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ABSTRACT
In recent years, tumor classification based on gene expression profiles has drawn great attention,
and related research results have been widely applied to the clinical diagnosis of major gene
diseases. These studies are of tremendous importance for accurate cancer diagnosis and subtype
recognition. However, the microarray data of gene expression profiles have small samples, high
dimensionality, large noise and data redundancy. To further improve the classification performance
of microarray data, a gene selection approach based on the Fisher linear discriminant (FLD) and the
neighborhood rough set (NRS) is proposed. First, the FLD method is employed to reduce the
preliminarily genetic data to obtain features with a strong classification ability, which can form a
candidate gene subset. Then, neighborhood precision and neighborhood roughness are defined in
a neighborhood decision system, and the calculation approaches for neighborhood dependency
and the significance of an attribute are given. A reduction model of neighborhood decision systems
is presented. Thus, a gene selection algorithm based on FLD and NRS is proposed. Finally, four
public gene datasets are used in the simulation experiments. Experimental results under the SVM
classifier demonstrate that the proposed algorithm is effective, and it can select a smaller and more
well-classified gene subset, as well as obtain better classification performance.
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Introduction

With the development of gene expression profiles, the
analysis and modelling of gene expression profiles has
become an important topic in the field of bioinformat-
ics research [1–3]. However, the high dimension of
tumor gene expression data, which is often in the
thousands or even tens of thousands, increases the
learning cost and deteriorates learning performance.
This is widely known as the ‘‘Curse of Dimensional-
ity’’, which costs time and reduces the effectiveness of
classification when using a classifier to forecast new
samples [4,5]. Thus, the dimensionality reduction has
been a research hotspot in different fields as an impor-
tant step in pattern recognition, machine learning and
data mining [6-14].

In general, dimensionality reduction algorithms can
be categorized as feature extraction and feature selec-
tion. Feature extraction constructs a new low-dimen-
sional space out of the original high-dimensional data
through projection or transformation, while the aim

of feature selection is to reduce the dimensionality of
microarray data[15,16] and to enhance classification
accuracy [17,18]. The existing feature selection meth-
ods can be broadly categorized into the following three
classes: filter, wrapper, and hybrid [19]. A good feature
selection algorithm should be reasonable and efficient;
the algorithm should be able to find a typical genome
containing fewer genes [20].

Many scholars have conducted research on gene
selection and have generated many results. FLD is a
classical technique in pattern recognition; Robert
Fisher first developed FLD in 1936 for taxonomic clas-
sification [21]. FLD can be used to select the charac-
teristics possessed by classified information, eliminate
redundant attributes, and achieve the dimensionality
reduction processing of gene data. Since Pawlak in the
early 1980s proposed rough set theory, it has been
widely used in various fields [22]. However, the classi-
cal rough set theory is only applicable to discrete-val-
ued information systems, and it is not suitable for
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real-valued datasets. To overcome this weakness, Dai
and Xu presented a gene selection method based on
fuzzy rough sets and a fuzzy gain ratio [23]. Hu et al.
proposed a neighborhood rough set model to address
both discrete and continuous data sets with a d-neigh-
borhood parameter, which can maintain the rich
information for classifying the data sets [24].

To further improve the classification performance of
microarray data, effectively remove the redundant gene,
and reduce the computational time complexity of the
gene selection algorithm, the FLD method is employed
to conduct the preliminary dimensionality reduction for
microarray gene data. FLD effectively removes genes
that do not contribute to classification. The neighbor-
hood rough set can process continuous data sets and
avoid the loss of information caused by discretizing.
Then, a new neighborhood dependency and its attribute
significance are given, and an attribute reduction
method of neighborhood decision systems is presented.
A gene selection approach based on FLD and NRS is
proposed. A number of simulation experiments were
conducted on public gene data sets, and the best param-
eters were determined according to the experimental
results. Therefore, high classification accuracy can be
obtained using the selected gene subset under the sup-
port vector machine (SVM) classifier [25].

The remainder of this paper is structured as follows:
Section 2 introduces related concepts of FLD. An
effective and efficient feature selection method based
on FLD and NRS is given in Section 3. To evaluate the
performance of the proposed algorithm, five related
algorithms are employed to compare four public gene
expression data sets. The experimental results are
described in Section 4. Finally, the conclusion is drawn
in Section 5.

Fisher linear discriminant model

The Fisher linear discriminant is a classical algorithm
introduced by Belhumeur in the field of pattern recog-
nition and artificial intelligence [21]. The basic idea of
the FLD model is to project the sample onto a straight
line by transforming the sample so the projection of
the sample can be best divided. That is, the dispersion
degree between the transformed sample classes reaches
the highest level, and the sample dispersion within the
classes reaches the minimum, which increases the dis-
tinction among the categories. Therefore, FLD can be

used to select the characteristics with the possessed
information classified, eliminate redundant attributes,
and achieve the processing of dimensionality reduc-
tion for gene data. The method is an effective, super-
vised dimensionality reduction technology. The
related concepts of FLD are described as follows.

Let c be the number of classes of the sample matrix

X 2 Rd�n, where ni is the number of samples belonging
to the i-th class vi, and

Pc
i¼1ni ¼ n. The centre point of

each sample is mi ¼ 1
ni

P
x2vi

x, and the centre point of

all samples is m ¼ 1
n

Pn
j¼1xj, where xj is the j-th sample.

The between-class scatter matrix SB and the within-class
matrix SW can be expressed, respectively, as

SB ¼
Xc

i¼1

niðmi � mÞðmi � mÞT ; (1:1)

SW ¼
Xc

i¼1

X
x2vi

ðx � miÞðx � miÞT : (1:2)

On the basis of Formulas (1.1) and (1.2), the
between-class scatter JB and the within-class scatter JW
of the samples after projection are expressed, respec-
tively, as

JB ¼ 1
n
WTSBW; (1:3)

JW ¼ 1
n
WTSWW: (1:4)

The objective function established by the Fisher dis-
criminant criterion is described by

maxW
JB
JW

¼ jWTSBW j
jWTSWW j : (1:5)

If the k-th column wk ofW is considered, the objec-
tive function can be transformed into

maxwkwk
TSBwk: (1:6)

A Lagrangian equation is established as

Lðwk; λÞ ¼ ð1� wk
TSWwkÞ: (1:7)

Take the derivative of wk, and make it equal to 0, to
obtain the following formula:

SW
�1SB ¼ λwk: (1:8)
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To maximize the value of JB
JW
, the projection matrix

W can be constructed by simply taking the eigenvec-
tors corresponding to the k largest eigenvalues.

Fisher linear discriminant and neighborhood
rough set based gene selection method

When using classical rough sets to solve continuous
data problems, the data set must be discretized; how-
ever, processing the original properties of the data will
change, and some useful information will be lost [26].
The neighborhood rough set is proposed to solve the
problem where the classical rough set cannot handle
the numerical attributes [27,28]. In addition, the effect
of the classical neighborhood rough set model is not
obvious. Then, to resolve this issue, this paper pro-
poses a feature selection method based on FLD and
NRS, which is applied to gene selection of a cancer
data set.

There are N dimensions in a determined real space
U. Let D = RN£RN ! R. D is called as a measure on
RN, and (D, U) is called as a measure space, when D

meets the following three conditions:

(1) D(x1, x2) = D(x2, x1),
(2) D(x1, x2) � 0, where the equation holds if and

only if x1 = x2,
(3) D(x1, x3) � D(x1, x2) + D(x2, x3),

where D(x1, x2) is a distance function between two ele-
ments x1 and x2. The distance functions used always
include a Manhattan distance function, a Euclidean
distance function, and a p-normal form distance func-
tion. Since the Euclidean distance function can reflect
the basic situation of unknown data [29]. the Euclid-
ean distance function is used in this paper. The for-
mula is described as follows:

Dðxi; xjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

k¼1
ðf ðxi; akÞ � f ðxj; akÞÞ2

r
: (2:1)

Let U = {x1, x2, x3,…, xm} be a nonempty finite set
on a given real space V, then the b-neighborhood of
any xi (1 � i � m) is defined as

bðxiÞ ¼ x j x 2 U ;Dðx; xiÞ� b; b� 0f g: (2:2)

Let U = {x1, x2, x3,…, xm} be a nonempty finite set
on a given real space V, and its neighborhood

relationship N on the real field V is expressed as a
binary group NA = (U, N). For any X �U, the upper
approximation and the lower approximations of X in
a neighborhood approximate space NA = (U, N) can
be defined respectively as

NðXÞ ¼ xi jbðxiÞ\X 6¼ f; xi 2 Uf g; (2:3)

NçðXÞ ¼ xi jbðxiÞ � X; xi 2 Uf g: (2:4)

The approximate boundary region of X is defined
as

BNðXÞ ¼ NðXÞ � NçðXÞ: (2:5)

Suppose NDS = (U, A[D) is a neighborhood deci-
sion system, A is a conditional attribute set, D is a
decision attribute, and U/D = {X1, X2, X3, …, Xn}. For
any conditional attribute subset B � A, the upper
approximation and the lower approximation of deci-
sion attribute D with respect to B are expressed,
respectively, as

NBD ¼ [n
i¼1

NBXi

¼ xj jbðxjÞ\Xi 6¼ f; xj 2 U ; 1� j� jU j� �
;

(2:6)

NçBD ¼ [n
i¼1

N
çB

Xi

¼ xj jbðxjÞ � Xi; xj 2 U ; 1� j� jU j� �
: (2:7)

It follows that the boundary region of the decision
system can be expressed as

BNðDÞ ¼ NBD� NçBD: (2:8)

where PosBðDÞ ¼ NçBD is a positive domain of the
decision system, NegBðDÞ ¼ U � NBD is a negative
domain of the decision system.

The existence of the boundary domain causes the
uncertainty of the set. Greater uncertainty occurs with
larger boundary domain sets. This paper studies the
boundary domain of the neighborhood decision sys-
tem and investigates various uncertainty measures.

The roughness measure, a quantitative index for
processing uncertain information by using the rough
set theory, is the basis of resource management, sys-
tem optimization, and many other decision-making
problems [30].
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Suppose NDS = (U, A[D) is a neighborhood
decision system, U/D = {X1, X2, X3,…, Xn}. Then
for any conditional attribute subset B � A, the
neighborhood precision of U/D with respect to B is
described by

r ¼ j çNBD j
jNBD j : (2:9)

The neighborhood roughness of U/D with respect
to B is expressed as

rBðDÞ ¼ 1� r ¼ 1� j çNBD j
jNBD j ¼

jBNðDÞ j
jNBD j : (2:10)

Definition 1. Suppose that NDS = (U, A[D) is a
neighborhood decision system and any conditional
attribute subset B �A. Then, a dependency of decision
attribute D with respect to B is defined as

KðB;DÞ ¼ ð1� rÞ j PosBðDÞ jjU j
¼ jBNðDÞ j

jU j
j çNBD j
jNBD j : (2:11)

Definition 2. Suppose that NDS = (U, A[D) is a
neighborhood decision system, any conditional attri-
bute subset B �A, and a2B. Then, an internal signifi-
cance of attribute a with respect to B is defined as

SIGinner a;B;Dð Þ ¼ K B;Dð Þ－KðB－ af g;DÞ: (2:12)

Definition 3. Suppose that NDS = (U, A[D) is a
neighborhood decision system, any conditional attri-
bute subset B �A, and a2A¡B. Then, an external sig-
nificance of attribute a with respect to B is defined as

SIGouter a;B;Dð Þ ¼ K B[ af g;Dð Þ－K B;Dð Þ: (2:13)

Definition 4. Suppose that NDS = (U, A[D) is a
neighborhood decision system, any conditional attri-
bute subset B �A, and a2B. Then, B is a reduction set
of A if and only if it is satisfied with the following con-
ditions:

(1) K(B, D) = K(A, D),
(2) K(B, D) > K(B¡{a}, D),

where K(B, D) is the dependency of the decision attri-
bute D with respect to the conditional attribute subset
B.

Based on the dimensionality reduction technology
FLD and the feature reduction of the neighborhood
decision system, a feature selection algorithm based
on FLD and NRS (FLD-NRS) is designed. The detailed
steps are described as follows.

Input: A neighborhood decision system NDS = (U,
A[D), and a neighborhood radius b

Output: A reduction set red

Step 1: Calculate a centre point mi of the various
samples for the conditional attribute set A and
the centre point m of all the samples.

Step 2: Calculate the within-class scatter matrix SW
and the between-class scatter matrix SB accord-
ing to Formulas (1.3) and (1.4).

Step 3: Decompose the eigenvalues of SW�1SB
obtained from Formula (1.8) and sort the
eigenvalues with descending order.

Step 4: Take the eigenvector corresponding to the first
k eigenvalues to form the projectionmatrixW.

Step 5: Calculate X 0 = WTX, X 02 Rd
0 �n and obtain

the conditional attribute subset C after
dimensionality reduction that is NDS = (U,
C[D), where d' is the number of attributes of
C, and n is the number of samples.

Step 6: Let Ø! red, and B = C.
Step 7: Calculate SIGinner(a, B, D) > 0 with For-

mula (2.12) for any attribute a2B and a =2 red,
get the indispensable attribute a, and let red =
red[{a}.

Step 8: Calculate SIGouter(ak, red, D) with Formula
(2.13) for any attribute ak2C¡red, get the most
important attribute ak according to the size of
the order and add it to the reduction set red =
red[{ak}.

Step 9: Calculate K(red, D) and K(C, D) according
to Formula (2.11).

Step 10: If K(red, D) 6¼ K(C, D), update the condi-
tional attribute set C = C¡{ak}, and perform
Step 8.

Step 11: Output the reduction set red.
Step 12: End.

For a group of gene expression data, it is assumed
that the number of samples is K, and the number of
attributes is T. After the dimensionality reduction
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according to the FLD algorithm, the M genes can be
obtained. To select a gene, it is necessary to add K

M

samples to the positive domain set, and the neighbor-
hood computational time complexity of the gene data
set is O(KlogK). Since the computational time com-
plexity of the first gene is TKlogK, and the computa-
tional time complexity of the second gene is (T¡1)
(K¡ K

M)log(K¡ K
M), the computational time complexity

of the M-th gene is (T¡M+1)log K
Mlog

K
M. After the

above analysis, the worst computational time com-
plexity of the FLD-NRS algorithm is MTKlogK. Due
to M � T, the computational time complexity of the
proposed algorithm is less than O(T2KlogK).

Experimental results and analysis

To verify the effectiveness of the proposed FLD-NRS
algorithm, simulation experiments are performed on
four public gene expression profile data sets, which
include colon, leukaemia, lung, and prostate cancer
data downloaded from http://bioinformatics.rutgers.
ed/Static/ Supplemens/CompCancer/datasets. The
specific description of the datasets is shown in Table 1.
The computer system used in this experiment is Win-
dows 7 64-bit operating system, Intel(R) Core(TM)
i5-3470 CPU @ 3.20 GHz, Memory (RAM) 4.00 GB.
All simulation experiments are implemented in Mat-
lab R2012b (The MathWorks, Inc., 1 Apple Hill Drive
Natick, United States).

It is noted that the values of the partial gene col-
umns in the lung and prostate data sets are all zero.
Thus, the 121 columns of noise gene data from the
lung cancer set and the 394 columns of noise gene
data from the prostate set should be eliminated.
Finally, the gene number of the lung cancer data set is
12412, and the gene number of the prostate cancer
data set is 12206.

In Table 1, the four data sets have two categories,
namely, belonging to two classification problems. Tak-
ing the colon cancer data set with a high dimension
and a small sample as an example, there are 2000 con-
ditional attributes and 62 samples. The number of
positive samples is 40, and the number of negative

ones is 20. Since the external manifestation of the
gene data is a numerical matrix, the model described
needs to name the gene dataset as a high-dimensional
data matrix, and then the dimensionality needs to be
reduced. To ensure that the gene data cannot lose its
characteristics, the data of each gene is then marked.
That is, the numbers between genes and markers in
the data set are corresponding to each other.

In this paper, FLD is employed to preliminary
dimensionality reduction, and the neighborhood
rough set algorithm is used to further reduce the
attributes, which can remove the redundant data of
the original data set. The effect of dimensionality
reduction then becomes obvious. The neighborhood
radius parameter λ is set for each data set, and the
lower limit of importance is 0.00001. The FLD-NRS
algorithm is used to reduce the attributes for the four
data sets respectively in Table 1. The experimental
results of the selected gene subsets are shown in
Table 2.

To verify the classification performance of the
selected gene subsets, four classifiers are employed to
do this experiment on each data set. The results are
indicated in Figure 1.

According to Fig. 1, SVM has the best classifica-
tion performance on the four data sets when com-
pared with the other three. Then, to verify the
validity of the proposed algorithm for selecting a
gene subset with strong classification, the classifica-
tion accuracy of the gene subset after reduction is
evaluated on SVM. The FLD-NRS algorithm is com-
pared with the other three related algorithms on four
gene data sets, where the original data processing
(ODP) algorithm is used to classify the original data
set directly. The Lasso[31,32] algorithm is a feature
selection method by coefficient compression estima-
tion, and the NRS [24]. algorithm is a feature selec-
tion method using the neighborhood rough set
theory. The experimental results are illustrated in
Table 3, where m describes the gene number after
gene selection, and Acc describes the optimal classifi-
cation accuracy. Meanwhile, the time complexities of
these algorithms are given in Table 3.

Table 1. Description of the four experimental data sets.
Data set Feature size Sample size (normal/tumor) Class size

Colon 2000 62 (40/20) 2
Leukemia 7129 72 (25/47) 2
Lung 12533 181 (31/150) 2
Prostate 12600 136 (77/59) 2

Table 2. Selected gene subsets of four data sets using FLD-NRS.
Data set Gene subset after reduction

Colon {1423, 765, 822, 66, 1870, 590}
Leukemia {1834, 2354, 2642, 1685, 758}
Lung {2549, 7200, 6139}
Prostate {8986, 11052, 6392, 4050}
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It can be seen from Table 3 that, although the clas-
sification accuracy of the leukemia data set is 94.4%
with the ODP algorithm, the original data is directly
classified by using ODP, and the size of the selected
gene subset is very large. The NRS algorithm can
effectively remove irrelevant genes to obtain a smaller
gene subset. However, some genes with strong classi-
fications have been removed. This leads to the lower
classification accuracy of the selected gene subset. For
example, the classification accuracy of leukemia with
NRS is reduced to 64.5%. In the process of gene
selection, it is known that the scale of the selected
gene subset and its classification accuracy are two
important aspects. The FLD-NRS algorithm pre-
sented in this paper can select a smaller gene subset,
and the classification accuracy has clearly been
improved. For the colon data set, our algorithm can
also select fewer genes with higher classification accu-

racy than the other two algorithms. For the leukemia
and lung data sets, although our accuracy is lower
than those of the ODP and Lasso algorithms, the
selected gene subset is much smaller than those of
the above two algorithms. Meanwhile, for the pros-
tate data set, the classification accuracy with FLD-
NRS is higher than those of the ODP and NRS algo-
rithms, and the selected gene number is smaller than
those of the ODP and Lasso algorithms. These results
prove the effectiveness of the proposed algorithm for
gene selection.

To further investigate the performance of the pro-
posed algorithm, the FLD-NRS algorithm is compared
with two random forest algorithms, where RF repre-
sents the classical random forest algorithm [33]. and
SNRRF [34]. represents an improved random forest
algorithm. The time complexity of the random forest
algorithms can be approximated as O(kTK(logK)2),
where k is the number of random classifiers in a ran-
dom forest. The experimental results are shown in
Table 4. The time complexities of these algorithms
can be found in Table 4.

According to Table 4, the classification accuracy of
the colon data set with the FLD-NRS algorithm is
88%, which is higher than those of the RF and SNRRF
algorithms. For the lung data set, the accuracy of the

Figure 1. Classification accuracy of the four data sets under different classifiers.

Table 3. Selected gene number and classification accuracy of the
four algorithms on different data sets.

ODP Lasso NRS FLD-NRS

Data set m Acc M Acc m Acc m Acc

Colon 2000 0.811 5 0.887 4 0.611 6 0.880
Leukemia 7129 0.944 23 0.986 5 0.645 5 0.828
Lung 12412 0.903 8 0.995 3 0.641 3 0.889
Prostate 12206 0.619 63 0.961 4 0.647 4 0.800
Time complexity — O(PT3) O(T2KlogK) O(MTKlogK)
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proposed algorithm is 88.9%, which is basically equiv-
alent to those of the two random forest algorithms,
but the selected gene number is very small. These
results demonstrate the validity of the proposed algo-
rithm. However, for the leukemia and prostate data
sets, the classification accuracy of this algorithm is
slightly lower than those of the two random forest
algorithms. These results explain that when using FLD
to filter irrelevant genes, the genes with large influence
on classification are mistakenly filtered out; therefore,
the classification accuracy will be affected and
reduced.

Through the time complexity analyses presented in
Tables 3 and 4, it is obvious that the Lasso algorithm
costs significantly more time, which is higher than
those of the other four algorithms; although, the clas-
sification accuracy of the selected gene subset is high.
The gene number of the original data set is usually
much larger than that of the selected gene subset, so
the time complexity of the proposed algorithm is obvi-
ously lower than those of the other five algorithms.

The above experimental results show that the FLD-
NRS algorithm can solve the high-dimensional and
high-redundancy problem of gene expression profile
data well. The selected gene subset is smaller, and the
dimensionality reduction effect is obvious. Hence, the
FLD-NRS algorithm is superior to the other four algo-
rithms mentioned in this paper under the overall situ-
ation of the three indicators, including selected gene
number, classification accuracy, and computational
time complexity. Therefore, the FLD-NRS algorithm
can accomplish dimensionality reduction processing
well, and the selected gene subset has strong classifica-
tion abilities.

Conclusion

The challenge of selecting genes with important classi-
fication information from tens of thousands of gene
expression profiles is an important problem in the
field of bioinformatics. In this paper, a genetic

selection method based on the FLD and NRS is pro-
posed in view of poor stability, large feature subset
size, and time-consuming calculations of various gene
selection algorithms. The FLD approach is applied
into the preliminary dimensionality reduction of gene
data to obtain the candidate gene subset. A novel fea-
ture reduction algorithm in neighborhood decision
systems is proposed to optimize the features after
dimensionality reduction. Then, a gene subset with
strong classification ability is selected. The experimen-
tal results all show that the FLD-SNR algorithm can
select a gene subset with smaller scale and stronger
classification ability. The proposed algorithm is of
great practical significance for the future study of can-
cer clinical diagnosis.
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