type, medium parthenocarpy ability, and the commercial
fruit length is about 25 cm. The TS-1 variety was the South China ecotype cucumber,
with non-hollow fruit, monoecious type, strong parthenocarpy ability, and the commercial
fruit length is about 25 cm. The sister lines H6 (large hollow, gynoecious type, strong
parthenocarpy ability, and the commercial fruit length is about 12 cm) and H7 (non-hollow,
gynoecious type, weak parthenocarpy ability, and the commercial fruit length is about
12 cm) with stable hollow/non-hollow trait were obtained in the seventh generation by
systematic breeding method. The experiments were carried out in the greenhouse of the
Hunan Vegetable Research Institute from August 2016 to June 2019.

4.1.2. Construction of Genetic Population

In the autumn of 2019, a hybrid combination H6 × H7 was created with cucumber
H6 (hollow fruit) as the female parent and H7 (non-hollow fruit) as the male parent in the
greenhouse of the Hunan Vegetable Research Institute. The F1 seeds were sown in the
spring of 2020, the F2 was obtained by selfing at the flowering stage, then four genetic
generations, i.e., P1, P2, F1, and F2, were constructed, the seeds of which were sown in the
autumn of 2020. The sample sizes of lines in each population were 19 for P1, 20 for P2,
20 for F1, and 345 for F2. The seedlings were raised in seedling tray and transplanted in the
greenhouse. Genetic analysis of each population was carried out in the greenhouse.

4.1.3. Identification of Hollow Trait of New Open Field Cucumber Varieties in China

The hollow traits of 29 new varieties of open field cucumber (12 North China ecotype
cucumber varieties and 17 South China ecotype cucumber varieties) were investigated in
the spring of 2019. ZhongNong38, ZhongNong48, ZhongNong106, 18C54, and 18C56 were
provided by the Institute of Vegetables and Flowers, Chinese Academy of Agricultural
Sciences; YD109 and YD110 were provided by the Yangzhou University; HN1, HN2,
HN3, and HN4 were provided by the Hunan Vegetable Research Institute; JYXM, JYXM2,
and JYCQL2 were provided by the Beijing Yinong Vegetable Research Center; YueFeng,
LiFeng2, LiFeng3, and ZaoQing8 were provided by the Vegetable Research Institute of
Guangdong Academy of Agricultural Sciences; 15D036, 15D044, 15D088, 15D095, and
YanBai were provided by the Chongqing Academy of Agricultural Sciences; ChuanCui13,
ChuanLv11, ChuanLv15, ChuanCai19-1, ChuanCai19-2, and ChuanCai19-3 were provided
by the Sichuan Academy of Agricultural Sciences. There were 40 plants in each variety, and
we investigated whether there were more than three hollow fruits in each variety during
the commercial fruit period.

4.2. Investigation on Hollow Trait of Cucumber Fruit

The hollow traits of the cross section in the middle segment of fruit at each stage of
plant growth were investigated. The cross-sectional areas of the middle segment of all fruits
were scanned with Deli altimeter (Version 15152, Deli Group, Ningbo, China). The total
area and hollow area of each cross section were calculated using the Adobe Photoshop CS6
software. Finally, the percentage of hollow area was calculated with the statistical data of
Microsoft Excel. The calculation formula was: Hollow area percentage = (hollow area/total
area of cross section) × 100%.

4.3. Determination of Population Hollow Rate

H6 and H7 (20 plants each) were planted in the greenhouse of the Hunan Vegetable
Research Institute, and managed with conventional water and fertilizer. After 40 days
of pollination, the number of hollow fruits and the total number of fruits of the two
materials were recorded. We calculated the population hollow rate according to the formula:
Population hollow rate = (number of hollow fruits/total number of fruits) × 100%. From
the spring of 2018 to the spring of 2019, the population hollow rate of the two materials
was investigated three times.
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4.4. Paraffin Sectioning

We collected the fruits of H6 and H7 plants at different stages (0 DAA, 2 DAA,
4 DAA, and 6 DAA). The middle segment of fruit was cut and fixed in FAA (formaldehyde-
acetic acid-ethanol) fixative (50%) for 24 h. We took out the tissue from the fixed solution,
trimmed the target tissue with a scalpel in the fume hood, and put the trimmed tissue and
the corresponding label in the dehydration box. Then, it was dehydrated and dipped in
wax with gradient alcohol in the dehydrator. The wax-soaked tissue was embedded in the
embedding machine. The trimmed wax block was put into the paraffin slicer for slicing,
with a thickness of 4 µm. The slices floated in the warm water at 40 ◦C of the spreader to
flatten the tissue, then the tissue was placed on a glass slide and baked in an oven at 60 ◦C.
After the water was dried and the wax was roasted, it was taken out and stored at room
temperature for standby. The slices were put into xylene I for 20 min, xylene II for 20 min,
absolute ethanol I for 5 min, absolute ethanol II for 5 min, 75% alcohol for 5 min, and rinsed
with tap water. The slices were put into aniline blue dye solution for 5–10 min, washed
with tap water, and dried in an oven at 60 ◦C. The slices were put into xylene for 5 min and
sealed with neutral gum. Finally, the upright optical microscope was used for microscopic
examination and image analysis data were collected. Three samples were collected in each
period and each sample was repeated three times.

4.5. Whole Genome Resequencing

Twenty-five hollow fruit plant leaves and 25 non-hollow fruit plant leaves from the F2
separated population were selected to construct the mutant DNA pool and the wild-type
DNA pool, named F2 hollow and F2 non-hollow, respectively. DNA was extracted using
the CTAB method [53]. Two parental DNA pools (H6 and H7) and two DNA mixed pools
(F2 hollow and F2 non-hollow) were obtained. DNA samples were randomly broken into
350 bp fragments with crusher (S220, Covaris, Woburn, MA, USA). The complete library
was constructed by end repair, adding poly(A) tails, then adding sequencing connectors,
followed by purification, PCR amplification, and other processes. After the library was
constructed, we used Qubit 2.0 (Thermo Fisher Scientific, Waltham, MA, USA) for prelimi-
nary quantification. The library was diluted to 1 ng/µL and the insertion size of the library
was detected using Agilent 2100 (Agilent Technologies, Inc., Santa Clara, CA, USA). The
effective concentration of the library was accurately quantified by Q-PCR (effective library
concentration >2 nm). After the qualified library was constructed, it was sequenced by
Illumina NovaSeq (PE150, Illumina, Inc., San Diego, CA, USA).

4.6. SNP Calling and Filtering

The BWA (http://bio-bwa.sourceforge.net/; accessed on 29 January 2021) software
(Version 0.7.12) was used to compare reads with 9930 cucumber reference genomes
(http://cucurbitgenomics.org/, Version V2; accessed on 29 January 2021) [54]. The Sam-
tools (http://www.htslib.org/; accessed on 29 January 2021) software (Version v0.1.18)
was used to find genome-wide SNP sites [55]. The mutation results were detected using
the GATK software (Version 3.2-2) [56]. The SNP filtering standard was that the base mass
value was greater than or equal to 30, the mapping mass value was greater than or equal to
30, and the base depth was greater than or equal to 2 and less than or equal to 80 in two
parents and two F2 mixed pools. The SNP index of the recessive pool minus the dominant
pool was used for mapping.

4.7. SNP Genotyping by KASP

For the KASP genotyping, 346 F2 individual plants were used, including 259 plants
that showed the hollow fruit phenotype and 87 plants that showed the non-hollow fruit
phenotype. The SNP information of the target gene candidate region was detected on
the LGC genomics typing platform at the Vegetable Center of the Beijing Academy of
Agricultural and Forestry Sciences. The 100 bp DNA sequence upstream and downstream
of each SNP site was intercepted as the KASP primer design template. A total of 3 primers

http://bio-bwa.sourceforge.net/
http://cucurbitgenomics.org/
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(5′–3′ direction) were designed: Primer_Allele FAM, Primer_Allele HEX, and Primer_Common.
The primer design information is shown in the Table S7.

4.8. Domain and Cis-Element Prediction

We used the InterProScan (http://www.ebi.ac.uk/interpro/; accessed on
26 February 2022) online analysis software to predict the protein domain [57]. The
cis-acting elements of the promoter were analyzed by using the PlantCARE (http://
bioinformatics.psb.ugent.be/webtools/plantcare/html/; accessed on 26 February 2022)
online analysis software [58].

4.9. RNA Isolation and qRT-PCR

The middle segments in H6 and H7 fruit were collected at different stages (0 DAA,
8 DAA, and 40 DAA). Eight types of tissue samples were collected from H7, includ-
ing sprout, flower, leaf, root, stem, tendril, and fruit. The samples of each material
were collected repeatedly for three times. A TaKaRa MiniBEST Plant RNA Extraction
Kit (Takara Bio Inc., Kusatsu, Japan) was used to extract the total RNA of the sample,
and the test was carried out according to Protocol-II. The cDNA synthesis was per-
formed using a TaKaRa PrimeScript RT reagent Kit with gDNA Eraser (Takara Bio Inc.,
Kusatsu, Japan). After reverse transcription reaction, TB Green Premix Ex Taq II (Tli
RNaseH Plus) (Takara Bio Inc.) was used for RT-PCR detection. The primer was ALMT2-F:
TTGGACGAGGATTGAATAGG; ALMT2-R: GAGCGACAGCATAATAGGT. CsActin was
an internal reference gene. The 20.0 µL reaction system was as follows: TB Green Premix
Ex Taq II (Tli RNaseH Plus) (2×), 10.0 µL; PCR Forward Primer (10 µM), 0.5 µL; PCR
Reverse Primer (10 µM), 0.5 µL; ROX Reference Dye (50×), 0.4 µL; DNA template, 1.0 µL;
ddH2O, 7.6 µL. The reaction was implemented in a fluorescence quantitative PCR instru-
ment (ABI 7300, Thermo Fisher Scientific, USA). The relative gene expression levels were
analyzed according to the 2−∆∆Ct method. The internal normalization gene was CsActin.

4.10. Fluorescence In Situ Hybridization

The 0 DAA paraffin section of 2.4 was put into xylene for 15 min, xylene for 15 min,
absolute ethanol for 5 min, and absolute ethanol for 5 min. The slices were dried un-
der natural conditions and soaked in DEPC water. Protease K (20 µg/mL) was added
dropwise and digested at 37 ◦C for 20 min. The slices were washed with pure water,
and then washed with PBS, three times, for 5 min each time. Prehybridizing solution
was added dropwise and incubated at 37 ◦C for 1 h. The prehybridization solution was
poured out and the hybridization solution containing probe (Csa1g630860 probe: 5′-CY3-
AAGCCACAGUCGCCAUCGGUACUAUUUCCAG-CY3-3′) was added dropwise at a
concentration of 6 ng/µL. For the hybridization reaction, the sample was placed in a 42 ◦C
incubator for one night. The hybridization solution was washed off with 2 × SSC at 37 ◦C
for 10 min, with 1 × SSC two times at 37 ◦C for 5 min each time, and then, washed with
0.5 × SSC at room temperature for 10 min. The slices were added with DAPI dye solution
and incubated in the dark for 8 min. An anti-fluorescence quenching sealing agent was
added to seal the slices after washing. The slices were observed under an upright fluores-
cence microscope (Eclipse CI, Nikon Corporation, Tokyo, Japan) and images were collected.
The nuclei stained by DAPI were blue under UV excitation, and positive expression was
red-light labeled with corresponding fluorescein (Cy3).

4.11. Subcellular Localization

The WoLF PSORT web server (https://wolfpsort.hgc.jp/; accessed on 11 March 2022)
and CELLO version 2.5, subcellular localization predictor (http://cello.life.nctu.edu.tw/;
accessed on 11 March 2022) were used to predict CsALMT2 subcellular localizations [59].

Primers for construction of the vector 1301-ALMT2-GFP were CZ-ALMT2-BglII-F:
AACACGGGGGACTCTTGACCATGGAGATGGCTAATGAG and CZ-ALMT2-BglII-R: GC-
CCTTGCTCACCATATCTATAGTAACAACATGACAATG. The vector pCambia1301-JC-

http://www.ebi.ac.uk/interpro/
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GFP was linearized by BglII enzyme digestion, and then reconstituted with the target
gene fragment (the recombinant reaction kit is the ClonExpress-II One Step Cloning Kit
of Vazyme Biotech Co., Ltd., Nanjing, China). The recombinant product was transformed
into E. coli DH5α cells by heat shock method. Then, the vector sequencing results were
analyzed. The constructed vector plasmid was transferred into Agrobacterium GV3101
and evenly plated on a kanamycin-containing plate. The single clones were picked and
cultured in YEB liquid medium for 2 days in a shaker at 28 ◦C, and the cells were collected
by centrifugation at 4000 rpm for 4 min. After removing the supernatant, the bacteria
were resuspended in 10 mM MgCl2 containing 120 µM AS, and the OD600 was adjusted
to about 0.6. The A. tumefaciens suspension was sucked up using a 1 mL syringe without
a needle and pressed into the lower epidermis of tobacco leaves. Tobacco plants were
cultured in low light for 2 days. After 3 days, the tobacco leaves in the injection area were
taken to make slides, observed, and photographed under the laser confocal microscope.
A. tumefaciens transformed with empty vector was used as a control.

5. Conclusions

Few studies have reported on hollow-related genes in cucumber fruit because of
the environmental sensitivity of hollow trait and the unavailability of near-isogenic line
materials. In this study, we used the non-hollow and hollow materials of cucumber fruit
created by our research group and investigated them over multiple generations. The
phenotypic analysis and cytological observations revealed that the hollow trait in cucumber
fruit was formed in the early stage of fruit development with the opening of the carpel
ventral zipper bi-cell layer. The genetic analysis showed that there may be a single dominant
gene affected by the environment that controls the hollow trait in cucumber fruit. Through
the BSA-seq and KASP genotyping analysis, the hollow gene of cucumber fruit was finely
located, and the candidate gene was preliminarily determined as CsALMT2. Sequencing
showed that the transversion G82A on exon 1 of CsALMT2 resulted in an amino acid
changing from alanine to threonine (A28T). Further, we used qRT-PCR and FISH to analyze
the expression characteristics. The expression level of CsALMT2 in H7 was significantly
higher than that in H6, and showed tissue specificity that the ovule development zone
inside the fruit had high expression. The CsALMT2 gene may be localized to the plasma
membrane. The results of this study should help to understand the molecular mechanism
of the formation of hollow trait in cucumber fruit, and be benefical to develop molecular
markers for seedling screening of high-quality cucumber varieties with non-hollow fruit.
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